Skip to main content

Radionuclide Gene and Reporter Gene Imaging

  • Chapter
  • First Online:
  • 875 Accesses

Abstract

In the 1970s, the Johns Hopkins University School of Medicine (JHUSOM) and Harvard Medical School discovered that antisense oligonucleotides (ASON) could actually block the expression of specific genes. Since then, a new genetic engineering technology—antisense technology—has emerged. According to the principle of complementary base pairing, ASON is specifically used to bind the genes or mRNA in cells and regulate gene expression by blocking the transcription of gene or translation of mRNA. After the artificially synthesized radionuclide-labeled ASON is introduced into the body, it binds specifically to intracellular target genes or mRNAs through the principle of complementary base pairing, and then an imaging instrument is used to display the target genes or tissue that is overexpressed in genes, thereby forming a new diagnosis method—radionuclide antisense gene imaging [1, 2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tavitian B (2000) In vivo antisense imaging. Q J Nucl Med 44(3):236–255

    CAS  PubMed  Google Scholar 

  2. Hnatowich DJ (1999) Antisense and nuclear medicine. J Nucl Med 40:693–703

    CAS  PubMed  Google Scholar 

  3. Agrawal S (1999) Importance of nucleotide sequence and chemical modifications of antisense oligonucleotides. Biochim Biophys Acta 1489(1):53–68

    Article  CAS  Google Scholar 

  4. Mani S, Gu Y, Wadler S et al (1999) Antisense therapeutics in oncology: points to consider in their clinical evaluation. Antisense Nucleic Acid Drug Dev 9(6):543–547

    Article  CAS  Google Scholar 

  5. Dewanjee MK, Ghafouripour A, Werner R et al (1991) Development of sensitive radioiodinated anti-sense oligonucleotide probes by conjugation techniques. Bioconjug Chem 2(4):195–200

    Article  CAS  Google Scholar 

  6. Dolle F, Hinnen F, Vaufrey F et al (1997) A general method for labeling oligodeoxynucleotides with 18 F for in vivo PET imaging. J Labelled Comp Radiopharm 39(4):319–330

    Article  CAS  Google Scholar 

  7. Dewanjee MK, Ghafouripour AK, Kapadvanjwala M et al (1994) Noninvasive imaging of C-myc oncogene messenger RNA with indium-111-antisense probes in a mammary tumor-bearing mouse model. J Nucl Med 35:1054–1063

    CAS  PubMed  Google Scholar 

  8. Cammilleri S, Sangrajrang S, Perdereau B et al (1996) Biodistribution of iodine −125 tyramine transforming growth factor alpha antisense oligonucleotide in athymic mice with a human mammary tumour xenograft following intratumoral injection. Eur J Nucl Med 23:448–452

    Article  CAS  Google Scholar 

  9. Mardirossian G, Lei K, Rusckowski M et al (1997) In vivo hybridization of technetium- 99m labeled peptide nucleic acid (PNA). J Nucl Med 38:907–913

    CAS  PubMed  Google Scholar 

  10. Blasberg RG, Tjuvajev JG (2003) Molecular-genetic imaging: current and future perspectives. J Clin Invest 111(11):1620–1629

    Article  CAS  Google Scholar 

  11. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17(5):545–580

    Article  CAS  Google Scholar 

  12. Ray P, De A, Min JJ et al (2004) Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 64(4):1323–1330

    Article  CAS  Google Scholar 

  13. Ponomarev V, Doubrovin M, Serganova I et al (2004) A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur J Nucl Med Mol Imaging 31(5):740–751

    Article  CAS  Google Scholar 

  14. Kim YJ, Dubey P, Ray P et al (2004) Multimodality imaging of lymphocytic migration using lentiviral-based transduction of a tri-fusion reporter gene. Mol Imaging Biol 6(5):331–340

    Article  Google Scholar 

  15. Sun N, Lee A, Wu JC (2009) Long term non-invasive imaging of embryonic stem cells using reporter genes. Nat Protoc 4(8):1192–1201

    Article  CAS  Google Scholar 

  16. Willmann JRK, Paulmurugan R, Rodriguez-Porcel M et al (2009) Imaging gene expression in human mesenchymal stem cells: from small to large animals. Radiology 252(1):117

    Article  Google Scholar 

  17. Love Z, Wang F, Dennis J et al (2007) Imaging of mesenchymal stem cell transplant by bioluminescence and PET. J Nucl Med 48(12):2011–2020

    Article  Google Scholar 

  18. Roelants V, Labar D, de Meester C et al (2008) Comparison between adenoviral and retroviral vectors for the transduction of the thymidine kinase PET reporter gene in rat mesenchymal stem cells. J Nucl Med 49(11):1836–1844

    Article  CAS  Google Scholar 

  19. Terrovitis J, Kwok KF, Lautamäki R et al (2008) Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by single-photon emission computed tomography or positron emission tomography. J Am Coll Cardiol 52(20):1652–1660

    Article  Google Scholar 

  20. Lan X, Liu Y, He Y et al (2010) Autoradiography study and SPECT imaging of reporter gene HSV1-tk expression in heart. Nucl Med Biol 37(3):371–380

    Article  CAS  Google Scholar 

  21. Hofmann M (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111(17):2198–2202

    Article  Google Scholar 

  22. Blasberg RG (2003) Molecular imaging and cancer. Mol Cancer Ther 2(3):335–343

    CAS  PubMed  Google Scholar 

  23. Wu JC (2003) Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108(11):1302–1305

    Article  Google Scholar 

  24. Higuchi T, Anton M, Dumler K et al (2009) Combined reporter gene PET and iron oxide MRI for monitoring survival and localization of transplanted cells in the rat heart. J Nucl Med 50(7):1088–1094

    Article  CAS  Google Scholar 

  25. Pei Z, Lan X, Cheng Z, Qin C, Wang P, He Y, Yen TC, Tian Y, Mghanga FP, Zhang Y (2012) A multimodality reporter gene for monitoring transplanted stem cells. Nucl Med Biol 39(6):813–820

    Article  CAS  Google Scholar 

  26. Kang Y, He W, Tulley S et al (2005) Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci U S A 102(39):13909–13914

    Article  CAS  Google Scholar 

  27. Ottobrini L, Ciana P, Biserni A et al (2006) Molecular imaging: a new way to study molecular processes in vivo. Mol Cell Endocrinol 246(1-2):69–75

    Article  CAS  Google Scholar 

  28. Ray P, Pimenta H, Paulmurugan R et al (2002) Noninvasive quantitative imaging of protein-protein interactions in living subjects. Proc Natl Acad Sci U S A 99(5):3105–3110

    Article  CAS  Google Scholar 

  29. Paulmurugan R, Massoud TF, Huang J et al (2004) Molecular imaging of drug-modulated protein-protein interactions in living subjects. Cancer Res 64(6):2113–2119

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Shanghai Jiao Tong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lan, X., Ye, M., Qiao, P., Wang, W. (2019). Radionuclide Gene and Reporter Gene Imaging. In: Huang, G. (eds) Nuclear Medicine in Oncology. Springer, Singapore. https://doi.org/10.1007/978-981-13-7458-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7458-6_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7457-9

  • Online ISBN: 978-981-13-7458-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics