Skip to main content

Microalgae and Microorganisms: Important Regulators of Carbon Dynamics in Wetland Ecosystem

  • Chapter
  • First Online:
  • 980 Accesses

Abstract

Wetlands, a dynamic and natural ecosystem characterized by waterlogged conditions, are used for the benefit of mankind since decades. One of the most important ecological functions of the wetlands is their ability to sustain rich biodiversity and storage of carbon. The carbon stock in the wetlands is mainly regulated by carbon cycling mediated by microorganisms and photoautotrophs (algae and plants) in the wetland. Carbon storage in the wetlands is often controlled by both decomposition of labile carbon and carbon fixation by the photosynthesis. This internal carbon dynamics in the wetland ecosystem influences the atmospheric carbon cycle. Under anaerobic condition, detritus chain involves microbial conversion of biodegradable material into a mixture of methane (CH4) and carbon dioxide (CO2) with small amounts of ammonium and hydrogen sulphide (H2S). Methanotrophs are unique group of aerobic, gram-negative bacteria that use CH4 as a source of carbon and energy. Wetlands act as biofilters through a combination of physical, chemical and biological factors which contribute in the reduction of pathogen and waste water. Since algae play a crucial role in carbon dynamics, the present chapter emphasizes the role of algae in regulation of carbon, water hydrology and other ecosystem services of the wetland.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abril G, Martinez JM, Artigas LF, Moreira-Turcq P, Benedetti MF, Vidal L, Meziane T, Kim JH, Bernardes MC, Savoye N, Deborde J (2014) Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505:395

    Article  CAS  Google Scholar 

  • Banuelos GS, Terry N (1999) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton

    Google Scholar 

  • Barber CJ, Grice K, Bastow TP, Alexander R, Kagi RI (2001) The identification of crocetane in Australian crude oils. Org Geochem 32:943–947

    Article  CAS  Google Scholar 

  • Bartlett KB, Harriss RC (1993) Review and assessment of methane emissions from wetlands. Chemosphere 26:261–320

    Article  CAS  Google Scholar 

  • Bergamaschi P, Frankenberg C, Meirink JF, Krol M, Dentener F, Wagner T, Platt U, Kaplan JO, Körner S, Heimann M, Dlugokencky EJ (2007) Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2 evaluation based on inverse model simulations. J Geophys Res Atmos 112(D2). https://doi.org/10.1029/2006JD007268

  • Bloom AJ, Burger M, Asensio JSR, Cousins AB (2010) Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 328:899–903

    Article  CAS  Google Scholar 

  • Borrel G, Jézéquel D, Biderre-Petit C, Morel-Desrosiers N, Morel JP, Peyret P, Fonty G, Lehours AC (2011) Production and consumption of methane in freshwater lake ecosystems. Res Microbiol 162:832–847

    Article  CAS  Google Scholar 

  • Brinson MM, Lugo AE, Brown S (1981) Primary productivity, decomposition and consumer activity in freshwater wetlands. Ann Rev Ecol System 12:123–161

    Article  Google Scholar 

  • Brix H (1994) Use of constructed wetlands in water pollution control: historical development, present status, and future perspectives. Water Sci Technol 30(8):209–223

    Article  CAS  Google Scholar 

  • Burgoon PS, Reddy KR, DeBusk TA (1995) Performance of subsurface flow wetlands with batch-load and continuous-flow conditions. Water Environ Res 67:855–862

    Article  CAS  Google Scholar 

  • Chekroun KB, Sánchez E, Baghour M (2014) The role of algae in bioremediation of organic pollutants. Int Res J Public Environ Health 1:19–32

    Google Scholar 

  • Cheng S, Grosse W, Karrenbrock F, Thoennessen M (2002) Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecol Eng 18:317–325

    Article  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    Article  CAS  Google Scholar 

  • Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D (2008) Advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biotechnol 83:769–776

    Article  CAS  Google Scholar 

  • Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1:285–292

    Article  CAS  Google Scholar 

  • Costanza R, d’Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’neill RV, Paruelo J, Raskin RG (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253

    Article  CAS  Google Scholar 

  • Cronk JK, Fennessy MS (2016) Wetland plants: biology and ecology. CRC press, Boca Raton

    Book  Google Scholar 

  • Florence TM, Stauber JL, Ahsanullah M (1994) Toxicity of nickel ores to marine organisms. Sci Total Environ 148:139–155

    Article  CAS  Google Scholar 

  • Frolking S, Talbot J, Jones MC, Treat CC, Kauffman JB, Tuittila ES, Roulet N (2011) Peatlands in the Earth’s 21st century climate system. Environ Rev 19:371–396

    Article  CAS  Google Scholar 

  • Haberl R, Grego S, Langergraber G, Kadlec RH, Cicalini AR, Dias SM, Novais JM, Aubert S, Gerth A, Thomas H, Hebner A (2003) Constructed wetlands for the treatment of organic pollutants. J Soil Sediments 3:109

    Article  CAS  Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14:1037–1047

    Article  CAS  Google Scholar 

  • Ho SC (1979) On the chemical and algal growth potential of the surface water of the Muda river irrigation system, West Malaysia. In: Furtado JI (ed) Tropical ecology and development; 5th Proceeding of the International Tropical Ecology Symposium. Kuala Lumpur, Malaysia, pp 989–998

    Google Scholar 

  • Hornibrook ER, Longstaffe FJ, Fyfe WS (2000) Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments. Geochim Cosmochim Acta 64:1013–1027

    Article  CAS  Google Scholar 

  • Ibekwe AM, Grieve CM, Lyon SR (2003) Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent. Appl Environ Microbiol 69:5060–5069

    Article  CAS  Google Scholar 

  • Immirzi CP, Maltby E, Clymo RS (1992) The global status of peatlands and their role in carbon cycling, report no. 11, Wetlands Research Group, Friends of the Earth, London, p 145

    Google Scholar 

  • Joabsson A, Christensen TR, Wallén B (1999) Vascular plant controls on methane emissions from northern performing wetlands. Trends Ecol Evol 14:385–388

    Article  CAS  Google Scholar 

  • Joosten H, Clarke D (2002) Wise use of mires and peatlands – backgrounds and principles, including a framework for decision-making. International Mire Conservation Group / International Peat Society, Jyväskylä

    Google Scholar 

  • Junk WJ, An S, Finlayson CM, Gopal B, Květ J, Mitchell SA, Mitsch WJ, Robarts RD (2013) Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquatic Sci 75:151–167

    Article  CAS  Google Scholar 

  • Kadlec RH, Knight RL (1996) Treatment wetlands. CRC Press, Baca Raton

    Google Scholar 

  • Karim MR, Manshadi FD, Karpiscak MM, Gerba CP (2004) The persistence and removal of enteric pathogens in constructed wetlands. Water Res 38:1831–1837

    Article  CAS  Google Scholar 

  • Khmelenina VN, Colin Murrell J, Smith TJ, Trotsenko YA (2018) Physiology and biochemistry of the aerobic Methanotrophs. In: Aerobic utilization of hydrocarbons, oils and lipids, pp 1–25

    Google Scholar 

  • Kim DG, Kirschbaum MU (2015) The effect of land-use change on the net exchange rates of greenhouse gases: a compilation of estimates. Agric Ecosyst Environ 208:114–126

    Article  CAS  Google Scholar 

  • King GM (1994) Associations of methanotrophs with the roots and rhizomes of aquatic vegetation. Appl Environ Microbiol 60:3220–3227

    CAS  Google Scholar 

  • Kolkwitz R, Marsson M (1909) Ökologie der tierischen Saprobien. Beiträge zur Lehre von der biologischen Gewässerbeurteilung. Internationale Revue der Gesamten Hydrobiologie und Hydrographie 2(1–2):126–152

    Article  Google Scholar 

  • Kragh T, Søndergaard M (2004) Production and bioavailability of autochthonous dissolved organic carbon: effects of mesozooplankton. Aquatic Microbial Ecol 36:61–72

    Article  Google Scholar 

  • Lafleur PM, Moore TR, Roulet NT, Frolking S (2005) Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 8:619–629

    Article  CAS  Google Scholar 

  • Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80(5):749–756

    Article  CAS  Google Scholar 

  • Lima SA, Castro PM, Morais R (2003) Biodegradation of p-nitrophenol by microalgae. J Appl Phycol 15:137–142

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • McCarthy DT, Bach P, Deletic A (2009) Conducting a microbial budget–a literature review. Melbourne Water, Melbourne

    Google Scholar 

  • Mitra S, Wassmann R, Vlek PL (2005) An appraisal of global wetland area and its organic carbon stock. Curr Sci 88:25–35

    CAS  Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands. Wiley, Hoboken

    Google Scholar 

  • Mitsch WJ, Bernal B, Nahlik AM, Mander Ü, Zhang L, Anderson CJ, Jørgensen SE, Brix H (2013) Wetlands, carbon, and climate change. Landsc Ecol 28:583–597

    Article  Google Scholar 

  • Moor H, Hylander K, Norberg J (2015) Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits. Ambio 44(1):13–126

    Google Scholar 

  • Moore TR, Roulet NT (1993) Methane flux: water table relations in northern wetlands. Geophy Res Lett 20:587–590

    Article  CAS  Google Scholar 

  • Moreno-Mateos D, Power ME, Comin FA, Yockteng R (2012) Structural and functional loss in restored wetland ecosystems. PLoS Biol 10:e1001247

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Article  Google Scholar 

  • Nahlik AM, Fennessy MS (2016) Carbon storage in US wetlands. Nat Commun 7:13835

    Article  CAS  Google Scholar 

  • Nakano T, Sawamoto T, Morishita T, Inoue G, Hatano R (2004) A comparison of regression methods for estimating soil–atmosphere diffusion gas fluxes by a closed-chamber technique. Soil Biol Biochem 36:107–113

    Article  CAS  Google Scholar 

  • Ni HG, Lu FH, Luo XL, Tian HY, Zeng EY (2008) Riverine inputs of total organic carbon and suspended particulate matter from the Pearl River Delta to the coastal ocean off South China. Mar Pollut Bull 56:1150–1157

    Article  CAS  Google Scholar 

  • Omar WMW (2010) Perspectives on the use of algae as biological indicators for monitoring and protecting aquatic environments, with special reference to Malaysian freshwater ecosystems. Trop Life Sci Res 21:51

    Google Scholar 

  • Ottova V, Balcarová J, Vymazal J (1997) Microbial characteristics of constructed wetlands. Water Sci Technol 35:117–123

    Article  CAS  Google Scholar 

  • Owen CR (1995) Water budget and flow patterns in an urban wetland. J Hydrodyn 169:171–187

    Article  Google Scholar 

  • Palmer CM (1969) A composite rating of algae tolerating organic pollution. J Phycol 5:78–82. https://doi.org/10.1111/j.1529-8817.1969.tb02581.x

    Article  CAS  Google Scholar 

  • Pandey V, Singh JS, Singh DP, Singh R P (2011) Methanotrophs: promising bacteria for environmental remediation. Int J Environ Sci Technol, 11241–11250

    Google Scholar 

  • Pandey VC, Singh JS, Singh DP, Singh RP (2014) Methanotrophs: promising bacteria for environmental remediation. Int J Environ Sci Technol 11:241–250

    Article  CAS  Google Scholar 

  • Pant HK, Rechcigl JE, Adjei MB (2003) Carbon sequestration in wetlands: concept and estimation. Food Agric Environ 1:308–313

    CAS  Google Scholar 

  • Parish F, Sirin A, Charman D, Joosten H, Minayeva T & Silvius M (eds.) (2008) Assessment on peatlands, biodiversity and climate change: main report. Global Environment Centre, Kuala Lumpur and Wetlands International, Wageningen. p 179

