Skip to main content

Glucose Metabolism Imaging

  • Chapter
  • First Online:
  • 933 Accesses

Abstract

The metabolism of carbohydrates includes glycolysis, aerobic oxidation, pentose phosphate pathway, glycogen synthesis, and gluconeogenesis. Glucose metabolism has two major functions: providing energy for living organisms and supplying a huge array of metabolic intermediates for biosynthetic reactions [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ferrier DR (2011) Biochemistry, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 91–154

    Google Scholar 

  2. Chaneton B, Hillmann P, Zheng L et al (2012) Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491(7424):458–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Benjamin DI, Cravatt BF, Nomura DK (2012) Global profiling strategies for mapping dysregulated metabolic pathways in cancer. Cell Metab 16(5):565–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Metallo CM, Walther JL, Stephanopoulos G (2009) Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J Biotechnol 144(3):167–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Neely JR, Denton RM, England PJ et al (1972) The effects of increased heart work on the tricarboxylate cycle and its interactions with glycolysis in the perfused rat heart. Biochem J 128(1):147–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Warburg O (1956) On respiratory impairment in cancer cells. Science 124(3215):269–270

    CAS  PubMed  Google Scholar 

  7. Hsieh AL, Walton ZE, Altman BJ et al (2015) MYC and metabolism on the path to cancer. Semin Cell Dev Biol 43:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dang CV (2012) MYC on the path to cancer. Cell 149(1):22–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Teleman AA, Hietakangas V, Sayadian AC et al (2008) Nutritional control of protein biosynthetic capacity by insulin via Myc in Drosophila. Cell Metab 7(1):21–32

    Article  CAS  PubMed  Google Scholar 

  10. Osthus RC, Shim H, Kim S et al (2000) Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 275(29):21797–21800

    Article  CAS  PubMed  Google Scholar 

  11. Le A, Lane AN, Hamaker M et al (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15(1):110–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Le A, Cooper CR, Gouw AM et al (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A 107(5):2037–2042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. David CJ, Chen M, Assanah M et al (2010) HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463(7279):364–368

    Article  CAS  PubMed  Google Scholar 

  14. Wang GL, Jiang BH, Rue EA et al (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92(12):5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim JW, Tchernyshyov I, Semenza GL et al (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185

    Article  PubMed  Google Scholar 

  16. Kennedy KM, Dewhirst MW (2010) Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol 6(1):127–148

    Article  CAS  PubMed  Google Scholar 

  17. Kawada K, Toda K, Sakai Y (2017) Targeting metabolic reprogramming in KRAS-driven cancers. Int J Clin Oncol 22(4):651–659

    Article  CAS  PubMed  Google Scholar 

  18. Gysin S, Salt M, Young A et al (2011) Therapeutic strategies for targeting ras proteins. Genes Cancer 2(3):359–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9(7):517–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yun J, Rago C, Cheong I et al (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325(5947):1555–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kawada K, Nakamoto Y, Kawada M et al (2012) Relationship between 18F-fluorodeoxyglucose accumulation and KRAS/BRAF mutations in colorectal cancer. Clin Cancer Res 18(6):1696–1703

    Article  CAS  PubMed  Google Scholar 

  22. Miles KA, Ganeshan B, Rodriguez-Justo M et al (2014) Multifunctional imaging signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in colorectal cancer. J Nucl Med 55(3):386–391

    Article  CAS  PubMed  Google Scholar 

  23. Ying H, Kimmelman AC, Lyssiotis CA et al (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149(3):656–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Patra KC, Wang Q, Bhaskar PT et al (2013) Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24(2):213–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kawauchi K, Araki K, Tobiume K et al (2008) p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 10(5):611–618

    Article  CAS  PubMed  Google Scholar 

  26. Mathupala SP, Heese C, Pedersen PL (1997) Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem 272(36):22776–22780

    Article  CAS  PubMed  Google Scholar 

  27. Bensaad K, Tsuruta A, Selak MA et al (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120

    Article  CAS  PubMed  Google Scholar 

  28. Baig MH, Adil M, Khan R, et al (2017) Enzyme targeting strategies for prevention and treatment of cancer: implications for cancer therapy. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2017.12.003. [Epub ahead of print]

  29. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23(1):27–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mazurek S (2011) Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol 43(7):969–980

    Article  CAS  PubMed  Google Scholar 

  31. Zhang JY, Zhang F, Hong CQ et al (2015) Critical protein GAPDH and its regulatory mechanisms in cancer cells. Cancer Biol Med 12(1):10–22

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Peng XC, Gong FM, Chen Y et al (2016) Proteomics identification of PGAM1 as a potential therapeutic target for urothelial bladder cancer. J Proteomics 132:85–92

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Cao Y, Zhang W et al (2012) A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther 11(8):1672–1682

    Article  CAS  PubMed  Google Scholar 

  34. Ooi AT, Gomperts BN (2015) Molecular pathways: targeting cellular energy metabolism in cancer via inhibition of SLC2A1 and LDHA [J]. Clin Cancer Res 21(11):2440–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Raez LE, Papadopoulos K, Ricart AD et al (2013) A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol 71(2):523–530

    Article  CAS  PubMed  Google Scholar 

  36. Chong D, Ma L, Liu F et al (2017) Synergistic antitumor effect of 3-bromopyruvate and 5-fluorouracil against human colorectal cancer through cell cycle arrest and induction of apoptosis. Anticancer Drugs 28(8):831–840

    Article  CAS  PubMed  Google Scholar 

  37. Clem BF, O’neal J, Tapolsky G et al (2013) Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol Cancer Ther 12(8):1461–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Keri G, Erchegyi J, Horvath A et al (1996) A tumor-selective somatostatin analog (TT-232) with strong in vitro and in vivo antitumor activity. Proc Natl Acad Sci U S A 93(22):12513–12518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Shanghai Jiao Tong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shi, L., Liu, J. (2019). Glucose Metabolism Imaging. In: Huang, G. (eds) Nuclear Medicine in Oncology. Springer, Singapore. https://doi.org/10.1007/978-981-13-7458-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7458-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7457-9

  • Online ISBN: 978-981-13-7458-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics