Skip to main content

Sustainable C and N Management Under Metal-Contaminated Soils

  • Chapter
  • First Online:

Abstract

Across the world, a major challenge is deteriorating environmental health by increasing growth of industries with the unscientific management of industrial waste. Soil contamination with organic and inorganic pollutant is a major task during the production of healthy food. In the last three decades, the concentration of heavy metals in soil has increased drastically, posing a risk to the whole environment, human, as well as animal health. Soil contamination is a threat to sustainable agricultural development and food security in developing countries. Nowadays protection and preservation of the environment from further deterioration have drawn increasing research attention. In the present context, use of modern and traditional technologies aims to maintain the health of natural resources from contamination at economic feasibility. Another major concern is remediation or minimization of toxic metal entry in the food chain contamination of different ecosystems without affecting their functionality. There is a need to make land resources free from metal contamination for healthy and safe agricultural production, to increase food security, and to maintain land use pattern. Advanced remediation techniques are more focusing on in situ environment-friendly practices. Several organic and inorganic remediation technologies to treat heavy metal-contaminated soils are discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BECCS:

Bioenergy with carbon capture and storage

C:

Carbon

DNDC:

Denitrification decomposition

GHGs:

Greenhouse gases

GSH:

Glutathione

Gt:

Gega tons

HMs:

Heavy metals

MSW:

Municipal solid waste

N:

Nitrogen

PC:

Phytochelatins

Pg:

Picogram

ppb:

Parts per billion

ppm:

Parts per million

PSB:

Phosphorus solubilizing bacteria

SOC:

Soil organic carbon

SOM:

Soil organic matter

USPEA:

United States Environmental Protection Agency

References

  • Angelova V, Ivanova R, Pevicharova G, Ivanov K (2010) Effect of organic amendments on heavy metals uptake by potato plants. https://iuss.org/19th%20WCSS/Symposium/pdf/0660.pdf

    Google Scholar 

  • Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441

    Article  Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils-to mobilize or to immobilize? J Hazard Mater 266:141–166

    Article  CAS  Google Scholar 

  • Buragohain S, Sharma B, Nath JD, Gogaoi N, Meena RS, Lal R (2017) Impact of ten years of bio-fertilizer use on soil quality and rice yield on an inceptisol in Assam, India. Soil Res. https://doi.org/10.1071/SR17001

    Article  Google Scholar 

  • Chen SB, Zhu YG, Ma YB (2006) The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. J Hazard Mater 134(1–3):74–79. https://doi.org/10.1016/j.jhazmat.2005.10.027

    Article  CAS  Google Scholar 

  • Cheng W, Chander K, Inubushi K (2000) Effects of elevated CO2 and temperature on methane production and emission from submerged soil microcosm. In: Methane emissions from major rice ecosystems in Asia. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-010-0898-3_29

    Chapter  Google Scholar 

  • Chertov O, Komarov A (1995) On mathematical theory of soil forming processes. I. Theoretical background. II. SOMM-a model of soil organic matter dynamics. III. Basic ideas of a mineral phase modelling. Pushchino Res. Center of Russian Academy of Sciences, Pushchino. Preprint

    Google Scholar 

  • Chertov OG, Komarov AS (1996) SOMM – a model of soil organic matter and nitrogen dynamics in terrestrial ecosystems. In: Evaluation of soil organic matter models. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-642-61094-3_16

    Chapter  Google Scholar 

  • Chu D (2018) Effects of heavy metals on soil microbial community. IOP Conf Ser Earth Environ Sci 113:012009. https://doi.org/10.1088/1755-1315/113/1/012009

    Article  Google Scholar 

  • Coleman K, Jenkinson DS (1996) RothC-26.3 – a model for the turnover of carbon in soil. In: Evaluation of soil organic matter models. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-642-61094-3_17

    Chapter  Google Scholar 

  • Coumar MV, Parihar RS, Dwivedi AK, Saha JK, Lakaria BL, Biswas AK, Rajendiran S, Dotaniya ML, Kundu S (2015a) Pigeon pea biochar as a soil amendment to repress copper mobility in soil and its uptake by spinach. Bioresources 11(1):1585–1595. https://doi.org/10.15376/biores.11.1.1585-1595

    Article  CAS  Google Scholar 

  • Coumar MV, Parihar RS, Dwivedi AK, Saha JK, Rajendiran S, Dotaniya ML, Kundu S (2015b) Impact of pigeon pea biochar on cadmium mobility in soil and transfer rate to leafy vegetable spinach. Environ Monit Assess 188(1):31. https://doi.org/10.1007/s10661-015-5028-y

    Article  CAS  Google Scholar 

  • Dadhich RK, Meena RS (2014) Performance of Indian mustard (Brassica juncea L.) in response to foliar spray of thiourea and thioglycollic acid under different irrigation levels. Indian J Ecol 41(2):376–378

    Google Scholar 

  • Datta R, Anand S, Moulick A, Baraniya D, Pathan SI, Rejsek K, Vranova V, Sharma M, Sharma D, Kelkar A (2017a) How enzymes are adsorbed on soil solid phase and factors limiting its activity: a review. Int Agrophys 31(2):287–302

    Article  CAS  Google Scholar 

  • Datta R, Baraniya D, Wang Y-F, Kelkar A, Meena RS, Yadav GS, Teresa Ceccherini M, Formanek P (2017b) Amino acid: its dual role as nutrient and scavenger of free radicals in soil. Sustainability 9(8):1402

    Article  Google Scholar 

  • Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena R, Formanek P (2017c) Enzymatic degradation of lignin in soil: a review. Sustainability 9(7):1163

    Article  Google Scholar 

  • Dhillion SS, Roy J, Abrams M (1995) Assessing the impact of elevated CO2 on soil microbial activity in a Mediterranean model ecosystem. Plant Soil 187(2):333–342. https://doi.org/10.1007/bf00017098

    Article  Google Scholar 

  • Dotaniya ML (2018) Remediation of chromium toxicity in wheat by use of FYM and pressmud. In: Rajendiran S, Coumar MV, Meena VD, Kundu S, Saha JK, Patra AK (eds) Oral presentation in the national conference “Organic waste management for food and environmental security”

    Google Scholar 

  • Dotaniya ML, Datta SC (2014) Impact of bagasse and press mud on availability and fixation capacity of phosphorus in an inceptisol of North India. Sugar Tech 16(1):109–112. https://doi.org/10.1007/s12355-013-0264-3

    Article  CAS  Google Scholar 

  • Dotaniya ML, Datta SC (2015) Phosphorus dynamics mediated by bagasse, press mud and rice straw. In: Biswas DR, Meena HM, Rajendiran S, Meena AL (eds) Agrochimica 59 (4):358

    Google Scholar 

  • Dotaniya ML, Meena VD (2013) Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proc Natl Acad Sci India Sect B Biol Sci 85(1):1–12. https://doi.org/10.1007/s40011-013-0297-0

    Article  CAS  Google Scholar 

  • Dotaniya ML, Meena BP (2017) Rhizodeposition by plants: a boon to soil health. In: Elanchezhian R, Biswas AK, Ramesh K, Patra AK (eds) Advances in nutrient dynamics in soil plant system for improving nutrient use efficiency. India Publishing Agency, New Delhi, pp 207–224

    Google Scholar 

  • Dotaniya ML, Pipalde JS (2018) Soil enzymatic activities as influenced by lead and nickel concentrations in a vertisol of Central India. Bull Environ Contam Toxicol 101(3):380–385. https://doi.org/10.1007/s00128-018-2402-9

    Article  CAS  Google Scholar 

  • Dotaniya ML, Datta SC, Biswas DR, Meena BP (2013a) Effect of solution phosphorus concentration on the exudation of oxalate ions by wheat (Triticum aestivum L.). Proc Natl Acad Sci India Sect B Biol Sci 83(3):305–309. https://doi.org/10.1007/s40011-012-0153-7

    Article  CAS  Google Scholar 

  • Dotaniya ML, Dasharath P, Meena MH, Jajoria KD, Narolia PG, Pingoliya KK, Meena PO, Kuldeep K, Meena PB, Asha R, Das H, Sreenivasa Chari M, Suresh P (2013b) Influence of phytosiderophore on iron and zinc uptake and rhizospheric microbial activity. Afr J Microbiol Res 7(51):5781–5788. https://doi.org/10.5897/ajmr2013.6461

    Article  Google Scholar 

  • Dotaniya ML, Das H, Meena VD (2014a) Assessment of chromium efficacy on germination, root elongation, and coleoptile growth of wheat (Triticum aestivum L.) at different growth periods. Environ Monit Assess 186(5):2957–2963. https://doi.org/10.1007/s10661-013-3593-5

