Skip to main content

Chitin Prevalence and Function in Bacteria, Fungi and Protists

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1142))

Abstract

Chitin is an important structural polysaccharide, which supports and organizes extracellular matrices in a variety of taxonomic groups including bacteria, fungi, protists, and animals. Additionally, chitin has been recognized as a molecule that is required for Rhizobia-legume symbiosis and involved in arbuscular mycorrhizal signaling in the symbiotic interaction between terrestrial plants and fungi. Moreover, it serves as a unique molecular pattern in the plant defense system against pathogenic fungi and parasites, and in the innate and adaptive immune response of mammals and humans. In this review, we will focus on the prevalence and structural function of chitin in bacteria, fungi, and protists, with a particular focus on the evolution of chitin synthases and the function of chitin oligosaccharides as a signaling molecule in symbiosis and immunity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agatha S, Simon P (2012) On the nature of tintinnid loricae (Ciliophora: Spirotricha: Tintinnina): a histochemical, enzymatic, EDX, and high-resolution TEM study. Acta Protozool 51:1–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anno K, Otsuka K, Seno N (1974) A chitin sulfate-like polysaccharide from the test of the tunicate Halocynthia roretzi. Biochim Biophys Acta 362:215–219

    Article  CAS  PubMed  Google Scholar 

  • Arcones I, Sacristan C, Roncero C (2016) Maintaining protein homeostasis: early and late endosomal dual recycling for the maintenance of intracellular pools of the plasma membrane protein Chs3. Mol Biol Cell 27:4021–4032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arroyo-Begovich A, Cárabez-Trejo A (1982) Location of chitin in the cyst wall of Entamoeba invadens with colloidal gold tracers. J Parasitol 68:253–258

    Article  CAS  PubMed  Google Scholar 

  • Arroyo-Begovich A, Carabez-Trejo A, Ruiz-Herrera J (1980) Identification of the structural component in the cyst wall of Entamoeba invadens. J Parasitol 66:735–741

    Article  CAS  PubMed  Google Scholar 

  • Arroyo J, Farkas V, Sanz AB, Cabib E (2016) Strengthening the fungal cell wall through chitin-glucan cross-links: effects on morphogenesis and cell integrity. Cell Microbiol 18:1239–1250

    Article  CAS  PubMed  Google Scholar 

  • Atkinson EM, Long SR (1992) Homology of Rhizobium meliloti NodC to polysaccharide polymerizing enzymes. Mol Plant Microbe Interact 5:439–442

    Article  CAS  PubMed  Google Scholar 

  • Atkinson EM, Palcic MM, Hindsgaul O, Long SR (1994) Biosynthesis of Rhizobium meliloti lipooligosaccharide Nod factors: NodA is required for an N-acyltransferase activity. Proc Natl Acad Sci USA 91:8418–8422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aufauvre-Brown A, Mellado E, Gow NA, Holden DW (1997) Aspergillus fumigatus chsE: A gene related to chs3 of Saccharomyces cerevisiae and important for hyphal growth and conidiophore development but not pathogenicity. Fungal Genet Biol 21:141–152

    Article  CAS  PubMed  Google Scholar 

  • Aumeier C, Menzel D (2012) Secretion in the diatoms. In: Vivanco JM, Baluska F (eds) Secretions and exudates in biological systems. Springer, Berlin, pp 221–250

    Chapter  Google Scholar 

  • Avron B, Deutsch RM, Mirelman D (1982) Chitin synthesis inhibitors prevent cyst formation by Entamoeba trophozoites. Biochem Biophysical Res Commun 108:815–821

    Article  CAS  Google Scholar 

  • Baev N, Endre G, Petrovics G, Banfalvi Z, Kondorosi A (1991) Six nodulation genes of nod box locus 4 in Rhizobium meliloti are involved in nodulation signal production: nodM codes for D-glucosamine synthetase. Mol Gen Genet 228(1–2):113–124

    CAS  PubMed  Google Scholar 

  • Baev N, Schultze M, Barlier I, Ha DC, Virelizier H, Kondorosi E, Kondorosi A (1992) Rhizobium nodM and nodN genes are common nod genes: nodM encodes functions for efficiency of Nod signal production and bacteroid maturation. J Bacteriol 174:7555–7565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartnicki-Garcia S (2006) Chitosomes: past, present and future. FEMS Yeast Res 6:957–965

    Article  CAS  PubMed  Google Scholar 

  • Biancalana F, Kopprio GA, Lara RJ, Alonso C (2017) A protocol for the simultaneous identification of chitin-containing particles and their associated bacteria. Syst Appl Microbiol 40:314–320

    Article  CAS  PubMed  Google Scholar 

  • Blackwell J, Parker K, Rudall K (1967) Chitin fibres of the diatoms Thalassiosira fluviatilis and Cyclotella cryptica. J Mol Biol 28:383–385

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Kamst E, Harteveld M, van der Drift KM, Haverkamp J, Thomas-Oates JE, Lugtenberg BJ, Spaink HP (1995) A central domain of Rhizobium NodE protein mediates host specificity by determining the hydrophobicity of fatty acyl moieties of nodulation factors. Mol Microbiol 16:1123–1136

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Thomas-Oates JE, Lugtenberg BJ, Spaink HP (1994) Nodulation protein NodL of Rhizobium leguminosarum O-acetylates lipo-oligosaccharides, chitin fragments and N-acetylglucosamine in vitro. Mol Microbiol 11:793–804

    Article  CAS  PubMed  Google Scholar 

  • Bo M, Bavestrello G, Kurek D, Paasch S, Brunner E, Born R, Galli R, Stelling AL, Sivkov VN, Petrova OV, Vyalikh D, Kummer K, Molodtsov SL, Nowak D, Nowak J, Ehrlich H (2012) Isolation and identification of chitin in the black coral Parantipathes larix (Anthozoa: Cnidaria). Int J Biol Macromol 51(1–2):129–137

    Article  CAS  PubMed  Google Scholar 

  • Bontemps C, Golfier G, Gris-Liebe C, Carrere S, Talini L, Boivin-Masson C (2005) Microarray-based detection and typing of the Rhizobium nodulation gene nodC: potential of DNA arrays to diagnose biological functions of interest. Appl Environ Microbiol 71:8042–8048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowen AR, Chen-Wu JL, Momany M, Young R, Szaniszlo PJ, Robbins PW (1992) Classification of fungal chitin synthases. Proc Nati Acad Sci USA 89:519–523

    Article  CAS  Google Scholar 

  • Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. BioEssays 28:799–808

    Article  PubMed  Google Scholar 

  • Briza P, Ellinger A, Winkler G, Breitenbach M (1988) Chemical composition of the yeast ascospore wall. The second outer layer consists of chitosan. J Biol Chem 263:11569–11574

    CAS  PubMed  Google Scholar 

  • Broughton WJ, Jabbouri S, Perret X (2000) Keys to symbiotic harmony. J Bacteriol 182:5641–5652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunke S, Mogavero S, Kasper L, Hube B (2016) Virulence factors in fungal pathogens of man. Curr Opin Microbiol 32:89–95

    Article  CAS  PubMed  Google Scholar 

  • Brunner E, Richthammer P, Ehrlich H, Paasch S, Simon P, Ueberlein S, van Pée KH (2009) Chitin-based organic networks: an integral part of cell wall biosilica in the diatom Thalassiosira pseudonana. Angew Chem Int Ed Engl 48:9724–9727

    Article  CAS  PubMed  Google Scholar 

  • Buck KR (1990) Choanomastigotes (choanoflagellates). In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of the Protoctista: the structure, cultivation, habits and life histories of the eukaryotic microorganisms and their descendants exclusive of animals, plants and fungi. Jones and Bartlett Publishers, Boston, pp 194–199

    Google Scholar 

  • Bussers JC, Jeuniaux C (1974) Recherche de la chitine dans les productions métaplasmatiques de quelques ciliés. Protistologica 10:43–46

    Google Scholar 

  • Bussers JC, Voss-Foucart MF, Bouchez-Decloux N (1977) Ultrastructure and chemical composition of the lorica of Folliculitis products (Ciliata Heterotricha). Abstr Int Congr Protozool. 50:358

    Google Scholar 

  • Bussers JC (1976) Structure et composition du kyste de résistance de 4 protozoaires ciliés. Protistologica 12:87–100

    CAS  Google Scholar 

  • Calvo P, Fernandez-Aliseda MC, Garrido J, Torres A (2003) Ultrastructure, encystment and cyst wall composition of the resting cyst of the peritrich ciliate Opisthonecta henneguyi. J Eukaryot Microbiol 50:49–56

    Article  PubMed  Google Scholar 

  • Campos-Gongora E, Ebert F, Willhoeft U, Said-Fernandez S, Tannich E (2004) Characterization of chitin synthases from Entamoeba. Protist 155:323–330

    Article  CAS  PubMed  Google Scholar 

  • Carlson RW, Price NP, Stacey G (1994) The biosynthesis of rhizobial lipo-oligosaccharide nodulation signal molecules. Mol Plant Microbe Interact 7:684–695

    Article  CAS  PubMed  Google Scholar 

  • Chávez-Munguía B, Omaña-Molina M, González-Lázaro M, González-Robles A, Cedillo-Rivera R, Bonilla P, Martínez-Palomo A (2007) Ultrastructure of cyst differentiation in parasitic protozoa. Parasitol Res 100:1169–1175

    Article  PubMed  Google Scholar 

  • Chen SF, Juang YL, Chou WK, Lai JM, Huang CY, Kao CY, Wang FS (2009) Inferring a transcriptional regulatory network of the cytokinesis-related genes by network component analysis. BMC Syst Biol 3:110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin CF, Bennett AM, Ma WK, Hall MC, Yeong FM (2012) Dependence of Chs2 ER export on dephosphorylation by cytoplasmic Cdc14 ensures that septum formation follows mitosis. Mol Biol Cell 23:45–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi WJ, Santos B, Duran A, Cabib E (1994) Are yeast chitin synthases regulated at the transcriptional or the posttranslational level? Mol Cell Biol 14:7685–7694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choquer M, Boccara M, Goncalves IR, Soulie MC, Vidal-Cros A (2004) Survey of the Botrytis cinerea chitin synthase multigenic family through the analysis of six euascomycetes genomes. Eur J Biochem 271:2153–2164

    Article  CAS  PubMed  Google Scholar 

  • Christodoulidou A, Briza P, Ellinger A, Bouriotis V (1999) Yeast ascospore wall assembly requires two chitin deacetylase isozymes. FEBS Lett 460:275–279

    Article  CAS  PubMed  Google Scholar 

  • Chuang JS, Schekman RW (1996) Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p. J Cell Biol 135:597–610

    Google Scholar 

  • Cid VJ, Durán A, del Rey F, Snyder MP, Nombela C, Sánchez M (1995) Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 59:345–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coluccio AE, Rodriguez RK, Kernan MJ, Neiman AM (2008) The yeast spore wall enables spores to survive passage through the digestive tract of Drosophila. PLoS One 3:e2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cos T, Ford RA, Trilla JA, Duran A, Cabib E, Roncero C (1998) Molecular analysis of Chs3p participation in chitin synthase III activity. Eur J Biochem 256:419–426

    Article  CAS  PubMed  Google Scholar 

  • Davis AK, Hildebrand M, Palenik B (2005) A stress-induced protein associated with the girdle band region of the diatom Thalassiosira pseudonana (Bacillariophyta). J Phycol 41:577–589

    Article  CAS  Google Scholar 

  • De Hoff PL, Brill LM, Hirsch AM (2009) Plant lectins: the ties that bind in root symbiosis and plant defense. Mol Genet Genomics 282:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Jonge R, Thomma BP (2009) Fungal LysM effectors: extinguishers of host immunity? Trends Microbiol 17:151–157

    Article  CAS  PubMed  Google Scholar 

  • Deakin WJ, Broughton WJ (2009) Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 7:312–320

    Article  CAS  PubMed  Google Scholar 

  • Debelle F, Rosenberg C, Denarie J (1992) The Rhizobium, Bradyrhizobium, and Azorhizobium NodC proteins are homologous to yeast chitin synthases. Mol Plant Microbe Interact 5:443–446

    Article  CAS  PubMed  Google Scholar 

  • Demont N, Debelle F, Aurelle H, Denarie J, Prome JC (1993) Role of the Rhizobium meliloti nodF and nodE genes in the biosynthesis of lipo-oligosaccharidic nodulation factors. J Biol Chem 268:20134–20142

    CAS  PubMed  Google Scholar 

  • Deringer VL, Englert U, Dronskowski R (2016) Nature, strength, and cooperativity of the hydrogen-bonding network in alpha-chitin. Biomacromol 17:996–1003

    Article  CAS  Google Scholar 

  • Dobert RC, Breil BT, Triplett EW (1994) DNA sequence of the common nodulation genes of Bradyrhizobium elkanii and their phylogenetic relationship to those of other nodulating bacteria. Mol Plant Microbe Interact 7:564–572

    Article  CAS  PubMed  Google Scholar 

  • Dorfmueller HC, Ferenbach AT, Borodkin VS, van Aalten DM (2014) A structural and biochemical model of processive chitin synthesis. J Biol Chem 289:23020–23028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durkin CA, Mock T, Armbrust EV (2009) Chitin in diatoms and its association with the cell wall. Eukaryot Cell 8:1038–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich H, Maldonado M, Spindler KD, Eckert C, Hanke T, Born R, Goebel C, Simon P, Heinemann S, Worch H (2007) First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera). J Exp Zool B Mol Dev Evo 308:347–356

    Article  CAS  Google Scholar 

  • El Gueddari NE, Rauchhaus U, Moerschbacher BM, Deising HB (2002) Developmentally regulated conversion of surface-exposed chitin to chitosan in cell walls of plant pathogenic fungi. New Phytol 156:103–112

    Article  Google Scholar 

  • Elieh Ali Komi D, Sharma L, Dela Cruz CS (2018) Chitin and Its effects on inflammatory and immune responses. Clin Rev Allergy Immunol 54:213–223

    Article  CAS  PubMed  Google Scholar 

  • Ene IV, Walker LA, Schiavone M, Lee KK, Martin-Yken H, Dague E, Gow NA, Munro CA, Brown AJ (2015) Cell wall remodeling enzymes modulate fungal cell wall elasticity and osmotic stress resistance. MBio 6:e00986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldmann H, Aigle M, Aljinovic G, Andre B, Baclet M, Barthe C, Baur A, Becam A, Biteau N, Boles E (1994) Complete DNA sequence of yeast chromosome II. EMBO J 13:5795–5809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng J, Li Q, Hu HL, Chen XC, Hong GF (2003) Inactivation of the nod box distal half-site allows tetrameric NodD to activate nodA transcription in an inducer-independent manner. Nucleic Acids Res 31:3143–3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes C, Gow NAR, Gonçalves T (2016) The importance of subclasses of chitin synthase enzymes with myosin-like domains for the fitness of fungi. Fungal Biol Rev 30:1–14

    Article  Google Scholar 

  • Firmin JL, Wilson KE, Carlson RW, Davies AE, Downie JA (1993) Resistance to nodulation of cv. Afghanistan peas is overcome by nodX, which mediates an O-acetylation of the Rhizobium leguminosarum lipo-oligosaccharide nodulation factor. Mol Microbiol 10:351–360

    Article  CAS  PubMed  Google Scholar 

  • Fisher RF, Egelhoff TT, Mulligan JT, Long SR (1988) Specific binding of proteins from Rhizobium meliloti cell-free extracts containing NodD to DNA sequences upstream of inducible nodulation genes. Genes Dev 2:282–293

    Article  CAS  PubMed  Google Scholar 

  • Free SJ (2013) Fungal cell wall organization and biosynthesis. Adv Genet 81:33–82

    Article  CAS  PubMed  Google Scholar 

  • Frisardi M, Ghosh SK, Field J, Van Dellen K, Rogers R, Robbins P, Samuelson J (2000) The most abundant glycoprotein of amebic cyst walls (Jacob) is a lectin with five Cys-rich, chitin-binding domains. Infect Immun 68:4217–4224

    Google Scholar 

  • Geelen D, Leyman B, Mergaert P, Klarskov K, Van Montagu M, Geremia R, Holsters M (1995) NodS is an S-adenosyl-L-methionine-dependent methyltransferase that methylates chitooligosaccharides deacetylated at the non-reducing end. Mol Microbiol 17:387–397

    Article  CAS  PubMed  Google Scholar 

  • Geremia RA, Mergaert P, Geelen D, Van Montagu M, Holsters M (1994) The NodC protein of Azorhizobium caulinodans is an N-acetylglucosaminyltransferase. Proc Natl Acad Sci USA 91:2669–2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gharieb MM, El-Sabbagh SM, Shalaby MA, Darwesh OM (2015) Production of chitosan from different species of zygomycetes and its antimicrobial activity. Int J Sci Eng Res 6:123–130

    Google Scholar 

  • Giraud-Guille M-M, Chanzy H, Vuong R (1990) Chitin crystals in arthropod cuticles revealed by diffraction contrast transmission electron microscopy. J Struct Biol 103:232–240

    Article  CAS  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis R, Dujon B, Feldmann H, Galibert F, Hoheisel J, Jacq C, Johnston M (1996) Life with 6000 genes. Science 274:546–567

    Article  CAS  PubMed  Google Scholar 

  • Gohlke S, Heine D, Schmitz HP, Merzendorfer H (2018) Septin-associated protein kinase Gin4 affects localization and phosphorylation of Chs4, the regulatory subunit of the Baker’s yeast chitin synthase III complex. Fungal Genet Biol 117:11–20

    Article  CAS  PubMed  Google Scholar 

  • Gohlke S, Muthukrishnan S, Merzendorfer H (2017) In vitro and in vivo studies on the structural organization of Chs3 from Saccharomyces cerevisiae. Int J Mol Sci 18 pii:E702

    Article  CAS  Google Scholar 

  • Goldberg WM (1978) Chemical changes accompanying maturation of the connective tissue skeletons of gorgonian and antipatharian corals. Marine Biol 49:203–210

    Article  CAS  Google Scholar 

  • Gonçalves IR, Brouillet S, Soulié MC, Gribaldo S, Sirven C, Charron N, Boccara M, Choquer M (2016) Genome-wide analyses of chitin synthases identify horizontal gene transfers towards bacteria and allow a robust and unifying classification into fungi. BMC Evol Biol 16:252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottfert M, Hitz S, Hennecke H (1990) Identification of nodS and nodU, two inducible genes inserted between the Bradyrhizobium japonicum nodYABC and nodIJ genes. Mol Plant Microbe Interact 3:308–316

    Article  CAS  PubMed  Google Scholar 

  • Gow NA, Latge JP, Munro CA (2017) The fungal cell wall: structure, biosynthesis, and function. Microbiol Spectr 5. https://doi.org/10.1128/microbiolspec.funk-0035-2016

  • Gowri N, Sundara-Rajulu G, Aruchami M (1982) Presence of gamma-chitin in the peritrophic membrane of tunicates. In: Hirano S, Tokura S (eds) Second international conference on chitin and chitosan, Tottoni, Japan, 1982. J Eukaryot Microbiol, pp 77–81

    Google Scholar 

  • Greco N, Bussers JC, Van Daele Y, Goffinet G (1990) Ultrastructural localization of chitin in the cystic wall of Euplotes muscicola Kahl (Ciliata, Hypotrichia). Eur J Protistol 26:75–80

    Article  CAS  PubMed  Google Scholar 

  • Hegedus D, Erlandson M, Gillott C, Toprak U (2009) New insights into peritrophic matrix synthesis, architecture, and function. Ann Rev Entomol 54:285–302

    Article  CAS  Google Scholar 

  • Herrera-Estrella A, Chet I (1999) Chitinases in biological control. EXS 87:171–184

    CAS  PubMed  Google Scholar 

  • Herth W (1978) A special chitin-fibril-synthesizing apparatus in the centric diatom Cyclotella. Naturwissenschaften 65:260–261

    Article  CAS  Google Scholar 

  • Herth W (1980) Calcofluor white and Congo red inhibit chitin microfibril assembly of Poterioochromonas: evidence for a gap between polymerization and microfibril formation. J Cell Biol 87:442–450

    Article  CAS  PubMed  Google Scholar 

  • Herth W, Kuppel A, Schnepf E (1977) Chitinous fibrils in the lorica of the flagellate chrysophyte Poteriochromonas stipitata (syn. Ochromonas malhamensis). J Cell Biol 73:311–321

    Article  CAS  PubMed  Google Scholar 

  • Herth W, Zugenmaier P (1977) Ultrastructure of the chitin fibrils of the centric diatom Cyclotella cryptica. J Ultrastruct Res 61:230–239

    Article  CAS  PubMed  Google Scholar 

  • Horiuchi H (2009) Functional diversity of chitin synthases of Aspergillus nidulans in hyphal growth, conidiophore development and septum formation. Med Mycol 47(Suppl 1):S47–S52

    Article  CAS  PubMed  Google Scholar 

  • Jabbouri S, Fellay R, Talmont F, Kamalaprija P, Burger U, Relic B, Prome JC, Broughton WJ (1995) Involvement of nodS in N-methylation and nodU in 6-O-carbamoylation of Rhizobium sp. NGR234 nod factors. J Biol Chem 270:22968–22973

    Article  CAS  PubMed  Google Scholar 

  • John M, Röhrig H, Schmidt J, Wieneke U, Schell J (1993) Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Procd Natl Acad Sci USA 90:625–629

    Article  CAS  Google Scholar 

  • Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee B, Newport G, Thorstenson YR, Agabian N, Magee P (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 101:7329–7334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kameda T, Miyazawa M, Ono H, Yoshida M (2005) Hydrogen bonding structure and stability of alpha-chitin studied by 13C solid-state NMR. Macromol Biosci 5:103–106

    Article  CAS  PubMed  Google Scholar 

  • Kamst E, Pilling J, Raamsdonk LM, Lugtenberg BJ, Spaink HP (1997) Rhizobium nodulation protein NodC is an important determinant of chitin oligosaccharide chain length in Nod factor biosynthesis. J Bacteriol 179:2103–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamst E, van der Drift KM, Thomas-Oates JE, Lugtenberg BJ, Spaink HP (1995) Mass spectrometric analysis of chitin oligosaccharides produced by Rhizobium NodC protein in Escherichia coli. J Bacteriol 177:6282–6285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapaun E, Reisser W (1995) A chitin-like glycan in the cell wall of a Chlorella sp. (Chlorococcales, Chlorophyceae). Planta 197:577–582

    Article  CAS  Google Scholar 

  • Kawasaki T, Tanaka M, Fujie M, Usami S, Sakai K, Yamada T (2002) Chitin synthesis in chlorovirus CVK2-infected chlorella cells. Virology 302:123–131

    Article  CAS  PubMed  Google Scholar 

  • Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 365(1541):729–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly S, Radutoiu S, Stougaard J (2017) Legume LysM receptors mediate symbiotic and pathogenic signalling. Curr Opin Plant Biol 39:152–158

    Article  CAS  PubMed  Google Scholar 

  • Kneipp LF, Andrade AF, de Souza W, Angluster J, Alviano CS, Travassos LR (1998) Trichomonas vaginalis and Tritrichomonas foetus: Expression of chitin at the cell surface. Exp Parasitol 89:195–204

    Article  CAS  PubMed  Google Scholar 

  • Lam KK, Davey M, Sun B, Roth AF, Davis NG, Conibear E (2006) Palmitoylation by the DHHC protein Pfa4 regulates the ER exit of Chs3. J Cell Biol 174:19–25

    Google Scholar 

  • Landers SC (1991) Secretion of the reproductive cyst wall by the apostome ciliate Hyalophysa chattoni. Eur J Parasitol 27:160–167

    CAS  Google Scholar 

  • Latgé JP (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290

    Article  CAS  PubMed  Google Scholar 

  • Lewin A, Cervantes E, Chee-Hoong W, Broughton WJ (1990) nodSU, two new nod genes of the broad host range Rhizobium strain NGR234 encode host-specific nodulation of the tropical tree Leucaena leucocephala. 3:317–326

    CAS  Google Scholar 

  • Li M, Jiang C, Wang Q, Zhao Z, Jin Q, Xu JR, Liu H (2016) Evolution and functional insights of different ancestral orthologous clades of chitin synthase genes in the fungal tree of life. Front Plant Sci 7:37

    PubMed  PubMed Central  Google Scholar 

  • Lindsay GJ, Gooday GW (1985) Action of chitinase on spines of the diatom Thalassiosira fluviatilis. Carbohydr Polym 5:131–140

    Article  CAS  Google Scholar 

  • Liu R, Xu C, Zhang Q, Wang S, Fang W (2017) Evolution of the chitin synthase gene family correlates with fungal morphogenesis and adaption to ecological niches. Sci Rep 7:44527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loiseau PM, Bories C, Sanon A (2002) The chitinase system from Trichomonas vaginalis as a potential target for antimicrobial therapy of urogenital trichomoniasis. Biomed Pharmacother 56:503–510

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Lara IM, Geiger O (2001) The nodulation protein NodG shows the enzymatic activity of an 3-oxoacyl-acyl carrier protein reductase. Mol Plant Microbe Interact 14:349–357

    Article  CAS  PubMed  Google Scholar 

  • Lynn D (2008) The ciliated protozoa: Characterization, classification and guide to the literature, 3rd edn. Springer, Dordrecht, p 605

    Google Scholar 

  • Mandel MA, Galgiani JN, Kroken S, Orbach MJ (2006) Coccidioides posadasii contains single chitin synthase genes corresponding to classes I to VII. Fungal Genet Biol 43:775–788

    Article  CAS  PubMed  Google Scholar 

  • Manning P, Erlandsen SL, Jarroll EL (1992) Carbohydrate and amino acid analyses of Giardia muris cysts. J Protozool 39:290–296

    Article  CAS  PubMed  Google Scholar 

  • McLachlan J, McInnes A, Falk M (1965) Studies on the chitan (chitin: poly-N-acetylglucosamine) fibers of the diatom Thalassiosira fluviatilis Hustedt: I. Production and isolation of chitan fibers. Can J Bot 43:707–713

    Article  CAS  Google Scholar 

  • Mendoza L, Taylor JW, Ajello L (2002) The class mesomycetozoea: a heterogeneous group of microorganisms at the animal-fungal boundary. Ann Rev Microbiol 56:315–344

    Article  CAS  Google Scholar 

  • Merzendorfer H (2011) The cellular basis of chitin synthesis in fungi and insects: common principles and differences. Eur J Cell Biol 90:759–769

    Article  CAS  PubMed  Google Scholar 

  • Meyer MF, Kreil G (1996) Cells expressing the DG42 gene from early Xenopus embryos synthesize hyaluronan. Proc Natl Acad Sci USA 93:4543–4547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA 104:19613–19618

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammed Ali AM, Kawasaki T, Yamada T (2005) Genetic rearrangements on the Chlorovirus genome that switch between hyaluronan synthesis and chitin synthesis. Virology 342:102–110

    Article  CAS  PubMed  Google Scholar 

  • Morgan JL, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493(7431):181–186

    Article  CAS  PubMed  Google Scholar 

  • Morin LG, Smucker RA, Herth W (1986) Effects of two chitin synthesis inhibitors on Thalassiosira fluviatilis and Cyclotella cryptica. FEMS Microbiol Lett 37:263–268

    Article  CAS  Google Scholar 

  • Mulisch M, Harry O, Patterson D, Wyatt C (1986) Folliculinids (Ciliata: Heterotrichida) from Portaferry, Co., Down, including a new species of Metafolliculina Dons, 1924. Ir Nat J 22:1–7

    Google Scholar 

  • Mulisch M, Hausmann K (1983) Lorica Construction in Eufolliculina sp. (Ciliophora, Heterotrichida). J Protozool 30:97–104

    Article  Google Scholar 

  • Mulisch M, Hausmann K (1989) Localization of chitin on ultrathin sections of cysts of two ciliated protozoa, Blepharisma undulans and Pseudomicrothorax dubius, using colloidal gold conjugated wheat germ agglutinin. Protoplasma 152:77–86

    Article  Google Scholar 

  • Mulisch M, Herth W, Zugenmaier P, Hausmann K (1983) Chitin fibrils in the lorica of the ciliate Eufolliculina uhligi: ultrastructure, extracellular assembly and experimental inhibition. Biol Cell 49:169–177

    Google Scholar 

  • Munro CA, Gow NAR (2001) Chitin synthesis in human pathogenic fungi. Med Mycol 39:41–53

    Article  CAS  PubMed  Google Scholar 

  • Muthukrishnan S, Merzendorfer H, Arakane Y, Kramer KJ (2012) Chitin Metabolism in Insects. In: Gilbert LI (ed) Insect Biochemistry and Molecular Biology. Elsevier, San Diego, pp 193–253

    Chapter  Google Scholar 

  • Muzzarelli RAA (1977) Chitin. Pergamon Press, Oxford

    Google Scholar 

  • Muzzey D, Schwartz K, Weissman JS, Sherlock G (2013) Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure. Genome Biol 14:1

    Article  CAS  Google Scholar 

  • Nagahashi S, Sudoh M, Ono N, Sawada R, Yamaguchi E, Uchida Y, Mio T, Takagi M, Arisawa M, Yamada-Okabe H (1995) Characterization of chitin synthase 2 of Saccharomyces cerevisiae. Implication of two highly conserved domains as possible catalytic sites. J Biol Chem 270:13961–13967

    Article  CAS  PubMed  Google Scholar 

  • Nakamura CV, Esteves MJ, Andrade AF, Alviano CS, de Souza W, Angluster J (1993) Chitin: a cell-surface component of Phytomonas francai. Parasitol Res 79:523–526

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TV, Wibberg D, Battenberg K, Blom J, Vanden Heuvel B, Berry AM, Kalinowski J, Pawlowski K (2016) An assemblage of Frankia Cluster II strains from California contains the canonical nod genes and also the sulfotransferase gene nodH. BMC Genom 17:796

    Article  CAS  Google Scholar 

  • Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151

    Article  CAS  PubMed  Google Scholar 

  • Nino-Vega G, Carrero L, San-Blas G (2004) Isolation of the CHS4 gene of Paracoccidioides brasiliensis and its accommodation in a new class of chitin synthases. Med Mycol 42:51–57

    Article  CAS  PubMed  Google Scholar 

  • Odenbach D, Thines E, Anke H, Foster AJ (2009) The Magnaporthe grisea class VII chitin synthase is required for normal appressorial development and function. Mol Plant Pathol 10:81–94

    Article  CAS  PubMed  Google Scholar 

  • Orlean P (2012) Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192:775–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega-Barria E, Ward HD, Evans JE, Pereira ME (1990) N-Acetyl-glucosamine is present in cysts and trophozoites of Giardia lamblia and serves as receptor for wheatgerm agglutinin. Mol Biochem Parasitol 43:151–165

    Article  CAS  PubMed  Google Scholar 

  • Pacheco-Arjona JR, Ramirez-Prado JH (2014) Large-scale phylogenetic classification of fungal chitin synthases and identification of a putative cell-wall metabolism gene cluster in Aspergillus genomes. PLoS ONE 9:e104920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson D (1989a) Stramenopiles: chromophytes from a protistan perspective. Chromophyte Algae Probl Perspect 357–379

    Google Scholar 

  • Patterson D (1989b) Stramenopiles: chromophytes from a protistological perspective. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae: problems and perspectives. Clarendon Press, Oxford, pp 357–379

    Google Scholar 

  • Pearlmutter NL, Lembi CA (1978) Localization of chitin in algal and fungal cell walls by light and electron microscopy. J Histochem Cytochem 26:782–791

    Article  CAS  PubMed  Google Scholar 

  • Peck MC, Fisher RF, Long SR (2006) Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J Bacteriol 188:5417–5427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peter MG (2005) Chitin and chitosan in fungi. Biopolymers 6:123–157

    Google Scholar 

  • Peters W (1966) Chitin in tunicata. EXS 22:820–821

    Google Scholar 

  • Peters W, Latka I (1986) Electron microscopic localization of chitin using colloidal gold labelled with wheat germ agglutinin. Histochem 84:155–160

    Article  CAS  Google Scholar 

  • Philippsen P, Kleine K, Pöhlmann R, Düsterhöft A, Hamberg K, Hegemann JH, Obermaier B, Urrestarazu L, Aert R, Albermann K (1997) The nucleotide sequence of Saccharomyces cerevisiae chromosome XIV and its evolutionary implications. Nature 387:93–98

    CAS  PubMed  Google Scholar 

  • Picken LE, Lotmar W (1950) Oriented protein in chitinous structures. Nature 165:599–600

    Article  CAS  PubMed  Google Scholar 

  • Pineda E, Perdomo D (2017) Entamoeba histolytica under oxidative stress: What countermeasure mechanisms are in place? Cells 6:44

    Article  CAS  PubMed Central  Google Scholar 

  • Poinsot V, Crook MB, Erdn S, Maillet F, Bascaules A, Ane JM (2016) New insights into Nod factor biosynthesis: Analyses of chitooligomers and lipo-chitooligomers of Rhizobium sp. IRBG74 mutants. Carbohydr Res 434:83–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pringle JR (1991) Staining of bud scars and other cell wall chitin with Calcofluor. Methods Enzymol 194:732–735

    Article  CAS  PubMed  Google Scholar 

  • Quesada-Vincens D, Fellay R, Nasim T, Viprey V, Burger U, Prome JC, Broughton WJ, Jabbouri S (1997) Rhizobium sp. strain NGR234 NodZ protein is a fucosyltransferase. J Bacteriol 179:5087–5093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinto C, Wijfjes AH, Bloemberg GV, Blok-Tip L, Lopez-Lara IM, Lugtenberg BJ, Thomas-Oates JE, Spaink HP (1997) Bacterial nodulation protein NodZ is a chitin oligosaccharide fucosyltransferase which can also recognize related substrates of animal origin. Proc Natl Acad Sci USA 94:4336–4341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman MA, Halfar J (2014) First evidence of chitin in calcified coralline algae: new insights into the calcification process of Clathromorphum compactum. Sci Rep 4:6162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Repak AJ, Anderson OR (1990) The fine structure of the encysting salt marsh heterotrich ciliate Fabrea salina. J Morphol 205:335–341

    Article  PubMed  Google Scholar 

  • Rieder N (1973) Elektronenoptische und histochemische Untersuchungen an der Cystenhülle von Didinium nasutum OF Müller (Ciliata, Holotricha). Arch Protistenk 115:125–131

    CAS  Google Scholar 

  • Rivilla R, Sutton JM, Downie JA (1995) Rhizobium leguminosarum NodT is related to a family of outer-membrane transport proteins that includes TolC, PrtF, CyaE and AprF. Gene 161:27–31

    Article  CAS  PubMed  Google Scholar 

  • Roche P, Debelle F, Maillet F, Lerouge P, Faucher C, Truchet G, Denarie J, Prome JC (1991) Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell 67:1131–1143

    Article  CAS  PubMed  Google Scholar 

  • Rodpothong P, Sullivan JT, Songsrirote K, Sumpton D, Cheung KW, Thomas-Oates J, Radutoiu S, Stougaard J, Ronson CW (2009) Nodulation gene mutants of Mesorhizobium loti R7A-nodZ and nolL mutants have host-specific phenotypes on Lotus spp. Mol Plant Microbe Interact 22:1546–1554

    Article  CAS  PubMed  Google Scholar 

  • Roncero C (2002) The genetic complexity of chitin synthesis in fungi. Curr Genet 41:367–378

    Article  CAS  PubMed  Google Scholar 

  • Rudall KM, Kenchington W (1973) The chitin system. Biol Rev 48:597–633

    Article  CAS  Google Scholar 

  • Ruiz-Herrera J, Gonzalez-Prieto JM, Ruiz-Medrano R (2002) Evolution and phylogenetic relationships of chitin synthases from yeasts and fungi. FEMS Yeast Res 1:247–256

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Herrera J, Ortiz-Castellanos L (2010) Analysis of the phylogenetic relationships and evolution of the cell walls from yeasts and fungi. FEMS Yeast Res 10:225–243

    Article  CAS  PubMed  Google Scholar 

  • Sachs IB (1956) The chemical nature of the cyst membrane of Pelomyxa illinoisensis. Trans Am Microsc Soc 75:307–313

    Article  Google Scholar 

  • Sacristan C, Reyes A, Roncero C (2012) Neck compartmentalization as the molecular basis for the different endocytic behaviour of Chs3 during budding or hyperpolarized growth in yeast cells. Mol Microbiol 83:1124–1135

    Article  CAS  PubMed  Google Scholar 

  • Saffo MB, Fultz S (1986) Chitin in the symbiotic protist Nephromyces. Can J Bot 64:1306–1310

    Article  CAS  Google Scholar 

  • Said DE, Elsamad LM, Gohar YM (2012) Validity of silver, chitosan, and curcumin nanoparticles as anti-Giardia agents. Parasitol Res 111:545–554

    Article  CAS  PubMed  Google Scholar 

  • Samuelson J, Bushkin GG, Chatterjee A, Robbins PW (2013) Strategies to discover the structural components of cyst and oocyst walls. Eukaryot Cell 12:1578–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchatjate S, Schekman R (2006) Chs5/6 complex: a multiprotein complex that interacts with and conveys chitin synthase III from the trans-Golgi network to the cell surface. Mol Biol Cell 17:4157–4166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sannasi A, Hermann HR (1970) Chitin in the cephalochordata, Branchisotoma floridae. EXS 26:351–352

    CAS  Google Scholar 

  • Sarita S, Sharma PK, Priefer UB, Prell J (2005) Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 54:1–11

    Article  CAS  PubMed  Google Scholar 

  • Schermuly G, Markmann-Mulish U, Mulisch M (1996) In vitro studies of the pathway of chitin synthesis in the ciliated protozoon Eufolliculina uhligi. In: Domard A, Jeuniaux C, Muzzarelli RAA, Roberts G (eds) Advances in chitin science. Jaques Anrés, Lyon, pp 10–17

    Google Scholar 

  • Scheu AK, Economou A, Hong GF, Ghelani S, Johnston AW, Downie JA (1992) Secretion of the Rhizobium leguminosarum nodulation protein NodO by haemolysin-type systems. Mol Microbiol 6:231–238

    Article  CAS  PubMed  Google Scholar 

  • Schmid J, Sieber V, Rehm B (2015) Bacterial exopolysaccharides: Biosynthesis pathways and engineering strategies. Front Microbiol 6:496

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuster M, Treitschke S, Kilaru S, Molloy J, Harmer NJ, Steinberg G (2012) Myosin-5, kinesin-1 and myosin-17 cooperate in secretion of fungal chitin synthase. EMBO J 31:214–227

    Google Scholar 

  • Schwelm A, Fogelqvist J, Knaust A, Jülke S, Lilja T, Bonilla-Rosso G, Karlsson M, Shevchenko A, Dhandapani V, Choi SR (2015) The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases. Sci Rep 5:11153

    Article  PubMed  PubMed Central  Google Scholar 

  • Seider K, Heyken A, Lüttich A, Miramón P, Hube B (2010) Interaction of pathogenic yeasts with phagocytes: survival, persistence and escape. Curr Opin Mircobiol 13:392–400

    Article  CAS  Google Scholar 

  • Semino CE, Allende ML (2000) Chitin oligosaccharides as candidate patterning agents in zebrafish embryogenesis. Int J Dev Biol 44:183–193

    CAS  PubMed  Google Scholar 

  • Semino CE, Robbins PW (1995) Synthesis of “Nod”-like chitin oligosaccharides by the Xenopus developmental protein DG42. Proc Natl Acad Sci U S A 92:3498–3501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semino CE, Specht CA, Raimondi A, Robbins PW (1996) Homologs of the Xenopus developmental gene DG42 are present in zebrafish and mouse and are involved in the synthesis of Nod-like chitin oligosaccharides during early embryogenesis. Proc Natl Acad Sci USA 93:4548–4553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pv Sengbusch, Müller U (1983) Distribution of glycoconjugates at algal cell surfaces as monitored by FITC-conjugated lectins. Studies on selected species from Cyanophyta, Pyrrhophyta, Raphidophyta, Euglenophyta, Chromophyta, and Chlorophyta. Protoplasma 114:103–113

    Google Scholar 

  • Shillito B, Lechaire JP, Childress J, Gaill F (1997) Diffraction contrast imaging of extracellular matrix components using zero-loss filtering. J Struct Biol 120:85–92

    Article  CAS  PubMed  Google Scholar 

  • Shinya T, Nakagawa T, Kaku H, Shibuya N (2015) Chitin-mediated plant–fungal interactions: catching, hiding and handshaking. Curr Opin Plant Biol 26:64–71

    Google Scholar 

  • Shiro S, Kuranaga C, Yamamoto A, Sameshima-Saito R, Saeki Y (2016) Temperature-dependent expression of nodc and community structure of soybean-nodulating Bradyrhizobia. Microbes Environ 31:27–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Small EB, Lynn DH (1981) A new macrosystem for the phylum Ciliophora doflein, 1901. Biosystems 14:387–401

    Article  CAS  PubMed  Google Scholar 

  • Spaink HP, Carlson RW (1996) Regulation of plant morphogenesis by Lipo-Chitin oligosaccharides. Crit Rev Plant Sci 15:559–582

    CAS  Google Scholar 

  • Spaink HP, Wijfjes AH, Lugtenberg BJ (1995) Rhizobium NodI and NodJ proteins play a role in the efficiency of secretion of lipochitin oligosaccharides. J Bacteriol 177:6276–6281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stacey G, Luka S, Sanjuan J, Banfalvi Z, Nieuwkoop AJ, Chun JY, Forsberg LS, Carlson R (1994) nodZ, a unique host-specific nodulation gene, is involved in the fucosylation of the lipooligosaccharide nodulation signal of Bradyrhizobium japonicum. J Bacteriol 176:620–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stegemann H (1963) Protein (conchagen) and chitin in the supporting tissue of the cuttlefish. Hoppe Seylers Z Physiol Chem 331:269–279

    Article  CAS  PubMed  Google Scholar 

  • Stern R (2017) Go fly a chitin: the mystery of chitin and chitinases in vertebrate tissues. Front Biosci (Landmark Ed) 22:580–595

    Article  CAS  Google Scholar 

  • Sudoh M, Nagahashi S, Doi M, Ohta A, Takagi M, Arisawa M (1993) Cloning of the chitin synthase 3 gene from Candida albicans and its expression during yeast-hyphal transition. Mol Gen Genet 241 (3–4):351-358

    Google Scholar 

  • Sutton JM, Lea EJ, Downie JA (1994) The nodulation-signaling protein NodO from Rhizobium leguminosarum biovar viciae forms ion channels in membranes. Proc Natl Acad Sci USA 91:9990–9994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tada R, Latge JP, Aimanianda V (2013) Undressing the fungal cell wall/cell membrane-the antifungal drug targets. Curr Pharm Des 19:3738–3747

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    Article  CAS  PubMed  Google Scholar 

  • Tang WJ, Fernandez J, Sohn JJ, Amemiya CT (2015) Chitin is endogenously produced in vertebrates. Curr Biol 25:897–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teh EM, Chai CC, Yeong FM (2009) Retention of Chs2p in the ER requires N-terminal CDK1-phosphorylation sites. Cell Cycle 8:2964–2974

    Article  PubMed  Google Scholar 

  • Tesson B, Masse S, Laurent G, Maquet J, Livage J, Martin-Jézéquel V, Coradin T (2008) Contribution of multi-nuclear solid state NMR to the characterization of the Thalassiosira pseudonana diatom cell wall. Anal Bioanal Chem 390:1889–1898

    Article  CAS  PubMed  Google Scholar 

  • Tilic E, Bartolomaeus T (2016) Structure, function and cell dynamics during chaetogenesis of abdominal uncini in Sabellaria alveolata (Sabellariidae, Annelida). Zoological Lett 2:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Trilla JA, Duran A, Roncero C (1999) Chs7p, a new protein involved in the control of protein export from the endoplasmic reticulum that is specifically engaged in the regulation of chitin synthesis in Saccharomyces cerevisiae. J Cell Biol 145:1153–1163

    Google Scholar 

  • Tsuizaki M, Takeshita N, Ohta A, Horiuchi H (2009) Myosin motor-like domain of the class VI chitin synthase CsmB is essential to its functions in Aspergillus nidulans. Biosci Biotechnol Biochem 73:1163–1167

    Google Scholar 

  • van Dellen KL, Chatterjee A, Ratner DM, Magnelli PE, Cipollo JF, Steffen M, Robbins PW, Samuelson J (2006) Unique posttranslational modifications of chitin-binding lectins of Entamoeba invadens cyst walls. Eukaryot Cell 5:836–848

    Google Scholar 

  • van het Hoog M, Rast TJ, Martchenko M, Grindle S, Dignard D, Hogues H, Cuomo C, Berriman M, Scherer S, Magee B (2007) Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes. Genome Biol 8:R52

    Article  CAS  Google Scholar 

  • Varki A (1996) Does DG42 synthesize hyaluronan or chitin?: A controversy about oligosaccharides in vertebrate development. Proc Natl Acad Sci USA 93:4523–4525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez M, Santana O, Quinto C (1993) The NodL and NodJ proteins from Rhizobium and Bradyrhizobium strains are similar to capsular polysaccharide secretion proteins from gram-negative bacteria. Mol Microbiol 8:369–377

    Article  CAS  PubMed  Google Scholar 

  • Wagner GP (1994) Evolution and multi-functionality of the chitin system. EXS 69:559–577

    CAS  PubMed  Google Scholar 

  • Wagner GP, Lo J, Laine R, Almeder M (1993) Chitin in the epidermal cuticle of a vertebrate (Paralipophrys trigloides, Blenniidae, Teleostei). EXS 49:317–319

    CAS  Google Scholar 

  • Wang D, Yang S, Tang F, Zhu H (2012) Symbiosis specificity in the legume: rhizobial mutualism. Cell Microbiol 14:334–342

    Article  CAS  PubMed  Google Scholar 

  • Ward HD, Alroy J, Lev BI, Keusch GT, Pereira ME (1985) Identification of chitin as a structural component of Giardia cysts. Infect Immun 49:629–634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss IM, Schonitzer V (2006) The distribution of chitin in larval shells of the bivalve mollusk Mytilus galloprovincialis. J Struct Biol 153:264–277

    Article  CAS  PubMed  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871

    Article  CAS  PubMed  Google Scholar 

  • Yabe T, Yamada-Okabe T, Nakajima T, Sudoh M, Arisawa M, Yamada-Okabe H (1998) Mutational analysis of chitin synthase 2 of Saccharomyces cerevisiae. Identification of additional amino acid residues involved in its catalytic activity. Eur J Biochem 258:941–947

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Onimatsu H, Van Etten JL (2006) Chlorella viruses. Adv Virus Res 66:293–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan H, Xie JB, Ji ZJ, Yuan N, Tian CF, Ji SK, Wu ZY, Zhong L, Chen WX, Du ZL, Wang ET, Chen WF (2017) Evolutionarily conserved nodE, nodO, T1SS, and hydrogenase system in Rhizobia of Astragalus membranaceus and Caragana intermedia. Front Microbiol 8:2282

    Article  PubMed  PubMed Central  Google Scholar 

  • Zakrzewski AC, Weigert A, Helm C, Adamski M, Adamska M, Bleidorn C, Raible F, Hausen H (2014) Early divergence, broad distribution, and high diversity of animal chitin synthases. Genome Biol Evol 6:316–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Dong W, Sun J, Feng F, Deng Y, He Z, Oldroyd GE, Wang E (2015) The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. Plant J 81:258–267

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Foster JM, Nelson LS, Ma D, Carlow CK (2005) The chitin synthase genes chs-1 and chs-2 are essential for C. elegans development and responsible for chitin deposition in the eggshell and pharynx, respectively. Dev Biol 285:330–339

    Article  CAS  PubMed  Google Scholar 

  • Zhu KY, Merzendorfer H, Zhang W, Zhang J, Muthukrishnan S (2016) Biosynthesis, turnover, and functions of chitin in insects. Annu Rev Entomol 61:177–196

    Article  CAS  PubMed  Google Scholar 

  • Ziman M, Chuang JS, Schekman RW (1996) Chs1p and Chs3p, two proteins involved in chitin synthesis, populate a compartment of the Saccharomyces cerevisiae endocytic pathway. Mol Biol Cell 7:1909–1919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimoch L, Merzendorfer H (2002) Immunolocalization of chitin synthase in the tobacco hornworm. Cell Tissue Res 308:287–297

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Merzendorfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steinfeld, L., Vafaei, A., Rösner, J., Merzendorfer, H. (2019). Chitin Prevalence and Function in Bacteria, Fungi and Protists. In: Yang, Q., Fukamizo, T. (eds) Targeting Chitin-containing Organisms. Advances in Experimental Medicine and Biology, vol 1142. Springer, Singapore. https://doi.org/10.1007/978-981-13-7318-3_3

Download citation

Publish with us

Policies and ethics