Skip to main content

Chitin/Chitosan-Active Enzymes Involved in Plant–Microbe Interactions

  • Chapter
  • First Online:
Targeting Chitin-containing Organisms

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1142))

Abstract

Plant chitinase hydrolyzing β-1,4-glycosidic linkages of chitin are major enzymes acting in plant–microbe interactions and are involved in self-defense against fungal pathogens. Chitosanases from soil bacteria are also involved in plant defense by hydrolyzing chitosan components of the fungal cell wall. The crystal structures of these enzymes in complex with their substrates have been solved, and the mechanisms of substrate binding were elucidated at the atomic level. These findings enabled us to speculate on the enzyme targets under physiological conditions, leading us to define the physiological roles of the enzymes. The structures and functions of chitin/chitosan-binding modules appended to modular chitinases/chitosanases were analyzed by NMR and isothermal titration calorimetry (ITC), and the enzymes were found to form an appropriate modular organization to fulfill their roles in plant–microbe interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GlcNAc:

2-acetamido-2-deoxy-D-glucopyranose

(GlcNAc)n:

β-1,4-linked oligosaccharide of GlcNAc with a polymerization degree of n

GlcN:

2-amino-2-deoxy-D-glucopyranose

(GlcN)n:

β-1,4-linked oligosaccharide of GlcN with a polymerization degree of n

ITC:

isothermal titration calorimetry

NMR:

nuclear magnetic resonance

References

  • Amon P, Haas E, Sumper M (1998) The sex-inducing pheromone and wounding trigger the same set of genes in the multicellular green alga Volvox. Plant Cell 10:781–789

    Article  CAS  Google Scholar 

  • Andersen MD, Jensen A, Robertus JD, Leah R, Skriver K (1997) Heterologous expression and characterization of wild-type and mutant forms of a 26 kDa endochitinase from barley (Hordeum vulgare L.). Biochem J 322:815–822

    Article  CAS  Google Scholar 

  • Arakane Y, Taira T, Ohnuma T, Fukamizo T (2012) Chitin-related enzymes in agro-biosciences. Curr Drug Targets 13:442–470

    Article  CAS  Google Scholar 

  • Armenta S, Moreno-Mendieta S, Sánchez-Cuapio Z, Sánchez S, Rodríguez-Sanoja R (2017) Advances in molecular engineering of carbohydrate-binding modules. Proteins 85:1602–1617

    Article  CAS  Google Scholar 

  • Baker LG, Specht CA, Donlin MJ, Lodge JK (2007) Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot Cell 6:855–867

    Article  CAS  Google Scholar 

  • Bokma E, Rozeboom HJ, Sibbald M, Dijkstra BW, Beintema JJ (2002) Expression and characterization of active site mutants of hevamine, a chitinase from the rubber tree Hevea brasiliensis. Eur J Biochem 269:893–901

    Article  CAS  Google Scholar 

  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781

    Article  CAS  Google Scholar 

  • Boucher I, Fukamizo T, Honda Y, Willick GE, Neugebauer WA, Brzezinski R (1995) Site-directed mutagenesis of evolutionary conserved carboxylic amino acids in the chitosanase from Streptomyces sp. N174 reveals two residues essential for catalysis. J Biol Chem 270:31077–31082

    Article  CAS  Google Scholar 

  • Broekaert WF, Mariën W, Terras FR, De Bolle MF, Proost P, Van Damme J, Dillen L, Claeys M, Rees SB, Vanderleyden J et al (1992) Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry 31:4308–4314

    Article  CAS  Google Scholar 

  • Brogue K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197

    Article  CAS  Google Scholar 

  • Davies GJ, Wilson KS, Henrissat B (1997) Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321:557–559

    Article  CAS  Google Scholar 

  • Davis LL, Bartnicki-Garcia S (1984) Chitosan synthesis by the tandem action of chitin synthetase and chitin deacetylase from Mucor rouxii. Biochemistry 23:1065–1073

    Article  CAS  Google Scholar 

  • Desaki Y, Miyata K, Suzuki M, Shibuya N, Kaku H (2018) Plant immunity and symbiosis signaling mediated by LysM receptors. Innate Immun 24:92–100

    Article  CAS  Google Scholar 

  • El Hadrami A, Adam LR, El Hadrami I, Daayf F (2010) Chitosan in plant protection. Mar Drugs 8:968–987

    Article  Google Scholar 

  • Fukamizo T, Honda Y, Goto S, Boucher I, Brzezinski R (1995) Reaction mechanism of chitosanase from Streptomyces sp. N174. Biochem J 311:377–383

    Article  CAS  Google Scholar 

  • Fukamizo T, Juffer AH, Vogel HJ, Honda Y, Tremblay H, Boucher I, Neugebauer WA, Brzezinski R (2000) Theoretical calculation of pKa reveals an important role of Arg205 in the activity and stability of Streptomyces sp. N174 chitosanase. J Biol Chem 275:25633–25640

    Article  CAS  Google Scholar 

  • Goormachtig S, Lievens S, Van de Velde W, Van Montagu M, Holsters M (1998) Srchi13, a novel early nodulin from Sesbania rostrata, is related to acidic class III chitinases. Plant Cell. 10:905–915

    Article  CAS  Google Scholar 

  • Hart PJ, Monzingo AF, Ready MP, Ernst SR, Robertus JD (1993) Crystal structure of an endochitinase from Hordeum vulgare L. seeds. J Mol Biol 229:189–193

    Article  CAS  Google Scholar 

  • Inamine S, Onaga S, Ohnuma T, Fukamizo T, Taira T (2015) Purification, cDNA cloning, and characterization of LysM-containing plant chitinase from horsetail (Equisetum arvense). Biosci Biotechnol Biochem 79:1296–1304

    Article  CAS  Google Scholar 

  • Jiménez-Barbero J, Javier Cañada F, Asensio JL, Aboitiz N, Vidal P, Canales A, Groves P, Gabius HJ, Siebert HC (2006) Hevein domains: an attractive model to study carbohydrate-protein interactions at atomic resolution. Adv Carbohydr Chem Biochem 60:303–354

    Article  Google Scholar 

  • Kasprzewska A (2003) Plant chitinases–regulation and function. Cell Mol Biol Lett 8:809–824

    CAS  PubMed  Google Scholar 

  • Katsumi T, Lacombe-Harvey ME, Tremblay H, Brzezinski R, Fukamizo T (2005) Role of acidic amino acid residues in chitooligosaccharide-binding to Streptomyces sp. N174 chitosanase. Biochem Biophys Res Commun 338:1839–1844

    Article  CAS  Google Scholar 

  • Kezuka Y, Kojima M, Mizuno R, Suzuki K, Watanabe T, Nonaka T (2010) Structure of full-length class I chitinase from rice revealed by X-ray crystallography and small-angle X-ray scattering. Proteins 78:2295–2305

    Article  CAS  Google Scholar 

  • Kitaoku Y, Fukamizo T, Numata T, Ohnuma T (2017) Chitin oligosaccharide binding to the lysin motif of a novel type of chitinase from the multicellular green alga, Volvox carteri. Plant Mol Biol 93:97–108

    Article  CAS  Google Scholar 

  • Kitaoku Y, Nishimura S, Hirono T, Suginta W, Ohnuma T, Fukamizo T. (2019) Structures and chitin binding properties of two N-terminal lysin motifs (LysMs) found in a chitinase from Volvox carteri. Glycobiology, in press

    Google Scholar 

  • Lacombe-Harvey ME, Fukamizo T, Gagnon J, Ghinet MG, Dennhart N, Letzel T, Brzezinski R (2009) Accessory active site residues of Streptomyces sp. N174 chitosanase: variations on a common theme in the lysozyme superfamily. FEBS J 276:857–869

    Article  CAS  Google Scholar 

  • Kovrigin EL (2012) NMR line shapes and multi-state binding equilibria. J Biomol NMR 53:257–270

    Article  CAS  Google Scholar 

  • Lacombe-Harvey MÈ, Fortin M, Ohnuma T, Fukamizo T, Letzel T, Brzezinski R (2013) A highly conserved arginine residue of the chitosanase from Streptomyces sp. N174 is involved both in catalysis and substrate binding. BMC Biochem 14:23

    Article  CAS  Google Scholar 

  • Leah R, Tommerup H, Svendsen I, Mundy J (1991) Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem 266:1564–1573

    CAS  PubMed  Google Scholar 

  • Lyu Q, Wang S, Xu W, Han B, Liu W, Jones DN, Liu W (2014) Structural insights into the substrate-binding mechanism for a novel chitosanase. Biochem J 461:335–345

    Article  CAS  Google Scholar 

  • Lyu Q, Shi Y, Wang S, Yang Y, Han B, Liu W, Jones DN, Liu W (2015) Structural and biochemical insights into the degradation mechanism of chitosan by chitosanase OU01. Biochim Biophys Acta 1850:1953–1961

    Article  CAS  Google Scholar 

  • Marcotte EM, Monzingo AF, Ernst SR, Brzezinski R, Robertus JD (1996) X-ray structure of an anti-fungal chitosanase from Streptomyces N174. Nat Struct Biol 3:155–162

    Article  CAS  Google Scholar 

  • Mauch F, Hadwiger LA, Boller T (1988a) Antifungal hydrolases in pea tissue: i. purification and characterization of two chitinases and two beta-1,3-glucanases differentially regulated during development and in response to fungal infection. Plant Physiol 87:325–333

    Article  CAS  Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988b) Antifungal hydrolases in pea tissue: ii. inhibition of fungal growth by combinations of chitinase and beta-1,3-Glucanase. Plant Physiol 88:936–942

    Article  CAS  Google Scholar 

  • Melchers LS, Apotheker-de Groot M, van der Knaap JA, Ponstein AS, Sela-Buurlage MB, Bol JF, Cornelissen BJ, van den Elzen PJ, Linthorst HJ (1994) A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. Plant J 5:469–480

    Article  CAS  Google Scholar 

  • Monzingo AF, Marcotte EM, Hart PJ, Robertus JD (1996) Chitinases, chitosanases, and lysozymes can be divided into procaryotic and eucaryotic families sharing a conserved core. Nat Struct Biol 3:133–140

    Article  CAS  Google Scholar 

  • Neuhaus JM, Fritig B, Linthorst HJM, Meins F, Mikkelsen JD, Ryals J (1996) A revised nomenclature for chitinase genes. Plant Mol Biol Rep 14:102–104

    Article  CAS  Google Scholar 

  • Norberg AL, Karlsen V, Hoell IA, Bakke I, Eijsink VG, Sørlie M (2010) Determination of substrate binding energies in individual subsites of a family 18 chitinase. FEBS Lett 584:4581–4585

    Article  CAS  Google Scholar 

  • Ohnuma T, Taira T, Yamagami T, Aso Y, Ishiguro M (2004) Molecular cloning, functional expression, and mutagenesis of cDNA encoding class I chitinase from rye (Secale cereale) seeds. Biosci Biotechnol Biochem 68:324–332

    Article  CAS  Google Scholar 

  • Ohnuma T, Onaga S, Murata K, Taira T, Katoh E (2008) LysM domains from Pteris ryukyuensis chitinase-A: a stability study and characterization of the chitin-binding site. J Biol Chem 283:5178–5187

    Article  CAS  Google Scholar 

  • Ohnuma T, Numata T, Osawa T, Mizuhara M, Vårum KM, Fukamizo T (2011a) Crystal structure and mode of action of a class V chitinase from Nicotiana tabacum. Plant Mol Biol 75:291–304

    Article  CAS  Google Scholar 

  • Ohnuma T, Numata T, Osawa T, Mizuhara M, Lampela O, Juffer AH, Skriver K, Fukamizo T (2011b) A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis. Planta 234:123–137

    Article  CAS  Google Scholar 

  • Ohnuma T, Ohnuma T, Sørlie M, Fukuda T, Kawamoto N, Taira T, Fukamizo T (2011c) Chitin oligosaccharide binding to a family GH19 chitinase from the moss Bryum coronatum. FEBS J 278:3991–4001

    Article  CAS  Google Scholar 

  • Ohnuma T, Numata T, Osawa T, Inanaga H, Okazaki Y, Shinya S, Kondo K, Fukuda T, Fukamizo T (2012) Crystal structure and chitin oligosaccharide-binding mode of a ‘loopful’ family GH19 chitinase from rye, Secale cereale, seeds. FEBS J 279:3639–3651

    Article  CAS  Google Scholar 

  • Ohnuma T, Umemoto N, Kondo K, Numata T, Fukamizo T (2013) Complete subsite mapping of a “loopful” GH19 chitinase from rye seeds based on its crystal structure. FEBS Lett 587:2691–2697

    Article  CAS  Google Scholar 

  • Ohnuma T, Umemoto N, Nagata T, Shinya S, Numata T, Taira T, Fukamizo T (2014) Crystal structure of a “loopless” GH19 chitinase in complex with chitin tetrasaccharide spanning the catalytic center. Biochim Biophys Acta 1844:793–802

    Article  CAS  Google Scholar 

  • Ohnuma T, Taira T, Umemoto N, Kitaoku Y, Sørlie M, Numata T, Fukamizo T (2017) Crystal structure and thermodynamic dissection of chitin oligosaccharide binding to the LysM module of chitinase-A from Pteris ryukyuensis. Biochem Biophys Res Commun 494:736–741

    Article  CAS  Google Scholar 

  • Onaga S, Taira T (2008) A new type of plant chitinase containing LysM domains from a fern (Pteris ryukyuensis): roles of LysM domains in chitin binding and antifungal activity. Glycobiology 18:414–423

    Article  CAS  Google Scholar 

  • Roberts WK, Selitrennikoff CP (1986) Isolation and partial characterization of two antifungal proteins from barley. Biochim Biophys Acta 880:161–170

    Article  CAS  Google Scholar 

  • Saito A, Ooya T, Miyatsuchi D, Fuchigami H, Terakado K, Nakayama SY, Watanabe T, Nagata Y, Ando A (2009) Molecular characterization and antifungal activity of a family 46 chitosanase from Amycolatopsis sp. CsO-2. FEMS Microbiol Lett 293:79–84

    Article  CAS  Google Scholar 

  • Sasaki C, Vårum KM, Itoh Y, Tamoi M, Fukamizo T (2006) Rice chitinases: sugar recognition specificities of the individual subsites. Glycobiology 16:1242–1250

    Article  CAS  Google Scholar 

  • Schlumbaum A, Mauch F, Vogeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324:365–367

    Article  CAS  Google Scholar 

  • Shinya S, Ohnuma T, Yamashiro R, Kimoto H, Kusaoke H, Anbazhagan P, Juffer AH, Fukamizo T (2013) The first identification of carbohydrate binding modules specific to chitosan. J Biol Chem 288:30042–30053

    Article  CAS  Google Scholar 

  • Shinya S, Nishimura S, Kitaoku Y, Numata T, Kimoto H, Kusaoke H, Ohnuma T, Fukamizo T (2016) Mechanism of chitosan recognition by CBM32 carbohydrate-binding modules from a Paenibacillus sp. IK-5 chitosanase/glucanase. Biochem J 473:1085–1095

    Article  CAS  Google Scholar 

  • Shinya S, Ghinet MG, Brzezinski R, Furuita K, Kojima C, Shah S, Kovrigin EL, Fukamizo T (2017) NMR line shape analysis of a multi-state ligand binding mechanism in chitosanase. J Biomol NMR 67:309–319

    Article  CAS  Google Scholar 

  • Suzukawa K, Yamagami T, Ohnuma T, Hirakawa H, Kuhara S, Aso Y, Ishiguro M (2003) Mutational analysis of amino acid residues involved in catalytic activity of a family 18 chitinase from tulip bulbs. Biosci Biotechnol Biochem 67:341–346

    Article  CAS  Google Scholar 

  • Taira T, Ohnuma T, Yamagami T, Aso Y, Ishiguro M, Ishihara M (2002) Antifungal activity of rye (Secale cereale) seed chitinases: the different binding manner of class I and class II chitinases to the fungal cell walls. Biosci Biotechnol Biochem 66:970–977

    Article  CAS  Google Scholar 

  • Taira T, Toma N, Ishihara M (2005a) Purification, characterization, and antifungal activity of chitinases from pineapple (Ananas comosus) leaf. Biosci Biotechnol Biochem 69:189–196

    Article  CAS  Google Scholar 

  • Taira T, Ohdomari A, Nakama N, Shimoji M, Ishihara M (2005b) Characterization and antifungal activity of gazyumaru (Ficus microcarpa) latex chitinases: both the chitin-binding and the antifungal activities of class I chitinase are reinforced with increasing ionic strength. Biosci Biotechnol Biochem 69:811–818

    Article  CAS  Google Scholar 

  • Taira T, Hayashi H, Tajiri Y, Onaga S, Uechi G, Iwasaki H, Ohnuma T, Fukamizo T (2009) A plant class V chitinase from a cycad (Cycas revoluta): biochemical characterization, cDNA isolation, and posttranslational modification. Glycobiology 19:1452–1461

    Article  CAS  Google Scholar 

  • Taira T, Fujiwara M, Dennhart N, Hayashi H, Onaga S, Ohnuma T, Letzel T, Sakuda S, Fukamizo T (2010) Transglycosylation reaction catalyzed by a class V chitinase from cycad, Cycas revoluta: a study involving site-directed mutagenesis, HPLC, and real-time ESI-MS. Biochim Biophys Acta 1804:668–675

    Article  CAS  Google Scholar 

  • Takenaka Y, Nakano S, Tamoi M, Sakuda S, Fukamizo T (2009) Chitinase gene expression in response to environmental stresses in Arabidopsis thaliana: chitinase inhibitor allosamidin enhances stress tolerance. Biosci Biotechnol Biochem 73:1066–1071

    Article  CAS  Google Scholar 

  • Terwisscha van Scheltinga AC, Kalk KH, Beintema JJ, Dijkstra BW (1994) Crystal structures of hevamine, a plant defence protein with chitinase and lysozyme activity, and its complex with an inhibitor. Structure. 2:1181–1189

    Article  CAS  Google Scholar 

  • Terwisscha van Scheltinga AC, Armand S, Kalk KH, Isogai A, Henrissat B, Dijkstra BW (1995) Stereochemistry of chitin hydrolysis by a plant chitinase/lysozyme and X-ray structure of a complex with allosamidin: evidence for substrate assisted catalysis. Biochemistry 34:15619–15623

    Article  CAS  Google Scholar 

  • Tremblay H, Yamaguchi T, Fukamizo T (2001) Brzezinski R. Mechanism of chitosanase-oligosaccharide interaction: subsite structure of Streptomyces sp. N174 chitosanase and the role of Asp57 carboxylate. J Biochem 130:679–686

    Article  CAS  Google Scholar 

  • Umemoto N, Kanda Y, Ohnuma T, Osawa T, Numata T, Sakuda S, Taira T, Fukamizo T (2015a) Crystal structures and inhibitor binding properties of plant class V chitinases: the cycad enzyme exhibits unique structural and functional features. Plant J 82:54–66

    Article  CAS  Google Scholar 

  • Umemoto N, Ohnuma T, Osawa T, Numata T, Fukamizo T (2015b) Modulation of the transglycosylation activity of plant family GH18 chitinase by removing or introducing a tryptophan side chain. FEBS Lett 589:2327–2333

    Article  CAS  Google Scholar 

  • van Aalten DM, Komander D, Synstad B, Gåseidnes S, Peter MG, Eijsink VG (2001) Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc Natl Acad Sci U S A 98:8979–8984

    Article  Google Scholar 

  • Verburg JG, Huynh QK (1991) Purification and characterization of an antifungal chitinase from Arabidopsis thaliana. Plant Physiol 95:450–455

    Article  CAS  Google Scholar 

  • Yang H, Zhang T, Masuda T, Lv C, Sun L, Qu G, Zhao G (2011) Chitinase III in pomegranate seeds (Punica granatum Linn.): a high-capacity calcium-binding protein in amyloplasts. Plant J 68:765–776

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamo Fukamizo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fukamizo, T., Shinya, S. (2019). Chitin/Chitosan-Active Enzymes Involved in Plant–Microbe Interactions. In: Yang, Q., Fukamizo, T. (eds) Targeting Chitin-containing Organisms. Advances in Experimental Medicine and Biology, vol 1142. Springer, Singapore. https://doi.org/10.1007/978-981-13-7318-3_12

Download citation

Publish with us

Policies and ethics