    Google Scholar 

  • Patrick R (1971) Diatom communities. In: Cairns J (ed) The structure and function of freshwater microbial communities. Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  • Pinney ML, Westerhoff PK, Baker L (2000) Transformations in dissolved organic carbon through constructed wetlands. Water Res 34:1897–1911

    Article  CAS  Google Scholar 

  • Qualls RG, Haines BL (1992) Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Sci Soc Am J 56:578–586

    Article  CAS  Google Scholar 

  • Rai UN, Tripathi RD, Singh NK, Upadhyay AK, Dwivedi S, Shukla MK, Mallick S, Singh SN, Nautiyal CS (2013) Constructed wetland as an ecotechnological tool for pollution treatment for conservation of Ganga river. Bioresour Technol 148:535–541

    Article  CAS  Google Scholar 

  • Rai UN, Upadhyay AK, Singh NK (2015) Constructed wetland: an ecotechnology for wastewater treatment and conservation of ganga water quality. In: Environmental sustainability. Springer, New Delhi, pp 251–264

    Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Rebelo LM, Finlayson CM, Strauch A, Rosenqvist A, Perennou C, Tottrup C, Hilarides L, Paganini M, Wielaard N, Siegert F, Ballhorn U, Navratil P, Franke J, Davidson N (2018) The use of Earth Observation for wetland inventory, assessment and monitoring: An information source for the Ramsar Convention on Wetlands. Ramsar Technical Report No.10. Gland, Switzerland: Ramsar Convention Secretariat

    Google Scholar 

  • Reddy KR, D’Angelo EM (1997) Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands. Water Sci Technol 35:1–10

    Article  CAS  Google Scholar 

  • Reddy KR, Delaune RD (2008) Biogeochemistry of wetlands. Science and applications, CRC/Taylor & Francis, Boca Raton

    Book  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57

    Article  CAS  Google Scholar 

  • Rosenthal G (2006) Restoration of wet grasslands–effects of seed dispersal, persistence and abundance on plant species recruitment. Basic Appl Ecol 7:409–421

    Article  Google Scholar 

  • Roulet NT, Ash R, Moore TR (1992) Low boreal wetlands as a source of atmospheric methane. J Geophys Res Atmos 97:3739–3749

    Article  CAS  Google Scholar 

  • Savage KE, Davidson EA (2001) Interannual variation of soil respiration in two New England forests. Glob Biogeochem Cycles 15:337–350

    Article  CAS  Google Scholar 

  • Scholz M, Harrington R, Carroll P, Mustafa A (2007) The integrated constructed wetlands (ICW) concept. Wetlands 27:337–354

    Article  Google Scholar 

  • Schuur EA, McGuire AD, Schädel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM (2015) Climate change and the permafrost carbon feedback. Nature 520:171

    Article  CAS  Google Scholar 

  • Scholz M, Lee BH (2005) Constructed wetlands: a review. Int J Environ Stud 62:421–447

    Article  Google Scholar 

  • Shepherd D, Burgess D, Jickells T, Andrew JS, Cave R, Turner RK, Aldridge J, Parker ER, Young E (2007) Modelling the effects and economics of managed realignment on the cycling and storage of nutrients, carbon and sediments in the Blackwater estuary, UK. Estuar Coast Shelf Sci 73:355–367

    Article  Google Scholar 

  • Stottmeister U, Wießner A, Kuschk P, Kappelmeyer U, Kästner M, Bederski O, Müller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117

    Article  CAS  Google Scholar 

  • Tiner RW (2005) In search of swampland: a wetland sourcebook and field guide. Rutgers University Press, New Brunswick

    Google Scholar 

  • Torres-Alvarado R, Ramírez-Vives F, Fernández FJ, Barriga-Sosa I (2017) Methanogenesis and methane oxidation in wetlands, implications in the global carbon cycle. Hydrobiologia 15:327–349

    Google Scholar 

  • Turcq B, Albuquerque ALS, Cordeiro RC, Sifeddine A, Simoes Filho FFL, Souza AG, Abrão JJ, Oliveira FBL, Silva AO, Capitâneo J (2002) Accumulation of organic carbon in five Brazilian lakes during the Holocene. Sediment Geol 148:319–342

    Article  CAS  Google Scholar 

  • Turetsky MR, Kotowska A, Bubier J, Dise NB, Crill P, Hornibrook ER, Minkkinen K, Moore TR, Myers-Smith IH, Nykänen H, Olefeldt D (2014) A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Glob Chang Biol 20:2183–2197

    Article  Google Scholar 

  • Turner RK, Van Den Bergh JC, Söderqvist T, Barendregt A, Van Der Straaten J, Maltby E, Van Ierland EC (2000) Ecological-economic analysis of wetlands: scientific integration for management and policy. Ecol Econ 35:7–23

    Article  Google Scholar 

  • Upadhyay AK, Singh NK, Bankoti NS, Rai UN (2017) Designing and construction of simulated constructed wetland for treatment of sewage containing metals. Environ Technol 38:2691–2699

    Article  CAS  Google Scholar 

  • Upadhyay AK, Singh R, Singh DP (2019) Phycotechnological approaches toward wastewater management. In: Emerging and eco-friendly approaches for waste management, Springer, Singapore, pp 423–435

    Google Scholar 

  • USEPA (2000) National water quality inventory: 2000 report. Office of Water, Washington, DC

    Google Scholar 

  • Van Dam RA, Camilleri C, Finlayson CM (1998) The potential of rapid assessment techniques as early warning indicators of wetland degradation: a review. Environ Toxicol Water Qual 13:297–312

    Article  Google Scholar 

  • Vespraskar MJ, Craft CB (2016) Genesis, hydrology, landscapes and classification. Wetland soils. p 508

    Google Scholar 

  • Vymazal J (2010) Constructed wetlands for wastewater treatment. Water 2(3):530–549

    Article  CAS  Google Scholar 

  • Wan Maznah WO, Mansor M (2000) Periphytic algal composition in Pinang River basin, a case study on one of the most polluted rivers in Malaysia. J Biosci 11(1 & 2):53–67

    Google Scholar 

  • Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ Eng Sci 22:73–94

    Article  CAS  Google Scholar 

  • Whitman WB, Bowen TL, Boone DR (2006) The methanogenic bacteria. In: The prokaryotes. Springer, New York, pp 165–207

    Chapter  Google Scholar 

  • Wolf H, Wagner F, Wichert T, Isolde Collaboration (2005) Anomalous diffusion profiles of Ag in CdTe due to chemical self-diffusion. Phys Rev Lett 94:125901

    Article  CAS  Google Scholar 

  • Wu H, Zhang J, Ngo HH, Guo W, Hu Z, Liang S, Fan J, Liu H (2015) A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresour Technol 175:594–601

    Article  CAS  Google Scholar 

  • Xue B, Yan C, Lu H, Bai Y (2009) Mangrove-derived organic carbon in sediment from Zhanjiang Estuary (China) mangrove wetland. J Coast Res 25:949–956

    Article  Google Scholar 

  • Yurova AY, Lankreijer H (2007) Carbon storage in the organic layers of boreal forest soils under various moisture conditions: a model study for Northern Sweden sites. Ecol Model 204:475–484

    Article  Google Scholar 

  • Yvon-Durocher G, Allen AP, Bastviken D (2014) Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507:488–491

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to extend my gratitude to Vice-Chancellor, BBAU and UGC for providing the funds to carry out my research work. I am also thankful to Prof. D. P. Singh and Dr. A. K. Upadhyay for assistance in the preparation of chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, N., Singh, D.P. (2020). Microalgae and Microorganisms: Important Regulators of Carbon Dynamics in Wetland Ecosystem. In: Upadhyay, A., Singh, R., Singh, D. (eds) Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-7665-8_12

Download citation

Publish with us

Policies and ethics