    Article  CAS  Google Scholar 

  • Dotaniya ML, Datta SC, Biswas DR, Kumar K (2014b) Effect of organic sources on phosphorus fractions and available phosphorus in Typic Haplustept. J Indian Soc Soil Sci 1:80–83

    Google Scholar 

  • Dotaniya ML, Datta SC, Biswas DR, Meena HM, Kumar K (2014c) Production of oxalic acid as influenced by the application of organic residue and its effect on phosphorus uptake by wheat (Triticum aestivum L.) in an inceptisol of North India. Natl Acad Sci Lett 37(5):401–405. https://doi.org/10.1007/s40009-014-0254-3

    Article  CAS  Google Scholar 

  • Dotaniya ML, Kushwah SK, Rajendiran S, Coumar MV, Kundu S, Subba Rao A (2014d) Rhizosphere effect of Kharif crops on phosphatases and dehydrogenase activities in a Typic Haplustert. Natl Acad Sci Lett 37(2):103–106. https://doi.org/10.1007/s40009-013-0205-4

    Article  CAS  Google Scholar 

  • Dotaniya ML, Meena VD, Das H (2014e) Chromium toxicity on seed germination, root elongation and coleoptile growth of pigeon pea (Cajanus cajan). Legum Res Int J 37(2):227. https://doi.org/10.5958/j.0976-0571.37.2.034

    Article  Google Scholar 

  • Dotaniya ML, Thakur JK, Meena VD, Jajoria DK, Rathor G (2014f) Chromium pollution: a threat to environment – a review. Agric Rev 35(2):153. https://doi.org/10.5958/0976-0741.2014.00094.4

    Article  Google Scholar 

  • Dotaniya ML, Meena VD, Basak BB, Meena RS (2016a) Potassium uptake by crops as well as microorganisms. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer India, New Delhi. https://doi.org/10.1007/978-81-322-2776-2_19

    Chapter  Google Scholar 

  • Dotaniya ML, Meena VD, Kumar K (2016b) Impact of biosolids on agriculture and biodiversity. Today and Tomorrow’s Printer and Publisher, New Delhi, pp 11–20

    Google Scholar 

  • Dotaniya ML, Rajendiran S, Meena BP, Meena AL, Dotaniya CK, Meena BL, Jat RL, Saha JK (2016c) Elevated carbon dioxide (CO2) and temperature vis-a-vis carbon sequestration potential of global terrestrial ecosystem. Conservation agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-2558-7_9

    Chapter  Google Scholar 

  • Dotaniya ML, Meena VD, Lata M, Meena BL (2017a) Climate change impact on agriculture: adaptation strategies. In: Kumar PS, Kanwat M, Meena PD, Kumar V, Alone RA (eds) Climate change & sustainable agriculture. India Publishing Agency, New Delhi, pp 27–38

    Google Scholar 

  • Dotaniya ML, Meena VD, Rajendiran S, Coumar MV, Saha JK, Kundu S, Patra AK (2017b) Geo-accumulation indices of heavy metals in soil and groundwater of Kanpur, India under long term irrigation of tannery effluent. Bull Environ Contam Toxicol 98(5):706–711. https://doi.org/10.1007/s00128-016-1983-4

    Article  CAS  Google Scholar 

  • Dotaniya ML, Rajendiran S, Coumar MV, Meena VD, Saha JK, Kundu S, Kumar A, Patra AK (2017c) Interactive effect of cadmium and zinc on chromium uptake in spinach grown in vertisol of Central India. Int J Environ Sci Technol 15(2):441–448. https://doi.org/10.1007/s13762-017-1396-x

    Article  CAS  Google Scholar 

  • Dotaniya ML, Aparna K, Dotaniya CK, Singh M, Regar KL (2018a) Role of soil enzymes in sustainable crop production. In: Enzymes in food biotechnology. Elsevier. https://doi.org/10.1016/b978-0-12-813280-7.00033-5

    Chapter  Google Scholar 

  • Dotaniya ML, Dotaniya CK, Sanwal RC, Meena HM (2018b) CO2 sequestration and transformation potential of agricultural system. In: Handbook of ecomaterials. Springer. https://doi.org/10.1007/978-3-319-48281-1_87-1

    Google Scholar 

  • Dotaniya ML, Meena VD, Saha JK, Rajendiran S, Patra AK, Dotaniya CK, Meena HM, Kumar K, Meena BP (2018c) Environmental impact measurements: tool and techniques. In: Handbook of ecomaterials. Springer. https://doi.org/10.1007/978-3-319-48281-1_60-2

