Skip to main content

Phytoremediation and Sustainable Developmental Policies and Practices

  • Chapter
  • First Online:
Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment

Abstract

Phytoremediation is a green strategy of environmental decontamination and offers a cost-effective approach for the remediation of variety of pollutants. This is an emerging technology toward sustaining the future of the world and mankind. The phytoremediation technology has been successfully applied in developed and developing nations to achieve the sustainable development goal. The present chapter encompasses the basic strategies, rules, regulation policies, and protective measures for the successful implementation of plant-based waste treatment technology in a cost-effective and sustainable manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams A, Raman A, Hodgkins D (2013) How do the plants used in phytoremediation in constructed wetlands, a sustainable remediation strategy, perform in heavy-metal-contaminated mine sites? Water Environ J 27(3):373–386

    CAS  Google Scholar 

  • Ahmad AL, Yasin NM, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sust Energ Rev 15:584–593

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  Google Scholar 

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Bioresour Technol 73:273–276

    Article  Google Scholar 

  • American Geophysical Union (2003) Eos 84:574

    Google Scholar 

  • American Meteorological Society, Bull (2003) Am Meteorol Soc 84:508

    Google Scholar 

  • Anderson CWN (2013) Phytoextraction to promote sustainable development. J Degrad Mini Lands Manag 1:51–56

    Google Scholar 

  • Anderson C, Moreno F, Meech J (2005) A field demonstration of gold phytoextraction technology. Miner Eng 18:385–392

    Article  CAS  Google Scholar 

  • Ayres RU, Ayres EH (2009) Crossing the energy divide: moving from fossil fuel dependence to a clean-energy future. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Bartelmus P (2002) Environment, growth and development: the concepts and strategies of sustainability. Taylor and Francis Routledge, USA

    Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae a review of technologies for production, processing and extractions of biofuels and co-products. Renew Sust Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Brix H, Sorrell BK, Lorenzen B (2001) Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases. Aquat Bot 69:313–324

    Article  CAS  Google Scholar 

  • Brown S, Sathaye J, Cannell M, Kauppi PE (1996) Mitigation of carbon emissions to the atmosphere by forest management. Commonw For Rev 75:80–91

    Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488(7409):91

    Article  CAS  Google Scholar 

  • Canakci M (2007) The potential of restaurant waste lipids as biodiesel feedstock. Bioresour Technol 98:183–190

    Article  CAS  Google Scholar 

  • Canoira L, Alcantara R, Garcia-Martinez J, Carrasco J (2006) Biodiesel from Jojoba oil-wax: transesterification with methanol and properties as a fuel. Biomass Bioenergy 30:76–81

    Article  CAS  Google Scholar 

  • Carley M, Christie I (2017) Managing sustainable development. Routledge, London

    Book  Google Scholar 

  • Chen T, Wei C, Huang Z, Huang Q, Lu Q, Fan Z (2002) Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation. Chin Sci Bull 47:902–905

    Article  CAS  Google Scholar 

  • Cunningham SD, Shann JR, Crowley DE, Anderson TA (1997) Phytoremediation of contaminated water and soil. In: Kruger EL, Anderson TA, Coats JR (eds) Phytoremediation of soil and Water contaminants. American Chemical Society, Washington, DC, pp 2–17

    Chapter  Google Scholar 

  • Deng Z, Cao L (2017) Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere 168:1100–1106

    Article  CAS  Google Scholar 

  • Dickinson NM, Baker AJ, Doronila A, Laidlaw S, Reeves RD (2009) Phytoremediation of inorganics: realism and synergies. Int J Phytoremediation 11(2):97–114

    Article  CAS  Google Scholar 

  • Diekmann M (2003) Species indicator values as an important tool in applied plant ecology–a review. Basic Appl Ecol 4:493–506

    Article  Google Scholar 

  • Dincer I (2000) Renewable energy and sustainable development: a crucial review. Renew Sust Energy Rev 4:157–175

    Article  Google Scholar 

  • Dobson AP, Bradshaw AD, Baker AA (1997) Hopes for the future: restoration ecology and conservation biology. Science 277:515–522

    Article  CAS  Google Scholar 

  • Engelhardt KA, Ritchie ME (2001) Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411(6838):687

    Article  CAS  Google Scholar 

  • Ghadge SV, Raheman H (2006) Process optimization for biodiesel production from mahua (Madhucaindica) oil using response surface methodology. Bioresour Technol 97:379–384

    Article  CAS  Google Scholar 

  • Giusti L (2009) A review of waste management practices and their impact on human health. Waste Manag 29:2227–2239

    Article  CAS  Google Scholar 

  • Global Water Partnership (2008) IWRM toolbox. Integrated water resources management. http://www.gwptoolbox.org/index.php?option=com_content&view=article&id=8&Itemid=3. Accessed 15 June 11

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  Google Scholar 

  • Gracey M, King M (2009) Indigenous health. Part 1: Determinants and disease patterns. Lancet 374:65–75

    Article  Google Scholar 

  • Griggs D, Stafford-Smith M, Gaffney O, Rockström J, Öhman MC, Shyamsundar P, Steffen W, Glaser G, Kanie N, Noble I (2013) Policy: sustainable development goals for people and planet. Nature 495:305

    Article  CAS  Google Scholar 

  • Griggs D, Smith MS, Rockström J, Öhman MC, Gaffney O, Glaser G, Kanie N, Noble I, Steffen W, Shyamsundar P (2014) An integrated framework for sustainable development goals. Ecol Soc 19

    Google Scholar 

  • Guerrero LA, Maas G, Hogland W (2013) Solid waste management challenges for cities in developing countries. Waste Manag 33:220–232

    Article  Google Scholar 

  • Haarstad K, Bavor HJ, Mæhlum T (2012) Organic and metallic pollutants in water treatment and natural wetlands: a review. Water Sci Technol 65:76–99

    Article  CAS  Google Scholar 

  • IPCC (2014) Annex II: glossary. In: Mach KJ, Planton S, von Stechow C (eds) Climate change (2014) synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, pp 117–130

    Google Scholar 

  • Kiss A (2004) Is community-based ecotourism a good use of biodiversity conservation funds. Trends Ecol Evol 19:232–237

    Article  Google Scholar 

  • Leakey AD, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876

    Article  CAS  Google Scholar 

  • Lélé SM (1991) Sustainable development: a critical review. World Dev 19(6):607–621

    Article  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Letters 2(1):014002

    Article  Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Matthewman S (2016) Disasters, risks and revelation: making sense of our times. Springer, Cham

    Google Scholar 

  • Maxwell SL, Fuller RA, Brooks TM, Watson JE (2016) Biodiversity: the ravages of guns, nets and bulldozers. Nature 536(7615):143–145

    Article  CAS  Google Scholar 

  • McCright AM, Dunlap RE (2000) Challenging global warming as a social problem: an analysis of the conservative movement’s counter-claims. Soc Probl 47(4):499–522

    Article  Google Scholar 

  • McNeely JA (1994) Protected areas for the 21st century: working to provide benefits to society. Biodivers Conserv:390–405

    Article  Google Scholar 

  • Meers E, Slycken SV, Adriaensen K, Ruttens A, Vangronsveld J, Laing GD, Witters N, Thewys T, Tack FMG (2010) The use of bioenergy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78:35–41

    Article  CAS  Google Scholar 

  • Miller JR (2005) Biodiversity conservation and the extinction of experience. Trends Ecol Evol 20:430–434

    Article  Google Scholar 

  • Omann I, Stocker A, Jäger J (2009) Climate change as a threat to biodiversity: an application of the DPSIR approach. Ecol Econ 69:24–31

    Article  Google Scholar 

  • OECD-FAO (Organisation for Economic Co-operation and Development) (2011) Agricultural outlook 2011–2020. OECD Publishing, OECD & FAO, Paris

    Google Scholar 

  • OECD (Organisation for Economic Cooperation and Development) (2013) Scaling-up Finance Mechanisms for Biodiversity. Organisation for Economic Cooperation and Development, Paris

    Google Scholar 

  • Pandey DN (2002) Carbon sequestration in agroforestry systems. Clim Policy 2:367–377

    Article  Google Scholar 

  • Pandey VC, Bajpai O, Singh N (2016) Energy crops in sustainable phytoremediation. Renew Sust Energ Rev 54:58–73

    Article  Google Scholar 

  • Paz-Alberto AM, Sigua GC (2013) Phytoremediation: a green technology to remove environmental pollutants. Am J Clim Change 2:71

    Article  Google Scholar 

  • Pretty J, Smith D (2004) Social capital in biodiversity conservation and management. Conserv Biol 18:631–638

    Article  Google Scholar 

  • Rai UN, Tripathi RD, Singh NK, Upadhyay AK, Dwivedi S, Shukla MK, Mallick S, Singh SN, Nautiyal CS (2013) Constructed wetland as an ecotechnological tool for pollution treatment for conservation of Ganga river. Bioresour Technol 148:535–541

    Article  CAS  Google Scholar 

  • Rai UN, Upadhyay AK, Singh NK (2015) Constructed wetland: an ecotechnology for wastewater treatment and conservation of Ganga water quality. In: Thangavel P, Sridevi G (eds) Environmental sustainability. Springer, New Delhi, pp 251–264

    Google Scholar 

  • Rezania S, Ponraj M, Talaiekhozani A, Mohamad SE, Din MFM, Taib SM, Sabbagh F, Sairan FM (2015) Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manag 163:125–133

    Article  CAS  Google Scholar 

  • Robinson B, Green S, Mills T, Clothier B, van der Velde M, Laplane R, Fung L, Deurer M, Hurst S, Thayalakumaran T, van den Dijssel C (2003) Phytoremediation: using plants as biopumps to improve degraded environments. Soil Res 41:599–611

    Article  Google Scholar 

  • Rodriguez L, Rincón J, Asencio I, Rodríguez-Castellanos L (2007) Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytoremediation perspectives. Int J Phytoremediation 9:1–13

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotech 13:468

    Article  CAS  Google Scholar 

  • Seto KC, Güneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. PNAS 109:16083–16088

    Article  CAS  Google Scholar 

  • Sharma V, Ramawat KG, Choudhary BL (2012) Biodiesel production for sustainable agriculture. In: Lichtfouse E (ed) Sustainable agriculture reviews. Springer, Dordrecht, pp 133–160

    Chapter  Google Scholar 

  • Sharma RK, Gulati S, Puri A (2014) Green chemistry solutions to water pollution. In: Ahuja S (ed) Water reclamation and sustainability. Elsevier Inc., Amsterdam, pp 57–75

    Chapter  Google Scholar 

  • Sims RE, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580

    Article  CAS  Google Scholar 

  • Singh R, Upadhyay AK, Chandra P, Singh DP (2018) Sodium chloride incites reactive oxygen species in green algae Chlorococcum humicola and Chlorella vulgaris: implication on lipid synthesis, mineral nutrients and antioxidant system. Bioresour Technol 270:489–497

    Article  CAS  Google Scholar 

  • Sunderlin WD, Angelsen A, Belcher B, Burgers P, Nasi R, Santoso L, Wunder S (2005) Livelihoods, forests, and conservation in developing countries: an overview. World Dev 33:1383–1402

    Article  Google Scholar 

  • Szczepaniak K, Biziuk M (2003) Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Environ Res 93:221–230

    Article  CAS  Google Scholar 

  • Tabak HH, Lens P, van Hullebusch ED, Dejonghe W (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides. Rev Environ Sci Biotechnol 4:115–156

    Article  CAS  Google Scholar 

  • Tainter J (1990) The collapse of complex societies. Cambridge University Press, Cambridge

    Google Scholar 

  • Tangahu BV, Abdullah S, Rozaimah S, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb and Hg) uptake by plants through phytoremediation. Int J Chem Eng

    Google Scholar 

  • Thijs S, Sillen W, Rineau F, Weyens N, Vangronsveld J (2016) Towards an enhanced understanding of plant–microbiome interactions to improve phytoremediation: engineering the metaorganism. Front Microbiol 7:341

    Article  Google Scholar 

  • Thomason MK, Storz G (2010) Bacterial antisense RNAs: how many are there, and what are they doing? Ann Rev Genetics 44:167–188

    Article  CAS  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort B (2011) Global food demand and the sustainable intensification of agriculture. PNAS 108:20260–20264

    Article  CAS  Google Scholar 

  • Upadhyay AK, Mandotra SK, Kumar N, Singh NK, Singh L, Rai UN (2016) Augmentation of arsenic enhances lipid yield and defense responses in alga Nannochloropsis sp. Bioresour Technol 221:430–437

    Article  CAS  Google Scholar 

  • Upadhyay AK, Singh NK, Bankoti NS, Rai UN (2017) Designing and construction of simulated constructed wetland for treatment of sewage containing metals. Environ Technol 38:2691–2699

    Article  CAS  Google Scholar 

  • Upadhyay AK, Singh R, Singh DP (2019) Phycotechnological approaches toward wastewater management. In: Bharagava RN, Chowdhary P (eds) Emerging and eco-friendly approaches for waste management. Springer, Singapore, pp 423–435

    Chapter  Google Scholar 

  • Usta N (2005) Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine. Biomass Bioenergy 28:77–86

    Article  CAS  Google Scholar 

  • Vermaat JE, Hanif MK (1998) Performance of common duckweed species (Lemnaceae) and the water fern Azolla filiculoides on different types of waste water. Water Res 32:2569–2576

    Article  CAS  Google Scholar 

  • Water UN (2015) Wastewater management-A UN-water analytical brief. World Meteorological Organization in Geneva, Switzerland, pp 1–52

    Google Scholar 

  • Whiting GJ, Chanton JP (2001) Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B 53:521–528

    Google Scholar 

  • Wilbanks TJ, Kates RW (1999) Global change in local places: how scale matters. Clim Chang 43(3):601–628

    Article  Google Scholar 

  • Wilson CV, Anderson CW, Rodriguez-Lopez M (2012) Gold phytomining. A review of the relevance of this technology to mineral extraction in the 21st century. J Environ Manag 111:249–257

    Article  Google Scholar 

  • Zazai KG, Wani OA, Ali A, Devi M (2018) Phytoremediation and carbon sequestration potential of agroforestry systems: a review. Int J Curr Microbiol App Sci 7:2447–2457

    Article  Google Scholar 

Download references

Acknowledgments

Author Atul Kumar Upadhyay is thankful to Vice Chancellor B.B. Ambedkar Central University, Lucknow, and DST-Science and Engineering Research Board for their financial assistance (NPDF/2016/002432) and support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Upadhyay, A.K., Singh, R., Singh, D.P. (2020). Phytoremediation and Sustainable Developmental Policies and Practices. In: Upadhyay, A., Singh, R., Singh, D. (eds) Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-7665-8_2

Download citation

Publish with us

Policies and ethics