Skip to main content

Proteomics of Lactic Acid Bacteria

  • Chapter
  • First Online:
Lactic Acid Bacteria
  • 1176 Accesses

Abstract

Protein is the direct mediator of gene functions. The biological processes in protein level including dynamic modification, processing, transportation and localization, and structure formation cannot be predicted from gene content. The expression of mRNA cannot directly reflect the expression of the corresponding protein. Therefore, proteomics rather than genomics can provide direct evidence for the “true” occurrence of life. In the mid-1990s, proteomics research, as a newly merged discipline, initiated benefiting from the development on human genome project. The proteomes are of diversity and variability, wherein the compositions and abundances of protein pool are different in the different cells within the same organism. Meanwhile, the proteomes are also variable under different phases and conditions in the same cell. Therefore, proteomics can provide an effective means for research on complexity of protein functions during life process from dynamic and comprehensive perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 06 October 2022

    The original version of the book was inadvertently published with errors. The following corrections have been made after the original publication.

References

  • Abe F, Horikoshi K (2001) The biotechnological potential of piezophiles. Trends Biotechnol 19(3):102–108

    Article  CAS  PubMed  Google Scholar 

  • Alcántara C, Bäuerl C, Revillaguarinos A et al (2016) Peptide and amino acid metabolism is controlled by an OmpR family -response regulator in lactobacillus casei. Mol Microbiol 1(100):25–41

    Article  Google Scholar 

  • Altermann E, Buck LB, Cano R et al (2004) Identification and phenotypic characterization of the cell-division protein CdpA. Gene 342(1):189–197

    Article  CAS  PubMed  Google Scholar 

  • Alvarez MA, Moreno-Arribas MV (2014) The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trends Food Sci Technol 39(2):146–155

    Article  CAS  Google Scholar 

  • Amund O, Ouoba LI, Sutherland JP et al (2014) Assessing the effects of exposure to environmental stress on some functional properties of bifidobacterium animalis ssp. lactis. Benefic Microbes 5(4):461–469

    Article  CAS  Google Scholar 

  • An H, Douillard FP, Wang G et al (2014) Integrated transcriptomic and proteomic analysis of the bile stress response in a centenarian-originated probiotic bifidobacterium longum BBMN68. Mol Cell Proteomics 13(10):2558–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arena S, D’Ambrosio C, Renzone G et al (2006) A study of streptococcus thermophilus proteome by integrated analytical procedures and differential expression investigations. Proteomics 6(1):181–192

    Article  CAS  PubMed  Google Scholar 

  • Barcelona-Andrés B, Marina A, Rubio V (2002) Gene structure, organization, expression, and potential regulatory mechanisms of arginine catabolism in Enterococcus faecalis. J Bacteriol 184(22):6289–6300

    Article  PubMed  PubMed Central  Google Scholar 

  • Bastani P, Homayouni A, Tabrizian VG et al (2012) Dairy probiotic foods and bacterial vaginosis: a review on mechanism of action. In: Everlon CR (ed) Probiotics. INTECH Open Access Publisher, Croatia

    Google Scholar 

  • Belfiore C, Fadda S, Raya R et al (2013) Molecular basis of the adaption of the anchovy isolate lactobacillus sakei CRL1756 to salted environments through a proteomic approach. Food Res Int 54(1):1334–1341

    Article  CAS  Google Scholar 

  • Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S et al (2012) Probiotic mechanisms of action. Ann Nutr Metab 61(2):160–174

    Article  CAS  PubMed  Google Scholar 

  • Bouchard D, Even S, Le Loir Y (2015) Lactic acid bacteria in animal production and health. In: Biotechnology of lactic acid bacteria: novel applications. Wiley, Hoboken, pp 144–158

    Chapter  Google Scholar 

  • Brandsma JB, van de Kraats I, Abee T et al (2012) Arginine metabolism in sugar deprived Lactococcus lactis enhances survival and cellular activity, while supporting flavour production. Food Microbiol 29(1):27–32

