Skip to main content

Minimal Residual Disease Assessment in Myeloma

  • Chapter
  • First Online:
Hematopathology
  • 1233 Accesses

Abstract

Multiple myeloma is a plasma cell malignancy that manifests with bone lesions, anemia, hypercalcemia and renal dysfunction. With the advent of proteasome inhibitors and immunomodulatory agents, the response rates have significantly improved leading to a higher rates of complete response and stringent complete response. However, patients still relapse over a period of time even after consolidation of response by autologous stem cell trasplantation. There is therefore a need to assess the medullary and extramedullary compartments of residual plasma cell burden to identify patients who will require further therapy. Assessing minimal residual disease in the intramedullary compartment is best done by multiprameter flow cytometry. With standardised 8-10 colour flow cytometry, detection of upto 0.001% neoplastic plasma cells is now possible. This chapter will discuss the details of intramedullary minimal residual disease detection in multiple myeloma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538–48.

    Article  PubMed  Google Scholar 

  2. Moreau P, Attal M, Facon T. Frontline therapy of multiple myeloma. Blood. 2015;125:3076–84.

    Article  CAS  PubMed  Google Scholar 

  3. Rajkumar SV. Multiple myeloma: 2014 update on diagnosis, risk-stratification, and management. Am J Hematol. 2014;89:998–1009.

    Article  CAS  Google Scholar 

  4. Howlader N, Noone A, Krapcho M, et al. Seer Cancer Statistics Review, 1975–2009 (Vintage 2009 populations). Bethesda: National Cancer Institute; 2012.

    Google Scholar 

  5. Landgren O, Weiss BM. Patterns of monoclonal gammopathy of undetermined significance and multiple myeloma in various ethnic/racial groups: support for genetic factors in pathogenesis. Leukemia. 2009;23:1691–7.

    Article  CAS  PubMed  Google Scholar 

  6. Kristinsson SY, Anderson WF, Landgren O. Improved long-term survival in multiple myeloma up to the age of 80 years. Leukemia. 2014;28:1346–8.

    Article  CAS  PubMed  Google Scholar 

  7. Kumar SK, Dispenzieri A, Lacy MQ, et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2014;28:1122–8.

    Article  CAS  PubMed  Google Scholar 

  8. Kumar SK, Rajkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111:2516–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Singhal S, Mehta J, Desikan R, et al. Antitumor activity of thalidomide in refractory multiple myeloma [see comments]. N Engl J Med. 1999;341:1565–71.

    Article  CAS  PubMed  Google Scholar 

  10. Richardson PG, Blood E, Mitsiades CS, et al. A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood. 2006;108:3458–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rajkumar SV, Hayman SR, Lacy MQ, et al. Combination therapy with lenalidomide plus dexamethasone (Rev/Dex) for newly diagnosed myeloma. Blood. 2005;106:4050–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Richardson PG, Sonneveld P, Schuster MW, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 2005;352:2487–98.

    Article  CAS  PubMed  Google Scholar 

  13. Siegel DS, Martin T, Wang M, et al. A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood. 2012;120(14):2817–25. https://doi.org/10.1182/blood-2012-05-425934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lonial S, Brendan M, Usmani SZ, et al. Single-agent daratumumab in heavily pretreated patients with multiple myeloma (Sirius): an open-label, international, multicentre phase 2 trial. Lancet. 2016;387:1551–60.

    Article  CAS  PubMed  Google Scholar 

  15. Lonial S, Dimopoulos M, Palumbo A, et al. elotuzumab therapy for relapsed or refractory multiple myeloma. N Engl J Med. 2015;373:621–31.

    Article  CAS  PubMed  Google Scholar 

  16. Moreau P, Masszi T, Grzasko N, et al. Ixazomib, an investigational oral proteasome inhibitor (PI), in combination with lenalidomide and dexamethasone (IRd), significantly extends progression-free survival (PFS) for patients (Pts) with relapsed and/or refractory multiple myeloma (RRMM): the phase 3 tourmaline-MM1 study (NCT01564537). Blood. 2015;126. Abstract 727.

    Google Scholar 

  17. Landgren O, Owen RG. Better therapy requires better response evaluation: paving the way for minimal residual disease testing for every myeloma patient. Cytometry B Clin Cytom. 2016;90:14–20.

    Article  PubMed  Google Scholar 

  18. Mailankody S, Korde N, Lesokhin AM, et al. Minimal residual disease in multiple myeloma: bringing the bench to the bedside. Nat Rev ClinOncol. 2015;12:286–95.

    Article  Google Scholar 

  19. Attal M, Lauwers-Cances V, Marit G, et al. Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N Engl J Med. 2012;366:1782–91.

    Article  CAS  PubMed  Google Scholar 

  20. McCarthy PL, Owzar K, Hofmeister CC, et al. Lenalidomide after stem-cell transplantation for multiple myeloma. N Engl J Med. 2012;366:1770–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jakubowiak AJ, Dytfeld D, Griffith KA, et al. A phase 1/2 study of carfilzomib in combination with lenalidomide and low-dose dexamethasone as a frontline treatment for multiple myeloma. Blood. 2012;120:1801–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar S, Flinn I, Richardson PG, et al. Randomized, multicenter, phase 2 study (EVOLUTION) of combinations of bortezomib, dexamethasone, cyclophosphamide, and lenalidomide in previously untreated multiple myeloma. Blood. 2012;119:4375–82.

    Article  CAS  PubMed  Google Scholar 

  23. Attal M, Harousseau JL, Stoppa AM, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med. 1996;335:91–7.

    Article  CAS  PubMed  Google Scholar 

  24. Child JA, Morgan GJ, Davies FE, et al. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med. 2003;348:1875–83.

    Article  CAS  PubMed  Google Scholar 

  25. Durie BG, Harousseau JL, Miguel JS, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20:1467–73.

    Article  CAS  PubMed  Google Scholar 

  26. Rajkumar SV, Harousseau JL, Durie B, et al. Consensus recommendations for the uniform reporting of clinical trials: report of the International Myeloma Workshop Consensus Panel 1. Blood. 2011;117:4691–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tatsas AD, Jagasia MH, Chen H, McCurley TL. Monitoring residual myeloma: high-resolution serum/urine electrophoresis or marrow biopsy with immunohistochemical analysis? Am J ClinPathol. 2010;134:139–44.

    CAS  Google Scholar 

  28. Chee CE, Kumar S, Larson DR, et al. The importance of bone marrow examination in determining complete response to therapy in patients with multiple myeloma. Blood. 2009;114:2617–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rawstron AC, Davies FE, DasGupta R, et al. Flow cytometric disease monitoring in multiple myeloma: the relationship between normal and neoplastic plasma cells predicts outcome after transplantation. Blood. 2002;100:3095–100.

    Article  CAS  PubMed  Google Scholar 

  30. Paiva B, Vidriales MB, Cervero J, et al. Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood. 2008;112:4017–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Korde N, Roschewski M, Zingone A, et al. Treatment with carfilzomib-lenalidomide-dexamethasone with lenalidomide extension in patients with smoldering or newly diagnosed multiple myeloma. JAMA Oncol. 2015;1:746–54.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mateos MV, Oriol A, Martinez-Lopez J, et al. GEM2005 trial update comparing VMP/VTP as induction in elderly multiple myeloma patients: do we still need alkylators? Blood. 2014;124:1887–93.

    Article  CAS  PubMed  Google Scholar 

  33. Paiva B, Martinez-Lopez J, Vidriales MB, et al. Comparison of immunofixation, serum free light chain, and immunophenotyping for response evaluation and prognostication in multiple myeloma. J ClinOncol. 2011;29:1627–33.

    Article  CAS  Google Scholar 

  34. Rawstron AC, Child JA, de Tute RM, et al. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council Myeloma IX Study. J ClinOncol. 2013;31:2540–7.

    Article  Google Scholar 

  35. Paiva B, Gutiérrez NC, Rosiñol L, et al. High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma. Blood. 2012;119:687–91.

    Article  CAS  PubMed  Google Scholar 

  36. Mathis S, Chapuis N, Borgeot J, et al. Comparison of cross-platform flow cytometry minima residual disease evaluation in multiple myeloma using a common antibody combination and analysis strategy. Cytometry B Clin Cytom. 2015;88:101–9.

    Article  CAS  PubMed  Google Scholar 

  37. Silvennoinen R, Kairisto V, Pelliniemi TT, et al. Assessment of molecular remission rate after bortezomib plus dexamethasone induction treatment and autologous stem cell transplantation in newly diagnosed multiple myeloma patients. Br J Haematol. 2013;160:561–4.

    Article  CAS  PubMed  Google Scholar 

  38. Martinelli G, Terragna C, Zamagni E, et al. Molecular remission after allogeneic or autologous transplantation of hematopoietic stem cells for multiple myeloma. J Clin Oncol. 2000;18:2273–81.

    Article  CAS  PubMed  Google Scholar 

  39. Sarasquete ME, Garcıa-Sanz R, Gonzalez D, et al. Minimal residual disease monitoring in multiple myeloma: a comparison between allelic-specific oligonucleotide real-time quantitative polymerase chain reaction and flow cytometry. Haematologica. 2005;90:1365–72.

    CAS  PubMed  Google Scholar 

  40. Puig N, Sarasquete ME, Balanzategui A, et al. Critical evaluation of ASORQ-PCR for minimal residual disease evaluation in multiple myeloma. A comparative analysis with flow cytometry. Leukemia. 2014;28:391–7.

    Article  CAS  PubMed  Google Scholar 

  41. Moreau P, Attal M, Caillot D, et al. Prospective evaluation of magnetic resonance imaging and [18F]fluorodeoxyglucose positron emission tomography-computed tomography at diagnosis and before maintenance therapy in symptomatic patients with multiple myeloma included in the IFM/DFCI 2009 trial: results of the IMAJEM study. J Clin Oncol. 2017;35:2911–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rasche L, Schinke C, Alapat D, et al. Functional imaging detects residual disease in MRD-negative multiple myeloma patients who subsequently relapse. Blood. 2017;130:4510.

    Article  CAS  Google Scholar 

  43. Fernandez RA, Cedena MT, Rios R, et al. Maintenance treatment with lenalidomide for multiple myeloma increases the proportion of MRD negative (flow-/PET-CT-) patients. Blood. 2017;130:3098.

    Google Scholar 

  44. Zamagni E, Nanni C, Mancuso K, et al. PET/CT improves the definition of complete response and allows to detect otherwise unidentifiable skeletal progression in multiple myeloma. Clin Cancer Res. 2015;21(19):4384–90.

    Article  CAS  PubMed  Google Scholar 

  45. de Tute RM, Jack AS, Child J, et al. A single-tube six-colour flow cytometry screening assay for the detection of minimal residual disease in myeloma. Leukemia. 2007;21:2046–9.

    Article  PubMed  Google Scholar 

  46. Gupta R, Bhaskar A, Kumar L, Sharma A, Jain P. Flow cytometric immunophenotyping and minimal residual disease analysis in multiple myeloma. Am J Clin Pathol. 2009;132:728–32.

    Article  PubMed  Google Scholar 

  47. Paiva B, Chandia M, Puig N, et al. The prognostic value of multiparameter flow cytometry minimal residual disease assessment in relapse multiple myeloma. Haematologica. 2015;100:e53–5.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Robillard N, Bene MC, Moreau P, Wuilleme S. A single-tube multi-parameter seven-colour flow cytometry strategy for the detection of malignant plasma cells in multiple myeloma. Blood Cancer J. 2013;3:e134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roussel M, Lauwers-Cances V, Robillard N, et al. Front-line transplantation program with lenalidomide, bortezomib, and dexamethasone combination as induction and consolidation followed by lenalidomide maintenance in patients with multiple myeloma: a phase II study by the Intergroupe Francophone du Myelome. J Clin Oncol. 2014;32:2712–7.

    Article  CAS  PubMed  Google Scholar 

  50. Flores-Montero J, Sanoja-Flores L, Paiva B, et al. Next generation flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. 2017;31:2094–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Domingo E, Moreno C, Sanchez-Ibarrola A, et al. Enhanced sensitivity of flow cytometry for routine assessment of minimal residual disease. Haematologica. 2010;95:691–2.

    Article  PubMed  Google Scholar 

  52. Roshal R, Flores-Montero JA, Gao Q, et al. MRD detection in multiple myeloma: comparison between MSKCC 10-color single-tube and EuroFlow 8-color 2-tube methods. Blood Adv. 2017;1(12):728–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Royston DY, Gao Q, Nguyen N, et al. Single-tube 10-fluorochrome analysis for efficient flow cytometric evaluation of minimal residual disease in plasma cell myeloma. Am J Clin Pathol. 2016;146:41–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rawstron A, Gregory WM, de Tute RM, et al. Minimal residual disease in myeloma by flow cytometry: independent prediction of survival benefit per log reduction. Blood. 2015;125:1932–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Munshi NC, Avet-Loiseau H, Rawstron A, et al. Association of minimal residual disease with superior survival outcomes in patients with multiple myeloma a meta-analysis. JAMA Oncol. 2017;3:28–35.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Landgren O, Devlin S, Boulad M, Mailankody S. Role of MRD status in relation to clinical outcomes in newly diagnosed multiple myeloma patients: a meta-analysis. Bone Marrow Transplant. 2016;51:1565–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gromley NJ, Farrell AT, Pazdur R. Minimal residual disease as a potential surrogate end point—lingering questions. JAMA Oncol. 2017;3:18–20.

    Article  Google Scholar 

  58. http://www.cytognos.com/index.php/euroflow/minimal-residual-disease-panels/1440-multiple-myeloma-mm-mrd-kits. Accessed 26 Dec 2017.

  59. Martinez-Lopez J, Lahuerta JJ, Pepin F, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood. 2014;123:3073–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Avet-Loiseau H. Minimal residual disease by next-generation sequencing: pros and cons. Am Soc Clin Oncol Educ Book. 2016;35:e425–30.

    Article  PubMed  Google Scholar 

  61. Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17:e328–46.

    Article  PubMed  Google Scholar 

  62. Paiva B, van Dongen JJ, Orfao A. New criteria for response assessment role of minimal residual disease in multiple myeloma. Blood. 2015;125:3059–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rawstron AC, Orfao A, Beksac M, et al. Report of the European Myeloma Network on multiparametric flow-cytometry in multiple myeloma and related disorders. Haematologica. 2008;93:431–8.

    Article  PubMed  Google Scholar 

  64. Wood BL. Principles of minimal residual disease detection for hematopoietic neoplasms by flow cytometry. Cytometry B Clin Cytom. 2016;90B:47–53.

    Article  Google Scholar 

  65. Rawstron AC, Pavia B, Stetler-Stevenson M. Assessment of minimal residual disease in myeloma and the need for a consensus approach. Cytometry B Clin Cytom. 2016;90B:21–5.

    Article  Google Scholar 

  66. Stetler-Stevenson M, Paiva B, Stoolman L, et al. Consensus guidelines for myeloma minimal residual disease sample staining and data acquisition. Cytometry B Clin Cytom. 2016;90B:26–30.

    Article  CAS  Google Scholar 

  67. Arroz M, Came N, Lin P, et al. Consensus guidelines on plasma cell myeloma minimal residual disease analysis and reporting. Cytometry B Clin Cytom. 2016;90B:31–9.

    Article  CAS  Google Scholar 

  68. Oldaker TA, Wallace PK, Barnett D. Flow cytometry quality requirements for monitoring of minimal disease in plasma cell myeloma. Cytometry B Clin Cytom. 2016;90B:40–6.

    Article  Google Scholar 

  69. Rawstron AC, de Tute RM, Haughton J, Owen RG. Measuring disease levels in myeloma using flow cytometry in combination with other laboratory techniques: lessons from the past 20 years at the Leeds Haematological Malignancy Diagnostic Service. Cytometry B Clin Cytom. 2016;90B:54–60.

    Article  Google Scholar 

  70. Flores-Montero J, de Tute R, Paiva B, et al. Immunophenotype of normal vs. myeloma plasma cells: toward antibody panel specifications for MRD detection in multiple myeloma. Cytometry B Clin Cytom. 2016;90B:61–72.

    Article  CAS  Google Scholar 

  71. Gormley NJ, Turley DM, Dickey JS, et al. Regulatory perspective on minimal residual disease flow cytometry testing in multiple myeloma. Cytometry B Clin Cytom. 2016;90B:73–80.

    Article  Google Scholar 

  72. Vittorio Emanuele M, Elona S, Milena G, et al. Multiple myeloma: new surface antigens for the characterization of plasma cells in the era of novel agents. Cytometry B Clin Cytom. 2016;90B:81–90.

    Google Scholar 

  73. Pojero F, Flores-Montero J, Sanoja L, et al. Utility of CD54, CD229, and CD319 for the identification of plasma cells in patients with clonal plasma cell diseases. Cytometry B Clin Cytom. 2016;90B:91–100.

    Article  CAS  Google Scholar 

  74. Barnett DSI, Wilson GA, Granger V, Reilly JT. Determination of leucocyte antibody binding capacity (ABC): the need for standardization. Clin Lab Haematol. 1998;20:155–64.

    Article  CAS  PubMed  Google Scholar 

  75. Terstappen LW, Johnsen S, Segers-Nolten IM, Loken MR. Identification and characterization of plasma cells in normal human bone marrow by high-resolution flow cytometry. Blood. 1990;76:1739–47.

    CAS  PubMed  Google Scholar 

  76. Wijdenes J, Vooijs WC, Clement C, et al. A plasmocyte selective monoclonal antibody (B-B4) recognizes syndecan-1. Br J Haematol. 1996;94:318–23.

    Article  CAS  PubMed  Google Scholar 

  77. Darzalex (daratumumab) injection [prescribing information]. Horsham: Janssen Biotech, Inc; 2015.

    Google Scholar 

  78. Lin P, Owens R, Tricot G, Wilson CS. Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma. Am J Clin Pathol. 2004;121:482–8.

    Article  PubMed  Google Scholar 

  79. Almeida J, Orfao A, Ocqueteau M, et al. High-sensitive immunophenotyping and DNA ploidy studies for the investigation of minimal residual disease in multiple myeloma. Br J Haematol. 1999;107:121–31.

    Article  CAS  PubMed  Google Scholar 

  80. Mateo G, Montalban MA, Vidriales M, et al. Prognostic value of immunophenotyping in multiple myeloma: a study by the PETHEMA/GEM cooperative study groups on patients uniformly treated with high-dose therapy. J Clin Oncol. 2008;26:2737–44.

    Article  PubMed  Google Scholar 

  81. Tembhare P, Yuan CM, Venzon D, et al. Flow cytometric differentiation of abnormal and normal plasma cells in the bone marrow in patients with multiple myeloma and its precursor diseases. Leuk Res. 2014;38:371–6.

    Article  PubMed  Google Scholar 

  82. Robillard N, Wuilleme S, Moreau P, Bene MC. Immunophenotype o fnormal and myelomatous plasma-cell subsets. Front Immunol. 2014;5:137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Cannizzo E, Bellio E, Sohani AR, et al. Multiparameter immuno-phenotyping by flow cytometry in multiple myeloma: the diagnostic utility of defining ranges of normal antigenic expression in comparison to histology. Cytometry B Clin Cytom. 2010;78:231–8.

    PubMed  Google Scholar 

  84. vanDongen JJM, Lhermitte L, Bottcher S, et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia. 2012;26:1908–75.

    Article  CAS  Google Scholar 

  85. Paiva B, Gutierrez NC, Chen X, et al. Clinical significance of CD81 expression by clonal plasma cells in high-risk smoldering and symptomatic multiple myeloma patients. Leukemia. 2012;26:1862–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dass, J., Kotwal, J. (2019). Minimal Residual Disease Assessment in Myeloma. In: Saxena, R., Pati, H. (eds) Hematopathology. Springer, Singapore. https://doi.org/10.1007/978-981-13-7713-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7713-6_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7712-9

  • Online ISBN: 978-981-13-7713-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics