Skip to main content

Bacterial Chitinase System as a Model of Chitin Biodegradation

  • Chapter
  • First Online:
Targeting Chitin-containing Organisms

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1142))

Abstract

Chitin, a structural polysaccharide of β-1,4-linked N-acetyl-D-glucosamine residues, is the second most abundant natural biopolymer after cellulose. The metabolism of chitin affects the global carbon and nitrogen cycles, which are maintained by marine and soil-dwelling bacteria. The degradation products of chitin metabolism serve as important nutrient sources for the chitinolytic bacteria. Chitinolytic bacteria have elaborate enzymatic systems for the degradation of the recalcitrant chitin biopolymer. This chapter introduces chitin degradation and utilization systems of the chitinolytic bacteria. These bacteria secrete many chitin-degrading enzymes, including processive chitinases, endo-acting non-processive chitinases, lytic polysaccharide monooxygenases, and N-acetyl-hexosaminidases. Bacterial chitinases play a fundamental role in the degradation of chitin. Enzymatic properties, catalytic mechanisms, and three-dimensional structures of chitinases have been extensively studied by many scientists. These enzymes can be exploited to produce a range of chitin-derived products, e.g., biocontrol agents against many plant pathogenic fungi and insects. We introduce bacterial chitinases in terms of their reaction modes and structural features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam MM, Mizutani T, Isono M, Nikaidou N, Watanabe T (1996) Three chitinase genes (chiA, chiC, and chiD) comprise the chitinase system of Bacillus circulans WL-12. J Ferment Bioeng 82:28–36

    Article  CAS  Google Scholar 

  • Andronopoulou E, Vorgias CE (2004) Multiple components and induction mechanism of the chitinolytic system of the hyperthermophilic archaeon Thermococcus chitonophagus. Appl Microbiol Biotechnol 65:694–702

    Article  CAS  Google Scholar 

  • Arakane Y, Muthukrishnan S (2010) Insect chitinase and chitinase-like proteins. Cell Mol Life Sci 67:201–216

    Article  CAS  Google Scholar 

  • Attwood MM, Zola H (1967) The association between chitin and protein in some chitinous tissues. Comp Biochem Physiol 20:993–998

    Article  CAS  Google Scholar 

  • Austin PR, Brine CJ, Castle JE, Zikakis JP (1981) Chitin: New facets of research. Science 212:749–753

    Article  CAS  Google Scholar 

  • Berger LR, Reynolds DM (1958) The chitinase system of a strain of Streptomyces griseus. Biochim Biophys Acta 29:522–534

    Article  CAS  Google Scholar 

  • Bassler BL, Yu C, Lee YC, Roseman S (1991) Chitin utilization by marine bacteria. Degradation and catabolism of chitin oligosaccharides by Vibrio furnissii. J Biol Chem 266:24276–24286

    CAS  PubMed  Google Scholar 

  • Berg T, Schild S, Reidl J (2007) Regulation of the chitobiose-phosphotransferase system in Vibrio cholerae. Arch Microbiol 187:433–439

    Article  CAS  Google Scholar 

  • Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27:21–28

    Article  CAS  Google Scholar 

  • Boraston AB (2005) The interaction of carbohydrate-binding modules with insoluble non-crystalline cellulose is enthalpically driven. Biochem J 385:479–484

    Article  CAS  Google Scholar 

  • Brameld KA, Goddard WA (1998) Substrate distortion to a boat conformation at subsite -1 is critical in the mechanism of family 18 chitinases. J Am Chem Soc 120:3571–3580

    Article  CAS  Google Scholar 

  • Clarke ND (1994) A proposed mechanism for the self-splicing of proteins. Proc Natl Acad Sci USA 91:11084–11088

    Article  CAS  Google Scholar 

  • Colson S, van Wezel GP, Craig M, Noens EE, Nothaft H, Mommaas AM, Titgemeyer F, Joris B, Rigali S (2008) The chitobiose-binding protein, DasA, acts as a link between chitin utilization and morphogenesis in Streptomyces coelicolor. Microbiology 154:373–382

    Article  CAS  Google Scholar 

  • Fuchs RL, McPherson SA, Drahos DJ (1986) Cloning of a Serratia marcescens gene encoding chitinase. Appl Environ Microbiol 51:504–509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukamizo T (2000) Chitinolytic enzymes: catalysis, substrate binding, and their application. Curr Protein Pept Sci 1:105–124

    Article  CAS  Google Scholar 

  • Georgelis N, Yennawar NH, Cosgrove DJ (2012) Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin. Proc Natl Acad Sci USA 109:14830–14835

    Article  CAS  Google Scholar 

  • Ghinet MG, Roy S, Poulin-Laprade D, Lacombe-Harvey MÈ, Morosoli R, Brzezinski R (2010) Chitosanase from Streptomyces coelicolor A3(2): biochemical properties and role in protection against antibacterial effect of chitosan. Biochem Cell Biol 88:907–916

    Article  CAS  Google Scholar 

  • Gooday GW (1990a) The ecology of chitin degradation. Adv Mibrob Ecol 11:387–430

    Article  CAS  Google Scholar 

  • Gooday GW (1990b) Physiology of microbial degradation of chitin and chitosan. Biodegradation 1:177–190

    Article  CAS  Google Scholar 

  • Grover A (2012) Plant chitinases: genetic diversity and physiological roles. Crit Rev Plant Sci 31:57–73

    Article  CAS  Google Scholar 

  • Hall TM, Porter JA, Young KE, Koonin EV, Beachy PA, Leahy DJ (1997) Crystal structure of a Hedgehog autoprocessing domain: homology between Hedgehog and self-splicing proteins. Cell 91:85–97

    Article  CAS  Google Scholar 

  • Hamre AG, Lorentzen SB, Väljamäe P, Sørlie M (2014) Enzyme processivity changes with the extent of recalcitrant polysaccharide degradation. FEBS Lett 588:4620–4624

    Article  CAS  Google Scholar 

  • Hashimoto M, Ikegami T, Seino S, Ohuchi N, Fukada H, Sugiyama J, Shirakawa M, Watanabe T (2000) Expression and characterization of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12. J Bacteriol 182:3045–3054

    Article  CAS  Google Scholar 

  • Hiramatsu S, Fujie M, Usami S, Sakai K, Yamada T (2000) Two catalytic domains of Chlorella virus CVK2 chitinase. J Biosci Bioeng 89:252–257

    Article  CAS  Google Scholar 

  • Hirono I, Yamashita M, Aoki T (1998) Note: Molecular cloning of chitinasegenes from Vibrio anguillarum and V. parahaemolyticus. J Appl Microbiol 84:1175–1178

    Article  CAS  Google Scholar 

  • Horn SJ, Sørbotten A, Synstad B, Sikorski P, Sørlie M, Vårum KM, Eijsink VG (2006) Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. FEBS J 273:491–503

    Article  CAS  Google Scholar 

  • Howard MB, Ekborg NA, Taylor LE 2nd, Weiner RM, Hutcheson SW (2004) Chitinase B of Microbulbifer degradans 2-40 contains two catalytic domains with different chitinolytic activities. J Bacteriol 186:1297–1303

    Article  CAS  Google Scholar 

  • Hult EL, Katouno F, Uchiyama T, Watanabe T, Sugiyama J (2005) Molecular directionality in crystalline beta-chitin: hydrolysis by chitinases A and B from Serratia marcescens 2170. Biochem J 388:851–856

    Article  CAS  Google Scholar 

  • Hunt DE, Gevers D, Vahora NM, Polz MF (2008) Conservation of the chitin utilization pathway in the Vibrionaceae. Appl Environ Microbiol 74:44–51

    Article  CAS  Google Scholar 

  • Ito T, Katayama T, Hattie M, Sakurama H, Wada J, Suzuki R, Ashida H, Wakagi T, Yamamoto K, Stubbs KA, Fushinobu S (2013) Crystal structures of a glycoside hydrolase family 20 lacto-N-biosidase from Bifidobacterium bifidum. J Biol Chem 288:11795–11806

    Article  CAS  Google Scholar 

  • Itoh T, Hibi T, Fujii Y, Sugimoto I, Fujiwara A, Suzuki F, Iwasaki Y, Kim JK, Taketo A, Kimoto H (2013) Cooperative degradation of chitin by extracellular and cell surface-expressed chitinases from Paenibacillus sp. strain FPU-7. Appl Environ Microbiol 79:7482–7490

    Article  CAS  Google Scholar 

  • Itoh T, Hibi T, Suzuki F, Sugimoto I, Fujiwara A, Inaka K, Tanaka H, Ohta K, Fujii Y, Taketo A, Kimoto H (2016) Crystal structure of chitinase ChiW from Paenibacillus sp. str. FPU-7 reveals a novel type of bacterial cell-surface-expressed multi-modular enzyme machinery. PLoS ONE 11:e0167310

    Article  Google Scholar 

  • Itoh T, Sugimoto I, Hibi T, Suzuki F, Matsuo K, Fujii Y, Taketo A, Kimoto H (2014) Overexpression, purification, and characterization of Paenibacillus cell surface-expressed chitinase ChiW with two catalytic domains. Biosci Biotechnol Biochem 78:624–634

    Article  CAS  Google Scholar 

  • Jee JG, Ikegami T, Hashimoto M, Kawabata T, Ikeguchi M, Watanabe T, Shirakawa M (2002) Solution structure of the fibronectin type III domain from Bacillus circulans WL-12 chitinase A1. J Biol Chem 277:1388–1397

    Article  CAS  Google Scholar 

  • Kawase T, Yokokawa S, Saito A, Fujii T, Nikaidou N, Miyashita K, Watanabe T (2006) Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolor A3(2). Biosci Biotechnol Biochem 70:988–998

    Article  CAS  Google Scholar 

  • Keyhani NO, Roseman S (1999) Physiological aspects of chitin catabolism in marine bacteria. Biochim Biophys Acta 1473:108–122

    Article  CAS  Google Scholar 

  • Kitaoku Y, Fukamizo T, Numata T, Ohnuma T (2017) Chitin oligosaccharide binding to the lysin motif of a novel type of chitinase from the multicellular green alga, Volvox carteri. Plant Mol Biol 93:97–108

    Article  CAS  Google Scholar 

  • Kusaoke H, Shinya S, Fukamizo T, Kimoto H (2017) Biochemical and biotechnological trends in chitin, chitosan, and related enzymes produced by Paenibacillus IK-5 Strain. Int J Biol Macromol 104:1633–1640

    Article  CAS  Google Scholar 

  • Lacombe-Harvey MÈ, Brzezinski R, Beaulieu C (2018) Chitinolytic functions in actinobacteria: ecology, enzymes, and evolution. Appl Microbiol Biotechnol

    Google Scholar 

  • Li H, Greene LH (2010) Sequence and structural analysis of the chitinase insertion domain reveals two conserved motifs involved in chitin-binding. PLoS ONE 5:e8654

    Article  Google Scholar 

  • Li X, Roseman S (2004) The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. Proc Natl Acad Sci USA 101:627–631

    Article  CAS  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The Carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495

    Article  CAS  Google Scholar 

  • Macdonald SS, Blaukopf M, Withers SG (2015) N-Acetylglucosaminidases from CAZy family GH3 are really glycoside phosphorylases, thereby explaining their use of histidine as an acid/base catalyst in place of glutamic acid. J Biol Chem 290:4887–4895

    Article  CAS  Google Scholar 

  • Madhuprakash J, Dalhus B, Rani TS, Podile AR, Eijsink VGH, Sørlie M (2018) Key residues affecting transglycosylation activity in family 18 chitinases: insights into donor and acceptor subsites. Biochemistry 57:4325–4337

    Article  CAS  Google Scholar 

  • Mallakuntla MK, Vaikuntapu PR, Bhuvanachandra B, Das SN, Podile AR (2017) Transglycosylation by a chitinase from Enterobacter cloacae subsp. cloacae generates longer chitin oligosaccharides. Sci Rep 7:5113

    Article  Google Scholar 

  • Meena S, Gothwal RK, Krishna Mohan M, Ghosh P (2014) Production and purification of a hyperthermostable chitinase from Brevibacillus formosus BISR-1 isolated from the Great Indian Desert soils. Extremophiles 18:451–462

    Article  CAS  Google Scholar 

  • Meibom KL, Li XB, Nielsen AT, Wu CY, Roseman S, Schoolnik GK (2004) The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci U S A. 101:2524–2529

    Article  CAS  Google Scholar 

  • Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK (2005) Chitin induces natural competence in Vibrio cholerae. Sci 310:1824–1827.

    Google Scholar 

  • Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:4393–4412

    Article  CAS  Google Scholar 

  • Miyashita K, Fujii T, Saito A (2000) Induction and repression of a Streptomyces lividans chitinase gene promoter in response to various carbon sources. Biosci Biotechnol Biochem 64:39–43

    Article  CAS  Google Scholar 

  • Monreal J, Reese ET (1969) The chitinase of Serratia marcescens. Can J Microbiol 15:689–696

    Article  CAS  Google Scholar 

  • Ohno T, Armand S, Hata T, Nikaidou N, Henrissat B, Mitsutomi M, Watanabe T (1996) A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. J Bacteriol 178:5065–5070