    Article  CAS  PubMed  Google Scholar 

  • Brioukhanov A, Netrusov A (2007) Aerotolerance of strictly anaerobic microorganisms and factors of defense against oxidative stress: a review. Appl Biochem Microbiol 43(6):567–582

    Article  CAS  Google Scholar 

  • Bron PA, Tomita S, Mercenier A et al (2013) Cell surface-associated compounds of probiotic lactobacilli sustain the strain-specificity dogma. Curr Opin Microbiol 16(3):262–269

    Article  CAS  PubMed  Google Scholar 

  • Brooijmans RJW, Poolman B, Schuurman-Wolters GK et al (2007) Generation of a membrane potential by Lactococcus lactis through aerobic electron transport. J Bacteriol 189(14):5203–5209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capitani G, De Biase D, Aurizi C et al (2003) Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO J 22(16):4027–4037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28(4):281–370

    Article  CAS  PubMed  Google Scholar 

  • Castillo A (2015) How bacteria use quorum sensing to communicate. Nat Educ 8(2):4

    Google Scholar 

  • Chen J, Shen J, Hellgren LI et al (2015) Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate. Sci Rep 5:14199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corcoran BM, Stanton C, Fitzgerald G et al (2008) Life under stress: the probiotic stress response and how it may be manipulated. Curr Pharm Des 14(14):1382–1399

    Article  CAS  PubMed  Google Scholar 

  • Coton M, Romano A, Spano G et al (2010) Occurrence of biogenic amine-forming lactic acid bacteria in wine and cider. Food Microbiol 27(8):1078–1085

    Article  CAS  PubMed  Google Scholar 

  • de Angelis M, Gobbetti M (2004) Environmental stress responses in lactobacillus: a review. Proteomics 4(1):106–122

    Article  PubMed  Google Scholar 

  • de Angelis M, Mariotti L, Rossi J et al (2002) Arginine catabolism by sourdough lactic acid bacteria: purification and characterization of the arginine deiminase pathway enzymes from lactobacillus sanfranciscensis CB1. Appl Environ Microbiol 68(12):6193–6201

    Article  PubMed  PubMed Central  Google Scholar 

  • de Angelis M, Di Cagno R, Huet C et al (2004) Heat shock response in Lactobacillus plantarum. Appl Environ Microbiol 70(3):1336–1346

    Article  PubMed  PubMed Central  Google Scholar 

  • Décanis N, Tazi N, Correia A et al (2011) Farnesol, a fungal quorum-sensing molecule triggers Candida albicans morphological changes by downregulating the expression of different secreted aspartyl proteinase genes. Open Microbiol J 5(1):119–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Desmond C, Fitzgerald GF, Stanton C et al (2004) Improved stress tolerance of GroESL—overproducing lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Appl Environ Microbiol 70(10):5929–5936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • di Cagno R, de Angelis M, Limitone A et al (2007) Cell–cell communication in sourdough lactic acid bacteria: a proteomic study in Lactobacillus sanfranciscensis CB1. Proteomics 7(14):2430–2446

    Article  PubMed  Google Scholar 

  • di Cagno R, de Angelis M, Coda R et al (2009) Molecular adaptation of sourdough Lactobacillus plantarum DC400 under co-cultivation with other lactobacilli. Res Microbiol 160(5):358–366

    Article  PubMed  Google Scholar 

  • di Cagno R, De Angelis M, Calasso M et al (2010) Quorum sensing in sourdough Lactobacillus plantarum DC400: induction of plantaricin a (PlnA) under co-cultivation with other lactic acid bacteria and effect of PlnA on bacterial and Caco-2 cells. Proteomics 10(11):2175–2190

    Article  PubMed  Google Scholar 

  • di Cagno R, De Angelis M, Calasso M et al (2011) Proteomics of the bacterial cross-talk by quorum sensing. J Proteome 74(1):19–34

    Article  Google Scholar 

  • Dias R, Vilas-Boas E, Campos FM et al (2015) Activity of lysozyme on Lactobacillus hilgardii strains isolated from port wine. Food Microbiol 49:6–11

    Article  CAS  PubMed  Google Scholar 

  • Diggle SP, Matthijs S, Wright VJ et al (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14(1):87–96

    Article  CAS  PubMed  Google Scholar 

  • Dijkstra AR, Alkema W, Starrenburg MJC et al (2014) Fermentation-induced variation in heat and oxidative stress phenotypes of Lactococcus lactis MG1363 reveals transcriptome signatures for robustness. Microb Cell Factories 13(1):1–11

    Article  Google Scholar 

  • Dougan DA, Mogk A, Bukau B (2002) Protein folding and degradation in bacteria: to degrade or not to degrade? That is the question. Cell Mol Life Sci 59(10):1607–1616

    Article  CAS  PubMed  Google Scholar 

  • Elkins CA, Moser SA, Savage DC et al (2001) Genes encoding bile salt hydrolases and conjugated bile salt transporters in lactobacillus johnsonii 100-100 and other lactobacillus species. Microbiology 147(12):3403–3412

    Article  CAS  PubMed  Google Scholar 

  • Fernandez A, Ogawa J, Penaud S et al (2008) Rerouting of pyruvate metabolism during acid adaptation in lactobacillus bulgaricus. Proteomics 8(15):3154–3163

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Pérez R, Aldama LD, Lázaro MG et al (2014) Nitrogen metabolic profile of lactococcus lactis subsp. cremoris strains under stress conditions. Industrial, medical and environmental applications of microorganisms: current status and trends. In: Proceedings of the Vth international conference on environmental, industrial and applied microbiology (BioMicro World 2013) Mad, Wageningen Academic Publishers, p 347

    Google Scholar 

  • Fields S, Song O (1989) A novel genetic system to detect protein protein interactions. Nature 340(6230):245–246

    Article  CAS  PubMed  Google Scholar 

  • Fiocco D, Capozzi V, Goffin P et al (2007) Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum. Appl Microbiol Biotechnol 77(4):909–915

    Article  CAS  PubMed  Google Scholar 

  • Flahaut NAL, Wiersma A, van de Bunt B et al (2013) Genome-scale metabolic model for lactococcus lactis MG1363 and its application to the analysis of flavor formation. Appl Microbiol Biotechnol 97(19):8729–8739

    Article  CAS  PubMed  Google Scholar 

  • Gagnaire V, Mollé D, Herrouin M et al (2001) Peptides identified during Emmental cheese ripening: origin and proteolytic systems involved. J Agric Food Chem 49(9):4402–4413

    Article  CAS  PubMed  Google Scholar 

  • Gagnaire V, Piot M, Camier B et al (2004) Survey of bacterial proteins released in cheese: a proteomic approach. Int J Food Microbiol 94(2):185–201

    Article  CAS  PubMed  Google Scholar 

  • Gao QX, Wu TX, Wang JB et al (2011) Inhibition of bacterial adhesion to HT-29 cells by lipoteichoic acid extracted from clostridium butyricum. Afr J Biotechnol 10(39):7633–7639

    CAS  Google Scholar 

  • García-Ruiz A, González-Rompinelli EM, Bartolomé B et al (2011) Potential of wine-associated lactic acid bacteria to degrade biogenic amines. Int J Food Microbiol 148(2):115–120

    Article  PubMed  Google Scholar 

  • Glenting J, Beck HC, Vrang A et al (2013) Anchorless surface associated glycolytic enzymes from Lactobacillus plantarum 299v bind to epithelial cells and extracellular matrix proteins. Microbiol Res 168(5):245–253

    Article  CAS  PubMed  Google Scholar 

  • Grandvalet C, Coucheney F, Beltramo C et al (2005) CtsR is the master regulator of stress response gene expression in Oenococcus oeni. J Bacteriol 187(16):5614–5623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrini S, Mangani S, Granchi L et al (2002) Biogenic amine production by Oenococcus oeni. Curr Microbiol 44(5):374–378

    Article  CAS  PubMed  Google Scholar 

  • Guisbert E, Morimoto RI (2013) The regulation and function of the heat shock response. In: Morimoto RI, Christen Y (eds) Protein quality control in neurodegenerative diseases. Springer, Berlin/Heidelberg, pp 1–18

    Google Scholar 

  • Gygi SP, Rist B, Gerber SA et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    Article  CAS  PubMed  Google Scholar 

  • Haddaji N, Krifi B, Lagha R et al (2015) Effect of high temperature on viability of Lactobacillus casei and analysis of secreted and GroEL proteins profiles. Afr J Bacteriol Res 7(3):29–35

    Google Scholar 

  • Hamon E, Horvatovich P, Bisch M et al (2011) Investigation of biomarkers of bile tolerance in lactobacillus casei using comparative proteomics. J Proteome Res 11(1):109–118

    Article  PubMed  Google Scholar 

  • Hemaiswarya S, Raja R, Ravikumar R et al (2013) Mechanism of action of probiotics. Braz Arch Biol Technol 56(1):113–119

    Article  CAS  Google Scholar 

  • Herve-Jimenez L, Guillouard I, Guedon E et al (2008) Physiology of streptococcus thermophilus during the late stage of milk fermentation with special regard to sulfur amino-acid metabolism. Proteomics 8(20):4273–4286

    Article  CAS  PubMed  Google Scholar 

  • Herve-Jimenez L, Guillouard I, Guedon E et al (2009) Postgenomic analysis of streptococcus thermophilus cocultivated in milk with Lactobacillus delbrueckii subsp. bulgaricus: involvement of nitrogen, purine, and iron metabolism. Appl Environ Microbiol 75(7):2062–2073

    Article  CAS  PubMed  Google Scholar 

  • Heunis T, Deane S, Smit S et al (2014) Proteomic profiling of the acid stress response in Lactobacillus plantarum 423. J Proteome Res 13(9):4028–4039

    Article  CAS  PubMed  Google Scholar 

  • Hörmann S, Scheyhing C, Behr J et al (2006) Comparative proteome approach to characterize the high-pressure stress response of lactobacillus sanfranciscensis DSM 20451T. Proteomics 6(6):1878–1885

    Article  PubMed  Google Scholar 

  • Hosseini NM, Hussain MA, Britz ML et al (2015) Stress responses in probiotic lactobacillus casei. Crit Rev Food Sci Nutr 55(6):740–749

    Article  Google Scholar 

  • Huang G, Li C, Cao Y (2011) Proteomic analysis of differentially expressed proteins in lactobacillus brevis NCL912 under acid stress. FEMS Microbiol Lett 318(2):177–182

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Shirai T, Ochiai H et al (2003) Blood-pressure-lowering effect of a novel fermented milk containing γ-aminobutyric acid (GABA) in mild hypertensives. Eur J Clin Nutr 57(3):490–495

    Article  CAS  PubMed  Google Scholar 

  • Jensen H, Roos S, Jonsson H et al (2014) Role of Lactobacillus reuteri cell and mucus-binding protein a (CmbA) in adhesion to intestinal epithelial cells and mucus in vitro. Microbiology 160(4):671–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Xia S, Liang J et al (2013) Effect of quorum quenching on the reactor performance, biofouling and biomass characteristics in membrane bioreactors. Water Res 47(1):187–196

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Zhang B, Guo H et al (2012) Mechanism analysis of acid tolerance response of bifidobacterium longum subsp. longum BBMN 68 by gene expression profile using RNA-sequencing. PLoS One 7(12):e50777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jofré A, Champomier-Vergès MC, Anglade P et al (2007) Proteomic analysis of the response of lactic acid and pathogenic bacteria to high hydrostatic pressure treatment. Res Microbiol 58:512–520

    Article  Google Scholar 

  • Kaper JB, Sperandio V (2005) Bacterial cell-to-cell signaling in the gastrointestinal tract. Infect Immun 73(6):3197–3209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieronczyk A, Skeie S, Langsrud T et al (2003) Cooperation between lactococcus lactis and nonstarter lactobacilli in the formation of cheese aroma from amino acids. Appl Environ Microbiol 69(2):734–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konings WN (2006) Microbial transport: adaptations to natural environments. Antonie Van Leeuwenhoek 90(4):325–342

    Article  CAS  PubMed  Google Scholar 

  • Koponen J, Laakso K, Koskenniemi K et al (2012) Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG. J Proteome 75(4):1357–1374

    Article  CAS  Google Scholar 

  • Lamberti C, Purrotti M, Mazzoli R et al (2011) ADI pathway and histidine decarboxylation are reciprocally regulated in lactobacillus hilgardii ISE 5211: proteomic evidence. Amino Acids 41(2):517–527

    Article  CAS  PubMed  Google Scholar 

  • Landete JM, Pardo I, Ferrers S (2006) Histamine, histidine, and growth-phase mediated regulation of the histidine decarboxylase gene in lactic acid bacteria isolated from wine. FEMS Microbiol Lett 260(1):84–90

    Article  CAS  PubMed  Google Scholar 

  • Landete JM, Pardo I, Ferrer S (2007) Tyramine and phenylethylamine production among lactic acid bacteria isolated from wine. Int J Food Microbiol 115(3):364–368

    Article  CAS  PubMed  Google Scholar 

  • Landete JM, Ferrer S, Monedero V et al (2013) Malic enzyme and malolactic enzyme pathways are functionally linked but independently regulated in lactobacillus casei BL23. Appl Environ Microbiol 79(18):5509–5518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laughton JM, Devillard E, Heinrichs DE et al (2006) Inhibition of expression of a staphylococcal superantigen-like protein by a soluble factor from Lactobacillus reuteri. Microbiology 152(4):1155–1167

    Article  CAS  PubMed  Google Scholar 

  • Leahy SC, Higgins DG, Fitzgerald GF et al (2005) Getting better with bifidobacteria. J Appl Microbiol 98(6):1303–1315

    Article  CAS  PubMed  Google Scholar 

  • Lee KB, Lee HG, Pi KB et al (2008) The effect of low pH on protein expression by the probiotic bacterium Lactobacillus reuteri. Proteomics 8(8):1624–1630

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Pajarillo EAB, Kim MJ et al (2012) Proteomic and transcriptional analysis of Lactobacillus johnsonii PF01 during bile salt exposure by iTRAQ shotgun proteomics and quantitative RT-PCR. J Proteome Res 12(1):432–443

    Article  PubMed  Google Scholar 

  • Levering J, Musters MWJM, Bekker M et al (2012) Role of phosphate in the central metabolism of two lactic acid bacteria–a comparative systems biology approach. FEBS J 279(7):1274–1290

    Article  CAS  PubMed  Google Scholar 

  • Lindner JDD, Canchaya C, Zhang Z et al (2007) Exploiting bifidobacterium genomes: the molecular basis of stress response. Int J Food Microbiol 120(1):13–24

    Article  Google Scholar 

  • Liu F, Du L, Xu W et al (2013) Production of tyramine by Enterococcus faecalis strains in water-boiled salted duck. J Food Prot 76(5):854–859

    Article  CAS  PubMed  Google Scholar 

  • Louesdon S, Charlot-Rougé S, Tourdot-Maréchal R et al (2015) Membrane fatty acid composition and fluidity are involved in the resistance to freezing of Lactobacillus buchneri R1102 and bifidobacterium longum R0175. Microb Biotechnol 8(2):311–318

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Vijayasankaran N, Autsen J et al (2012) Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell culture process. Biotechnol Bioeng 109(1):146–156

    Article  CAS  PubMed  Google Scholar 

  • Machado MC, López CS, Heras H et al (2004) Osmotic response in lactobacillus casei ATCC 393: biochemical and biophysical characteristics of membrane. Arch Biochem Biophys 422(1):61–70

    Article  CAS  PubMed  Google Scholar 

  • Maeda T, García-Contreras R, Pu M et al (2012) Quorum quenching quandary: resistance to antivirulence compounds. ISME J 6(3):493–501

    Article  CAS  PubMed  Google Scholar 

  • Manso MA, Léonil J, Jan G et al (2005) Application of proteomics to the characterisation of milk and dairy products. Int Dairy J 15(6–9):845–855

    Article  CAS  Google Scholar 

  • Marceau A, Zagorec M, Chaillou S et al (2004) Evidence for involvement of at least six proteins in adaptation of lactobacillus sakei to cold temperatures and addition of NaCl. Appl Environ Microbiol 70(12):7260–7268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzoli R, Lamberti C, Coisson JD et al (2009) Influence of ethanol, malate and arginine on histamine production of Lactobacillus hilgardii isolated from an Italian red wine. Amino Acids 36(1):81–89

    Article  CAS  PubMed  Google Scholar 

  • Mazzoli R, Pessione E, Dufour M et al (2010) Glutamate-induced metabolic changes in lactococcus lactis NCDO 2118 during GABA production: combined transcriptomic and proteomic analysis. Amino Acids 39(3):727–737

    Article  CAS  PubMed  Google Scholar 

  • Mendoza GM, Pasteris SE, Otero MC et al (2014) Survival and beneficial properties of lactic acid bacteria from raniculture subjected to freeze-drying and storage. J Appl Microbiol 116(1):157–166

    Article  Google Scholar 

  • Milani C, Turroni F, Duranti S et al (2016) Genomics of the genus bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Appl Environ Microbiol 82(4):980–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills S, Stanton C, Fitzgerald GF et al (2011) Enhancing the stress responses of probiotics for a lifestyle from gut to product and back again. Microb Cell Factories 10(1):1–15

    Google Scholar 

  • Miyoshi A, Rochat T, Gratadoux JJ et al (2003) Oxidative stress in lactococcus lactis. Genet Mol Res 2(4):348–359

    CAS  PubMed  Google Scholar 

  • Mohammadi T, Karczmarek A, Crouvoisier M et al (2007) The essential peptidoglycan glycosyltransferase MurG forms a complex with proteins involved in lateral envelope growth as well as with proteins involved in cell division in Escherichia coli. Mol Microbiol 65(4):1106–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molière N, Turgay K (2009) Chaperone-protease systems in regulation and protein quality control in bacillus subtilis. Res Microbiol 160(9):637–644

    Article  PubMed  Google Scholar 

  • Moreno-Arribas MV, Polo MC, Jorganes F et al (2003) Screening of biogenic amine production by lactic acid bacteria isolated from grape must and wine. Int J Food Microbiol 84(1):117–123

    Article  CAS  PubMed  Google Scholar 

  • Oliveira LC, Saraiva TDL, Soares SC et al (2014) Genome sequence of lactococcus lactis subsp. lactis NCDO 2118, a GABA-producing strain. Genome Announc 2(5):e00980–e00914

    Article  PubMed  PubMed Central  Google Scholar 

  • Parente E, Ciocia F, Ricciardi A et al (2010) Diversity of stress tolerance in Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum: a multivariate screening study. Int J Food Microbiol 144(2):270–279

    Article  CAS  PubMed  Google Scholar 

  • Passot S, Bouix M, Gautier J et al (2012) Relevance of cell biophysical behaviour and membrane fluidity for explaining freezing resistance of lactic acid bacteria. Cryobiology 65(3):355

    Article  Google Scholar 

  • Pessione E, Mazzoli R, Giuffrida MG et al (2005) A proteomic approach to studying biogenic amine producing lactic acid bacteria. Proteomics 5(3):687–698

    Article  CAS  PubMed  Google Scholar 

  • Pessione E, Pessione A, Lamberti C et al (2009) First evidence of a membrane-bound, tyramine and β-phenylethylamine producing, tyrosine decarboxylase in Enterococcus faecalis: a two-dimensional electrophoresis proteomic study. Proteomics 9(10):2695–2710

    Article  CAS  PubMed  Google Scholar 

  • Popat R, Comforth DM, McNally L et al (2015) Collective sensing and collective responses in quorum-sensing bacteria. J R Soc Interface 12(103):20140882

    Article  PubMed  PubMed Central  Google Scholar 

  • Rastogi NK, Raghavarao K, Balasubramaniam VM et al (2007) Opportunities and challenges in high pressure processing of foods. Crit Rev Food Sci Nutr 47(1):69–112

    Article  CAS  PubMed  Google Scholar 

  • Remus DM, Bongers RS, Meijerink M et al (2013) Impact of Lactobacillus plantarum sortase on target protein sorting, gastrointestinal persistence, and host immune response modulation. J Bacteriol 195(3):502–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz L, Sánchez B, Clara G et al (2009) Coculture of bifidobacterium longum and bifidobacterium breve alters their protein expression profiles and enzymatic activities. Int J Food Microbiol 133(1):148–153

    Article  CAS  PubMed  Google Scholar 

  • Rul F, Monnet V (2015) How microbes communicate in food: a review of signaling molecules and their impact on food quality. Curr Opin Food Sci 2:100–105

    Article  Google Scholar 

  • Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2(11):705–709

    Article  Google Scholar 

  • Sánchez B, Champomier-Vergès MC, Anglade P et al (2005) Proteomic analysis of global changes in protein expression during bile salt exposure of bifidobacterium longum NCIMB 8809. J Bacteriol 187(16):5799–5808

    Article  PubMed  PubMed Central  Google Scholar 

  • Sánchez B, Champomier-Vergès MC, del Collado MC et al (2007a) Low-pH adaptation and the acid tolerance response of bifidobacterium longum biotype longum. Appl Environ Microbiol 73(20):6450–6459

    Article  PubMed  PubMed Central  Google Scholar 

  • Sánchez B, Champomier-Vergès MC, Stuer-Lauridsen B et al (2007b) Adaptation and response of bifidobacterium animalis subsp. lactis to bile: a proteomic and physiological approach. Appl Environ Microbiol 73(21):6757–6767

    Article  PubMed  PubMed Central  Google Scholar 

  • Sánchez B, Champomier-Vergès MC, Anglade P et al (2008) A preliminary analysis of bifidobacterium longum exported proteins by two-dimensional electrophoresis. J Mol Microbiol Biotechnol 14(1–3):74–79

    PubMed  Google Scholar 

  • Scheper MA, Shirtliff ME, Meiller TF et al (2008) Farnesol, a fungal quorum-sensing molecule triggers apoptosis in human oral squamous carcinoma cells. Neoplasia 10(9):954–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shevchenko A, Yang Y, Knaust A et al (2014) Proteomics identifies the composition and manufacturing recipe of the 2500-year old sourdough bread from Subeixi cemetery in China. J Proteome 105:363–371

    Article  CAS  Google Scholar 

  • Siciliano RA, Cacace G, Mazzeo MF et al (2008) Proteomic investigation of the aggregation phenomenon in lactobacillus crispatus. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1784(2):335–342

    Article  CAS  Google Scholar 

  • Sieuwerts S, De Bok FAM, Hugenholtz J et al (2008) Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl Environ Microbiol 74(16):4997–5007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steele J, Broadbent J, Kok J (2013) Perspectives on the contribution of lactic acid bacteria to cheese flavor development. Curr Opin Biotechnol 24(2):135–141

    Article  CAS  PubMed  Google Scholar 

  • Streit F, Corrieu G, Béal C (2007) Acidification improves cryotolerance of Lactobacillus delbrueckii subsp. bulgaricus CFL1. J Biotechnol 128(3):659–667

    Article  CAS  PubMed  Google Scholar 

  • Streit F, Delettre J, Corrieu G et al (2008) Acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus induces physiological responses at membrane and cytosolic levels that improves cryotolerance. J Appl Microbiol 105(4):1071–1080

    Article  CAS  PubMed  Google Scholar 

  • Tonon T, Bourdineaud JP, Lonvaud-Funel A (2001) The arcABC gene cluster encoding the arginine deiminase pathway of Oenococcus oeni, and arginine induction of a CRP-like gene. Res Microbiol 152(7):653–661

    Article  CAS  PubMed  Google Scholar 

  • van de Guchte M, Serror P, Chervaux C et al (2002) Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 82(1–4):187–216

    Article  PubMed  Google Scholar 

  • Vandenplas Y, Salvatore S, Devreker T et al (2007) Gastro-oesophageal reflux disease: oesophageal impedance versus pH monitoring. Acta Paediatr 96(7):956–962

    Article  PubMed  Google Scholar 

  • Ventimiglia G, Alfonzo A, Galluzzo P et al (2015) Codominance of lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation. Food Microbiol 51:57–68

    Article  CAS  PubMed  Google Scholar 

  • von Bodman SB, Willey JM, Diggle SP (2008) Cell-cell communication in bacteria: united we stand. J Bacteriol 190(13):4377–4391

    Article  Google Scholar 

  • Wang Y, Delettre J, Guillot A et al (2005) Influence of cooling temperature and duration on cold adaptation of lactobacillus acidophilus RD758. Cryobiology 50(3):294–307

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wu X, Hao L et al (2006) Mutation effect of ultra high pressure on microbe. Acta Microbiol Sin 45(6):970–973

    Google Scholar 

  • Wang LH et al (2008) Quorum quenching: impact and mechanisms. American Society of Microbiology, Washington, DC, pp 379–392

    Google Scholar 

  • Wei X, Yan X, Chen X et al (2014) Proteomic analysis of the interaction of bifidobacterium longum NCC2705 with the intestine cells Caco-2 and identification of plasminogen receptors. J Proteome 108:89–98

    Article  CAS  Google Scholar 

  • Wolken WAM, Lucas PM, Lonvaud-Funel A et al (2006) The mechanism of the tyrosine transporter TyrP supports a proton motive tyrosine decarboxylation pathway in Lactobacillus brevis. J Bacteriol 188(6):2198–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu R, Zhang W, Sun T et al (2011) Proteomic analysis of responses of a new probiotic bacterium lactobacillus casei Zhang to low acid stress. Int J Food Microbiol 147(3):181–187

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Chou L, Cutler A et al (2004) DNA macroarray profiling of lactococcus lactis subsp. lactis IL1403 gene expression during environmental stresses. Appl Environ Microbiol 70(11):6738–6747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan F, Cao H, Cover TL et al (2007) Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132(2):562–575

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Wang B, Sun Z et al (2007) Analysis of host-inducing proteome changes in bifidobacterium longum NCC2705 grown in vivo. J Proteome Res 7(1):375–385

    Article  PubMed  Google Scholar 

  • Yvon M, Gitton C, Chambellon E et al (2008) Responses of lactococcus to stresses encountered during cheese-making process are strain-dependent. Egmond aan Zee: 9th symposium on lactic acid bacteria, p 4589

    Google Scholar 

  • Zhai Z, Douillard FP, An H et al (2014) Proteomic characterization of the acid tolerance response in lactobacillus delbrueckii subsp. bulgaricus CAUH1 and functional identification of a novel acid stress-related transcriptional regulator Ldb0677. Environ Microbiol 16(6):1524–1537

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Zhang W, Sun T et al (2014) Research on the molecular mechanisms of Lactic acid bacteria responding to environmental stress. Dairy Ind 42(4):42–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiao, Y., Tong, Y., Chen, W. (2019). Proteomics of Lactic Acid Bacteria. In: Chen, W. (eds) Lactic Acid Bacteria. Springer, Singapore. https://doi.org/10.1007/978-981-13-7832-4_5

Download citation

Publish with us

Policies and ethics