Skip to main content

Lactic Acid Bacteria and γ-Aminobutyric Acid and Diacetyl

  • Chapter
  • First Online:
Lactic Acid Bacteria

Abstract

γ-Aminobutyric acid (GABA), or γ-ammonia butyric acid, is a kind of nonprotein amino acid which widely exists in vegetables and animals. It exists in the seeds, roots, and tissue fluid of many plants, such as Glycine L., Panax, herbal, and in animals almost exclusively present in nervous tissues. The content of GABA in brain tissue is 0.1~0.6mg/g, and immunology research show that substantia nigra contain the highest concentration of GABA (Krajnc et al. 1996). Meanwhile GABA is also present in microorganisms, such as yeast, Lactobacillus, and Escherichia coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai M (1984) Oxidation of methyl ethyl ketone to diacetyl on V2O5-P2O5 catalysts. J Catal 89:413–421

    Article  CAS  Google Scholar 

  • Antonaccio MJ, Taylor DG (1977) Involvement of central GABA receptors in the regulation of blood pressure and heart rate of anesthetized cats. Eur J Pharmacol 46:283–287

    Article  CAS  Google Scholar 

  • Awapara J, Landua AJ, Fuerst R et al (1950) Free gamma-aminobutyric acid in brain. J Biol Chem 187:35–39

    CAS  PubMed  Google Scholar 

  • Aymes F, Monnet C, Corrieu G (1999) Effect of alpha-acetolactate decarboxylase inactivation on alpha-acetolactate and diacetyl production by Lactococcus lactis subsp. lactis biovar. Diacetylactis. J Biosci Bioeng 87:87–92

    Article  CAS  Google Scholar 

  • Bartowsky EJ, Henschke PA (2004) The‘buttery’ attribute of wine-diacetyl-desirability, spoilage and beyond. Int J Food Microbiol 96:235–252

    Article  CAS  Google Scholar 

  • Benson KH, Godon JJ, Renault P et al (1996) Effect of ilvBN-encoded α-acetolactate synthase expression on diacetyl production in Lactococcus lactis. Appl Microbiol Biotechnol 45:107–111

    Article  CAS  Google Scholar 

  • Bian Shuling, Zhang Wei, Zhu Hui et al (2002) Effect of γ-aminobutyric acid on the sperm acrosin activity. Natl J Androl 8:326–328

    CAS  Google Scholar 

  • Borts IH (1963) Dairy bacteriology. Am J Public Health Nations Health 200:529

    Google Scholar 

  • Boumerdassi H, Monnet C, Desmazeaud M et al (1997) Isolation and properties of Lactococcus lactis subsp. lactis biovar. Diacetylactis CNRZ 483 mutants producing diacetyl and acetoin from glucose. Appl Environ Microbiol 63:2293–2299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Jiaxuan, Li Yuping, Xiong Xiangyuan et al (2008) Applications of γ-aminobutyric acid in functional foods. J Hebei Agric Sci 12:52–54

    Google Scholar 

  • Chen Lilong, Jiang Qingyan, Xiao Shi (2010) Biological function of γ-aminobutyric acid and its application as a novel feed additive. Feed Ind 31:1–3

    Google Scholar 

  • Cocaign-Bousquet M, Garrigues C, Loubiere P et al (1996) Physiology of pyruvate metabolism in Lactococcus lactis. Antonie Van Leeuwenhoek 70:253–267

    Article  CAS  Google Scholar 

  • Cogan TM, O’Dowd M, Mellerick D (1981) Effects of pH and sugar on acetoin production from citrate by Leuconostoc lactis. Appl Environ Microbiol 41:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curic M, Richelieu MD, Henriksen CM et al (1999) Glucose/citrate cometabolism in Lactococcus lactis subsp. lactis biovar. Diacetylactis with impaired α-acetolactate decarboxylase. Metab Eng 1:291–298

    Article  CAS  Google Scholar 

  • Dan Tong, Zhang Heping (2013) Classification, biosynthesis and their applications of bacteriocins produced from lactic acid Bacteria. Zhonggue Rupin Gongye 41:29–32

    Google Scholar 

  • Fan E, Huang J, Hu S et al (2012) Cloning, sequencing and expression of a glutamate decarboxylase gene from the GABA-producing strain Lactobacillus brevis CGMCC 1306. Ann Microbiol 62:689–698

    Article  CAS  Google Scholar 

  • Felipe FLD, Kleerebezem M, Vos WMD et al (1998) Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J Bacteriol 180:3804–3808

    Google Scholar 

  • Cui Xiaojun, Jiang Bo, Feng Biao (2005) Optimization of fermentation conditions for GABA (γ-aminobutyric acid) production by lactobacillus SK005. Food Res Dev 26:64–69

    Google Scholar 

  • Garrigues C, Loubiere P, Lindley ND et al (1997) Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J Bacteriol 179:5282

    Article  CAS  Google Scholar 

  • Gasson MJ, Benson K, Swindell S et al (1996) Metabolic engineering of the Lactococcus lactis diacetyl pathway. Dairy Sci Technol 76:33–40

    Article  CAS  Google Scholar 

  • Geng Jingzhang (2012) Research on use of gamma-amino butyric acid (GABA) in food industry. Beverage Ind 15:11–14

    Google Scholar 

  • Godon JJ, Delorme C, Bardowski J et al (1993) Gene inactivation in Lactococcus lactis: branched-chain amino acid biosynthesis. J Bacteriol 175:4383–4390

    Article  CAS  Google Scholar 

  • Goupil N, Corthier G, Ehrlich SD et al (1996) Imbalance of leucine flux in Lactococcus lactis and its use for the isolation of diacetyl-overproducing strains. Appl Environ Microbiol 62:2636–2640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Zheng (1998) Research of Butanedione synthesis technology. Zhejiang Chem Ind 2:22–23

    Google Scholar 

  • Han Guangdian (1978) Handbook of organic preparation chemistry. Chemical Industry Press, Bei Jing

    Google Scholar 

  • Hayakawa K, Kimura M, Kasaha K et al (2004) Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Br J Nutr 92:411–417

    Article  CAS  Google Scholar 

  • He Xipu, Zhang Min, Li Junfang et al (2007) The physiological function of γ -aminobutyric acid and the general research about γ -aminobutyric acid. J Guangxi Univ Nat Sci Ed 32:464–466

    Google Scholar 

  • Hemme D, Foucaud-Scheunemann C (2004) Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int Dairy J 14:467–494

    Article  Google Scholar 

  • Hua Chaoli, Zhao Zheng (2004) Studies on a nes ketone flavor yogurt co-fermented by Lactobacillus helveticus and Streptococcus diacetylactis. Zhonggue Rupin Gongye 32:17–20

    Google Scholar 

  • Huang YH, Zheng HF, Liu XL, Wang X et al (2005) Studies of the variation of GABA and Glu in Gabaron tea process. Food Sci 26:117–120

    CAS  Google Scholar 

  • Hugenholtz J (1993) Citrate metabolism in lactic acid bacteria. FEMS Microbiol Rev 12:165–178

    Article  CAS  Google Scholar 

  • Hugenholtz J, Kleerebezem M, Starrenburg M et al (2000) Lactococcus lactis as a cell factory for high-level diacetyl production. Appl Environ Microbiol 66:4112–4114

    Article  CAS  Google Scholar 

  • Jay JM, Loessner MJ, Golden DA (1992) Modern food microbiology. Chapman & Hall, New York

    Book  Google Scholar 

  • Ji Linli (2008) The screening and identification of LAB strains isolated from traditional dairy products with γ-amino butyric acid producing and optimizing their fermentation conditions. Inner Mongolia agricultural university, Hu He Hao Te

    Google Scholar 

  • Jordan KN, Cogan TM (1988) Production of acetolactate by Streptococcus diacetylactis and Leuconostoc spp. J Dairy Res 55:227–238

    Article  CAS  Google Scholar 

  • Kazami D, Ogura N, Fukuchi T et al (2002) Antihypertensive effect of Japanese taste seasoning containing γ-amino butyric acid on mildly hypertensive and high-normal blood pressure. Nippon Shokuhin Kagaku Kogaku Kaishi 49:409–415

    Article  CAS  Google Scholar 

  • Komatsuzaki N, Shima J, Kawamoto S et al (2005) Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol 22:497–504

    Article  CAS  Google Scholar 

  • Krajnc D, Neff N, Hadjiconstantinou M (1996) Glutamate, glutamine and glutamine synthetase in the neonatal rat brain following hypoxia. Brain Res 707:134–137

    Article  CAS  Google Scholar 

  • Krnjević K, Schwartz S (1966) Is gamma-aminobutyric acid an inhibitory transmitter? Nature 211:1372–1374

    Article  Google Scholar 

  • Levata-Jovanovic M, Sandine WE (1996) Citrate utilization and diacetyl production by various strains of Leuconostoc mesenteroides ssp. Cremoris 1. J Dairy Sci 79:1928–1935

    Article  CAS  Google Scholar 

  • Leventhal AG, Wang Y, Pu M et al (2003) GABA and its agonists improved visual cortical function in senescent monkeys. Science 300:812–815

    Article  CAS  Google Scholar 

  • Liu Fang, Wang Yutang, Huo Guicheng (2006) Screening and identification of S. Thermophiles producing diacetyl. J Dairy Sci Technol 29:272–275

    Google Scholar 

  • Ma Guihua (1989) Lactobacillus and human health. Food Herald:10–12

    Google Scholar 

  • Marth EH, Steele JL (1998) Applied dairy microbiology. Marcel Dekker, New York

    Google Scholar 

  • Marugg JD, Goelling D, Stahl U et al (1994) Identification and characterization of the alpha-acetolactate synthase gene from Lactococcus lactis subsp. lactis biovar. Diacetylactis. Appl Environ Microbiol 60:1390–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mcsweeney PLH, Sousa MJ (2000) Biochemical pathways for the production of flavour compounds in cheeses during ripening: a review. Lait 80:293–324

    Article  CAS  Google Scholar 

  • Meng Xiangchen (2009) Lactic acid Bacteria and dairy starter culture. Science Press, Bei Jing

    Google Scholar 

  • Mombereau C, Kaupmann K, Froestl W et al (2004) Genetic and pharmacological evidence of a role for GABA (B) receptors in the modulation of anxiety-and antidepressant-like behavior. Neuropsychopharmacology 29:1050–1062

    Article  CAS  Google Scholar 

  • Monnet C, Corrieu G (2007) Selection and properties of alpha-acetolactate decarboxylase-deficient spontaneous mutants of Streptococcus thermophilus. Food Microbiol 24:601–606

    Article  CAS  Google Scholar 

  • Monnet C, Schmilt P, Divies C (1994) Diacetyl production in milk by an α-acetolactic acid accumulating strain of Lactococcus lactis ssp. lactis biovar. Diacetylactis. J Dairy Sci 77:2916–2924

    Article  CAS  Google Scholar 

  • Monnet C, Schmitt P, Divies C (1997) Development and use of a screening procedure for production of alpha-acetolactate by Lactococcus lactis subsp. lactis biovar. Diacetylactis strains. Appl Environ Microbiol 63:793–795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murashima YL, Kato T (1986) Distribution of gamma-aminobutyric acid and glutamate decarboxylase in the layers of rat oviduct. J Neurochem 46:166–172

    Article  CAS  Google Scholar 

  • Nomura M, Kimoto H, Someya Y et al (1998) Production of gamma-aminobutyric acid by cheese starters during cheese ripening. J Dairy Sci 81:1486–1491

    Article  CAS  Google Scholar 

  • O’Sullivan SM, Condon S, Cogan TM et al (2001) Purification and characterisation of acetolactate decarboxylase from Leuconostoc lactis NCW1. FEMS Microbiol Lett 194:245–249

    Article  Google Scholar 

  • Okada T, Sugishita T, Murakami T et al (2000) Effect of the defatted rice germ enriched with GABA for sleeplessness, depression, autonomic disorder by oral administration. J Jpn Soc Food Sci Technol Nippon Shokuhin Kagaku Kogaku Kaishi 47:596–560

    Article  CAS  Google Scholar 

  • Roberts E, Frankel S (1950) Gamma-aminobutyric acid in brain: its formation from glutamic acid. J Biol Chem 187:55–63

    CAS  PubMed  Google Scholar 

  • Rodríguez A, Martínez B, Suárez J (2012) Dairy starter cultures. CRC Press, Boca Raton

    Book  Google Scholar 

  • Roldan ER, Murase T, Shi QX (1994) Exocytosis in spermatozoa in response to progesterone and zona pellucida. Science 266:1578–1581

    Article  CAS  Google Scholar 

  • Sawai Y, Yamaguchi Y, Miyama D et al (2001) Cycling treatment of anaerobic and aerobic incubation increases the content of gamma-aminobutyric acid in tea shoots. Amino Acids 20:331–334

    Article  CAS  Google Scholar 

  • Seitz EW, Sandine WE, Elliker PR et al (1963) Distribution of diacetyl reductase among bacteria. J Dairy Sci 46:186–189

    Article  CAS  Google Scholar 

  • Siragusa S, Angelis MD, Cagno RD et al (2007) Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl Environ Microbiol 73:7283–7290

    Article  CAS  Google Scholar 

  • Snoep JL, Mj TDM, Starrenburg MJ et al (1992) Isolation, characterization, and physiological role of the pyruvate dehydrogenase complex and alpha-acetolactate synthase of Lactococcus lactis subsp. lactis biovar. Diacetylactis. J Bacteriol 174:4838–4841

    Article  CAS  Google Scholar 

  • Song Huanlu (2002) The primary study on Diacetyl biosynthesis by lactic acid Bacteria. Food Ferment Ind 28:47–50

    Google Scholar 

  • Song Wei, Ma Xia, Zhang Bailin (2008) Physiological benefits and fortifications of γ-Aminobutyric Acid in dairy products. J Dairy Sci Technol 31:297–302

    Google Scholar 

  • Speckman RA, Collins EB (1968) Separation of diacetyl, acetoin, and 2, 3-butylene glycol by salting-out chromatography. Anal Biochem 22:154–160

    Article  CAS  Google Scholar 

  • Takahashi H, Tiba M, Yamazaki T et al (1959) On the site of action of gamma-aminobutyric acid on blood pressure. Jpn J Physiol 8:378–390

    Article  Google Scholar 

  • Udenfriend S (1950) Identification of gamma-aminobutyric acid in brain by the isotope derivative method. J Biol Chem 187:65–69

    CAS  PubMed  Google Scholar 

  • Usuki S, Ito Y, Morikawa K et al (2007) Effect of pre-germinated brown rice intake on diabetic neuropathy in streptozotocin- induced diabetic rats. Nutr Metab 4:25

    Article  Google Scholar 

  • Wang Zhen (1992) Dictionary of chemical technology. Chemical Industry Press, Bei Jing

    Google Scholar 

  • Xia Jiang (2006) Breeding of γ-aminobutyric acid-producing lactobacillus and optimization of fermentation conditions. Zhejiang University, Hang Zhou

    Google Scholar 

  • Xia Jiang, Mei Lehe, Huang Jun et al (2006) Screening and mutagenesis of Lactobacillus brevis for biosynthesis of γ-aminobutyric acid. J Nucl Agric Sci 20:379–382

    Google Scholar 

  • Xian Qianlong (2013) Selection of γ-aminobutyric acid-producing lactic acid Bacteria and the development of functional yoghurt. Guangxi University of Technology, Liu Zhou

    Google Scholar 

  • Xie Haiyan, Yin Dulin (2000) Catalytic oxidation of Butan-2-one to Diacetyl. Hunan Chem Ind 30:22–23

    Google Scholar 

  • Xu Jianjun, Jiang Bo, Xu Shiying (2002) Screening of lactic acid Bacteria for biosynthesis of γ-amino butyric acid. Food Sci Technol:7–8

    Google Scholar 

  • Yang Jiebin, Guo Xinghua, Zhang Chi et al (1996) Lactic acid Bacteria: biological basis and application. China Light Industry Press, Bei Jing

    Google Scholar 

  • Yang Lijie, Wang Junhu (2004) Genetic manipulation of the pathway for diacetyl metabolism in Lactococcus lactis. Zhonggue Rupin Gongye 32:24–29

    Google Scholar 

  • Yang LJ, Wang JH (1996) Genetic manipulation of the pathway for diacetyl metabolism in Lactococcus lactis. Appl Environ Microbiol 62:2641–2643

    Google Scholar 

  • Yu Peng, Zhang Lanwei, Xu Qian et al (2006) Screening mutagenized Lactococcus Lactis subsp. lactis Biovar Diacetyl strains overproducing Diacetyl. J Dairy Sci Technol 29:218–220

    Google Scholar 

  • Zheng Yingfu, Han Zhenrong, Zhao Chunhai (2005) A review on improving diacetyl formation in Lactococcus lactis. China Biotechnol 25:186–189

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunhe Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, S., Chen, P., Dang, H. (2019). Lactic Acid Bacteria and γ-Aminobutyric Acid and Diacetyl. In: Chen, W. (eds) Lactic Acid Bacteria. Springer, Singapore. https://doi.org/10.1007/978-981-13-7283-4_1

Download citation

Publish with us

Policies and ethics