    Article  CAS  Google Scholar 

  • Payne CM, Baban J, Horn SJ, Backe PH, Arvai AS, Dalhus B, Bjørås M, Eijsink VG, Sørlie M, Beckham GT, Vaaje-Kolstad G (2012) Hallmarks of processivity in glycoside hydrolases from crystallographic and computational studies of the Serratia marcescens chitinases. J Biol Chem 287:36322–36330

    Article  CAS  Google Scholar 

  • Perrakis A, Tews I, Dauter Z, Oppenheim AB, Chet I, Wilson KS, Vorgias CE (1994) Crystal structure of a bacterial chitinase at 2.3 A resolution. Structure 2:1169–1180

    Article  CAS  Google Scholar 

  • Rathore AS, Gupta RD (2015) Chitinases from bacteria to human: properties, applications, and future perspectives. Enzyme Res. 2015:791907

    Article  Google Scholar 

  • Rombouts FM, Phaff HJ (1976) Lysis of yeast cell walls. Lytic β-(1→6)-glucanase from Bacillus circulans WL-12. Eur J Biochem 63:109–120

    Article  CAS  Google Scholar 

  • Saito A, Ebise H, Orihara Y, Murakami S, Sano Y, Kimura A, Sugiyama Y, Ando A, Fujii T, Miyashita K (2013) Enzymatic and genetic characterization of the DasD protein possessing N-acetyl-β-D-glucosaminidase activity in Streptomyces coelicolor A3(2). FEMS Microbiol Lett 340:33–40

    Article  CAS  Google Scholar 

  • Saito A, Fujii T, Yoneyama T, Redenbach M, Ohno T, Watanabe T, Miyashita K (1999) High-multiplicity of chitinase genes in Streptomyces coelicolor A3(2). Biosci Biotechnol Biochem 63:710–718

    Article  CAS  Google Scholar 

  • Saito A, Shinya T, Miyamoto K, Yokoyama T, Kaku H, Minami E, Shibuya N, Tsujibo H, Nagata Y, Ando A, Fujii T, Miyashita K (2007) The dasABC gene cluster, adjacent to dasR, encodes a novel ABC transporter for the uptake of N, N’-diacetylchitobiose in Streptomyces coelicolor A3(2). Appl Environ Microbiol 73:3000–3008

    Article  CAS  Google Scholar 

  • Schaefer J, Kramer KJ, Garbow JR, Jacob GS, Stejskal EO, Hopkins TL, Speirs RD (1987) Aromatic cross-links in insect cuticle: detection by solid-state 13C and 15N NMR. Science 235:1200–1204

    Article  CAS  Google Scholar 

  • Schneewind O, Missiakas DM (2012) Protein secretion and surface display in Gram-positive bacteria. Philos Trans R Soc Lond B Biol Sci 367:1123–1139

    Article  CAS  Google Scholar 

  • Schrempf H (2001) Recognition and degradation of chitin by streptomycetes. Antonie Van Leeuwenhoek 79:285–289

    Article  CAS  Google Scholar 

  • Shimosaka M, Fukumori Y, Narita T, Zhang X, Kodaira R, Nogawa M, Okazaki M (2001) The bacterium Burkholderia gladioli strain CHB101 produces two different kinds of chitinases belonging to families 18 and 19 of the glycosyl hydrolases. J Biosci Bioeng 91:103–105

    Article  CAS  Google Scholar 

  • Shirota K, Sato T, Sekiguchi J, Miyauchi K, Mochizuki A, Matsumiya M (2008) Purification and characterization of chitinase isozymes from a red algae, Chondrus verrucosus. Biosci Biotechnol Biochem 72:3091–3099

    Article  CAS  Google Scholar 

  • Sikorski P, Sørbotten A, Horn SJ, Eijsink VG, Vårum KM (2006) Serratia marcescens chitinases with tunnel-shaped substrate-binding grooves show endo activity and different degrees of processivity during enzymatic hydrolysis of chitosan. Biochemistry 45:9566–9574

    Article  CAS  Google Scholar 

  • Suzuki K, Sugawara N, Suzuki M, Uchiyama T, Katouno F, Nikaidou N, Watanabe T (2002) Chitinases A, B, and C1 of Serratia marcescens 2170 produced by recombinant Escherichia coli: enzymatic properties and synergism on chitin degradation. Biosci Biotechnol Biochem 66:1075–1083

    Article  CAS  Google Scholar 

  • Suzuki K, Taiyoji M, Sugawara N, Nikaidou N, Henrissat B, Watanabe T (1999) The third chitinase gene (chiC) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases. Biochem J 343:587–596

    Article  CAS  Google Scholar 

  • Świątek MA, Tenconi E, Rigali S, van Wezel GP (2012a) Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in control of development and antibiotic production. J Bacteriol 194:1136–1144

    Article  Google Scholar 

  • Świątek MA, Urem M, Tenconi E, Rigali S, van Wezel GP (2012b) Engineering of N-acetylglucosamine metabolism for improved antibiotic production in Streptomyces coelicolor A3(2) and an unsuspected role of NagA in glucosamine metabolism. Bioengineered 3:280–285

    Article  Google Scholar 

  • Tanaka T, Fukui T, Imanaka T (2001) Different cleavage specificities of the dual catalytic domains in chitinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Biol Chem 276:35629–35635

    Article  CAS  Google Scholar 

  • Tharanathan RN, Kittur FS (2003) Chitin-the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 43:61–87

    Article  CAS  Google Scholar 

  • Tews I, Terwisscha van Scheltinga AC, Perrakis A, Wilson KS, Dijkstra BW (1997) Substrate-assisted catalysis unifies two families of chitinolytic enzymes. J Am Chem Soc 119:7954–7959

    Article  CAS  Google Scholar 

  • Uchiyama T, Kaneko R, Yamaguchi J, Inoue A, Yanagida T, Nikaidou N, Regue M, Watanabe T (2003) Uptake of N, N’-diacetylchitobiose [(GlcNAc)2] via the phosphotransferase system is essential for chitinase production by Serratia marcescens 2170. J Bacteriol 185:1776–1782

    Article  CAS  Google Scholar 

  • Uchiyama T, Katouno F, Nikaidou N, Nonaka T, Sugiyama J, Watanabe T (2001) Roles of the exposed aromatic residues in crystalline chitin hydrolysis by chitinase A from Serratia marcescens 2170. J Biol Chem 276:41343–41349

    Article  CAS  Google Scholar 

  • Umemoto N, Ohnuma T, Osawa T, Numata T, Fukamizo T (2015) Modulation of the transglycosylation activity of plant family GH18 chitinase by removing or introducing a tryptophan side chain. FEBS Lett 589:2327–2333

    Article  CAS  Google Scholar 

  • Uni F, Lee S, Yatsunami R, Fukui T, Nakamura S (2012) Mutational analysis of a CBM family 5 chitin binding domain of an alkaline chitinase from Bacillus sp J813. Biosci Biotechnol Biochem 76:530–535

    Article  CAS  Google Scholar 

  • Vaaje-Kolstad G, Horn SJ, Sørlie M, Eijsink VG (2013) The chitinolytic machinery of Serratia marcescens-a model system for enzymatic degradation of recalcitrant polysaccharides. FEBS J 280:3028–3049

    Article  CAS  Google Scholar 

  • van Aalten DM, Komander D, Synstad B, Gåseidnes S, Peter MG, Eijsink VG (2001) Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc Natl Acad Sci USA 98:8979–8984

    Article  Google Scholar 

  • Watanabe T, Ariga Y, Sato U, Toratani T, Hashimoto M, Nikaidou N, Kezuka Y, Nonaka T, Sugiyama J (2003) Aromatic residues within the substrate-binding cleft of Bacillus circulans chitinase A1 are essential for hydrolysis of crystalline chitin. Biochem J 376:237–244

    Article  CAS  Google Scholar 

  • Watanabe T, Ishibashi A, Ariga Y, Hashimoto M, Nikaidou N, Sugiyama J, Matsumoto T, Nonaka T (2001) Trp122 and Trp134 on the surface of the catalytic domain are essential for crystalline chitin hydrolysis by Bacillus circulans chitinase A1. FEBS Lett 494:74–78

    Article  CAS  Google Scholar 

  • Watanabe T, Ito Y, Yamada T, Hashimoto M, Sekine S, Tanaka H (1994) The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J Bacteriol 176:4465–4472

    Article  CAS  Google Scholar 

  • Watanabe T, Oyanagi W, Suzuki K, Tanaka H (1990) Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J Bacteriol 172:4017–4022

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takafumi Itoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Itoh, T., Kimoto, H. (2019). Bacterial Chitinase System as a Model of Chitin Biodegradation. In: Yang, Q., Fukamizo, T. (eds) Targeting Chitin-containing Organisms. Advances in Experimental Medicine and Biology, vol 1142. Springer, Singapore. https://doi.org/10.1007/978-981-13-7318-3_7

Download citation

Publish with us

Policies and ethics