    Google Scholar 

  • Duan X, Zhang G, Rong L, Fang H, He D, Feng D (2015) Spatial distribution and environmental factors of catchment-scale soil heavy metal contamination in the dry-hot valley of Upper Red River in southwestern China. Catena 135:59–69. https://doi.org/10.1016/j.catena.2015.07.006

    Article  CAS  Google Scholar 

  • Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114(3):313–324. https://doi.org/10.1016/s0269-7491(00)00243-8

    Article  CAS  Google Scholar 

  • Fang M, Wong JWC (1999) Effects of lime amendment on availability of heavy metals and maturation in sewage sludge composting. Environ Pollut 106(1):83–89. https://doi.org/10.1016/s0269-7491(99)00056-1

    Article  CAS  Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11(3):271–279. https://doi.org/10.1016/s0958-1669(00)00095-1

    Article  CAS  Google Scholar 

  • Gadepalle VP, Ouki SK, Herwijnen RV, Hutchings T (2007) Immobilization of heavy metals in soil using natural and waste materials for vegetation establishment on contaminated sites. Soil Sediment Contam Int J 16(2):233–251. https://doi.org/10.1080/15320380601169441

    Article  CAS  Google Scholar 

  • Gisbert C, Ros R, De Haro A, Walker DJ, Pilar Bernal M, Serrano R, Navarro-Aviñó J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303(2):440–445. https://doi.org/10.1016/s0006-291x(03)00349-8

    Article  CAS  Google Scholar 

  • Gong M, Wu L, Bi X-y, Ren L-m, Wang L, Ma Z-d, Bao Z-y, Li Z-g (2010) Assessing heavy-metal contamination and sources by GIS-based approach and multivariate analysis of urban–rural topsoils in Wuhan, central China. Environ Geochem Health 32(1):59–72. https://doi.org/10.1007/s10653-009-9265-2

    Article  CAS  Google Scholar 

  • Guo G, Wu F, Xie F, Zhang R (2012) Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. J Environ Sci 24(3):410–418. https://doi.org/10.1016/s1001-0742(11)60762-6

    Article  CAS  Google Scholar 

  • Haase S, Neumann G, Kania A, Kuzyakov Y, Römheld V, Kandeler E (2007) Elevation of atmospheric CO2 and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L. Soil Biol Biochem 39(9):2208–2221. https://doi.org/10.1016/j.soilbio.2007.03.014

    Article  CAS  Google Scholar 

  • Houghton RA (1999) The annual net flux of carbon to the atmosphere from changes in land use 1850-1990*. Tellus B 51(2):298–313. https://doi.org/10.1034/j.1600-0889.1999.00013.x

    Article  Google Scholar 

  • Hu Y, Cheng H (2013) Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale region. Environ Sci Technol 47(8):3752–3760. https://doi.org/10.1021/es304310k

    Article  CAS  Google Scholar 

  • Impellitteri CA, Allen HE, Yin Y, You SJ, Saxe JK (2000) Soil properties controlling metal partitioning. In: Selim HM, Sparks D (eds) Heavy metals release in soils. Lewis Publishers, Washington DC, pp 149–165

    Google Scholar 

  • IPCC (2007) IPCC fourth assessment report: climate change 2007. Climate change 2007: working group I: the physical science basis. https://www.ipcc.ch/publicationsanddata/ar4/wg1/en/spmsspm-projections-of.html

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182. https://doi.org/10.1093/bmb/ldg032

    Article  Google Scholar 

  • Jat RL, Jha P, Dotaniya ML, Lakaria BL, Rashmi I, Meena BP, Shirale AO, Meena AL (2018) Carbon and nitrogen mineralization in vertisol as mediated by type and placement method of residue. Environ Monit Assess 190 (7). https://doi.org/10.1007/s10661-018-6785-1

  • Kabata-Pendia A, Pendias H (1992) Trace elements in soils and plants. CRC Press, Boca Raton/London

    Google Scholar 

  • Karberg NJ, Pregitzer KS, King JS, Friend AL, Wood JR (2005) Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone. Oecologia 142(2):296–306. https://doi.org/10.1007/s00442-004-1665-5

    Article  CAS  Google Scholar 

  • Karmakar R, Das I, Dutta D, Rakshit A (2016) Potential effects of climate change on soil properties: a review. Sci Int 4:51–73

    Article  CAS  Google Scholar 

  • Kelley ME, Brauning SE, Schoof RA, Ruby MV (2002) Assessing oral bioavailability of metals in soil. Ohio: Battelle Press 2:18

    Google Scholar 

  • Khan M, Zaidi A, Aamil M (2002) Biocontrol of fungal pathogens by the use of plant growth promoting rhizobacteria and nitrogen fixing microorganisms. Indian J Bot Soc 81:255–263

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2008) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett. https://doi.org/10.1007/s10311-008-0155-0

    Article  Google Scholar 

  • Khoudi H, Maatar Y, Brini F, Fourati A, Ammar N, Masmoudi K (2013) Phytoremediation potential of Arabidopsis thaliana, expressing ectopically a vacuolar proton pump, for the industrial waste phosphogypsum. Environ Sci Pollut Res 20:270–280

    Article  CAS  Google Scholar 

  • Kumar A (2015) An overview idea on carbon sequestration. Int J Interdisciplinary Res Innov 4:100–105

    Google Scholar 

  • Kumar S, Dhar H, Nair VV, Bhattacharyya JK, Vaidya AN, Akolkar AB (2016) Characterization of municipal solid waste in high-altitude sub-tropical regions. Environ Technol 37(20):2627–2637. https://doi.org/10.1080/09593330.2016.1158322

    Article  CAS  Google Scholar 

  • Kumar S, Meena RS, Pandey A, Seema (2017) Soil acidity management and an economics response of lime and sulfur on sesame in an alley cropping system. Int J Curr Microbiol App Sci 6(3):2566–2573

    Article  CAS  Google Scholar 

  • Kumar S, Meena RS, Lal R, Singh Yadav G, Mitran T, Meena BL, Dotaniya ML, El-Sabagh A (2018) Role of legumes in soil carbon sequestration. In: Legumes for soil health and sustainable management. Springer Singapore. https://doi.org/10.1007/978-981-13-0253-4_4

    Chapter  Google Scholar 

  • Kumararaja P, Shabeer TPA, Manjaiah KM (2016) Effect of bentonite on heavy metal uptake by amaranth (Amaranthus blitumcv. Pusa Kirti) grown on metal contaminated soil. Indian J Hortic 73(2):224. https://doi.org/10.5958/0974-0112.2016.00052.9

    Article  Google Scholar 

  • Kundu S, Dotaniya ML, Lenka S (2013) Carbon sequestration in Indian agriculture. In: Lenka S, Lenka NK, Kundu S, Rao AS (eds) Climate change and natural resources management. India Publishing Agency, New Delhi, pp 269–289

    Google Scholar 

  • Kushwah SK, Dotaniya ML, Upadhyay AK, Rajendiran S, Coumar MV, Kundu S, Subba Rao A (2014) Assessing carbon and nitrogen partition in Kharif crops for their carbon sequestration potential. Natl Acad Sci Lett 37(3):213–217. https://doi.org/10.1007/s40009-014-0230-y

    Article  CAS  Google Scholar 

  • Laidlaw MAS, Filippelli GM (2008) Resuspension of urban soils as a persistent source of lead poisoning in children: a review and new directions. Appl Geochem 23(8):2021–2039. https://doi.org/10.1016/j.apgeochem.2008.05.009

    Article  CAS  Google Scholar 

  • Lal R (2001) World cropland soils as a source or sink for atmospheric carbon. Adv Agron. Elsevier. https://doi.org/10.1016/s0065-2113(01)71014-0

    Google Scholar 

  • Lal R (2003) Global potential of soil carbon sequestration to mitigate the greenhouse effect. Crit Rev Plant Sci 22(2):151–184. https://doi.org/10.1080/713610854

    Article  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota – a review. Soil Biol Biochem 43(9):1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022

    Article  CAS  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7(3):139–153. https://doi.org/10.1007/s005720050174

    Article  CAS  Google Scholar 

  • Li H, Shi W-y, Shao H-b, Shao M-a (2009) The remediation of the lead-polluted garden soil by natural zeolite. J Hazard Mater 169(1–3):1106–1111. https://doi.org/10.1016/j.jhazmat.2009.04.067

    Article  CAS  Google Scholar 

  • Li H-b, Yu S, Li G-l, Deng H, Luo X-s (2011) Contamination and source differentiation of Pb in park soils along an urban–rural gradient in Shanghai. Environ Pollut 159(12):3536–3544. https://doi.org/10.1016/j.envpol.2011.08.013

    Article  CAS  Google Scholar 

  • Li F, Huang J, Zeng G, Yuan X, Li X, Liang J, Wang X, Tang X, Bai B (2013) Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J Geochem Explor 132:75–83. https://doi.org/10.1016/j.gexplo.2013.05.007

    Article  CAS  Google Scholar 

  • Li F, Huang J, Zeng G, Huang X, Liu W, Wu H, Yuan Y, He X, Lai M (2015a) Spatial distribution and health risk assessment of toxic metals associated with receptor population density in street dust: a case study of Xiandao District, Changsha, Middle China. Environ Sci Pollut Res 22(9):6732–6742. https://doi.org/10.1007/s11356-014-3753-3

    Article  CAS  Google Scholar 

  • Li F, Huang J, Zeng G, Liu W, Huang X, Huang B, Gu Y, Shi L, He X, He Y (2015b) Toxic metals in topsoil under different land uses from Xiandao District, middle China: distribution, relationship with soil characteristics, and health risk assessment. Environ Sci Pollut Res 22(16):12261–12275. https://doi.org/10.1007/s11356-015-4425-7

    Article  CAS  Google Scholar 

  • Li F, Zhang J, Jiang W, Liu C, Zhang Z, Zhang C, Zeng G (2016) Spatial health risk assessment and hierarchical risk management for mercury in soils from a typical contaminated site, China. Environ Geochem Health 39(4):923–934. https://doi.org/10.1007/s10653-016-9864-7

    Article  CAS  Google Scholar 

  • Liang J, Feng C, Zeng G, Zhong M, Gao X, Li X, He X, Li X, Fang Y, Mo D (2017) Atmospheric deposition of mercury and cadmium impacts on topsoil in a typical coal mine city, Lianyuan, China. Chemosphere 189:198–205. https://doi.org/10.1016/j.chemosphere.2017.09.046

    Article  CAS  Google Scholar 

  • Liu J, Chen J, Huang L (2015) Heavy metal removal from MSS fly ash by thermal and chlorination treatments. Sci Rep 5(1). https://doi.org/10.1038/srep17270

  • Lojkova L, Datta R, Sajna M, Marfo TD, Janous D, Pavelka M, Formanek P (2015) Limitation of proteolysis in soils of forests and other types of ecosystems by diffusion of substrate. In: Amino acids, 2015, vol 8. Springer, Wien, pp 1690–1691

    Google Scholar 

  • Mandal A, Thakur JK, Sahu A, Bhattacharjya S, Manna MC, Patra AK (2016) Plant–microbe interaction for the removal of heavy metal from contaminated site. In: Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-2854-0_11

    Chapter  Google Scholar 

  • Manna MC (2013) Dynamics of soil carbon pools and carbon sequestration. In: Kundu S, Mohanty M (eds) IISS contribution in frontier areas of soil research. Indian Institute of Soil Science, Nabibagh, pp 47–64

    Google Scholar 

  • Marfo TD, Datta R, Lojkova L, Janous D, Pavelka M, Formanek P (2015) Limitation of activity of acid phosphomonoesterase in soils. In: Amino acids, vol 8. Springer, Wien, pp 1691–1691

    Google Scholar 

  • Marschner H (1995) Saline soil. In: Mineral nutrition of higher plants. Academic, New York, pp 657–680

    Google Scholar 

  • McGrath S, Brookes P, Giller K (1988) Effects of potentially toxic metals in soil derived from past applications of sewage sludge on nitrogen fixation by trifolium repens L. Soil Biol Biochem 20(4):415–424

    Article  CAS  Google Scholar 

  • Meena VD, Dotaniya ML (2017) Climate change, water scarcity and sustainable agriculture for food security. In: Kumar PS, Kanwat M, Meena PD, Kumar V, Alone RA (eds) Climate change & sustainable agriculture. New India Publishing Agency, New Delhi, pp 123–142

    Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015a) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena RS, Yadav RS, Reager ML, De N, Meena VS, Verma JP, Verma SK, Kansotia BC (2015b) Temperature use efficiency and yield of groundnut varieties in response to sowing dates and fertility levels in Western Dry Zone of India. Am J Exp Agric 7(3):170–177

    CAS  Google Scholar 

  • Meena H, Meena RS, Singh B, Kumar S (2016) Response of bio-regulators to morphology and yield of clusterbean [Cyamopsis tetragonoloba (L.) Taub.] under different sowing environments. J Appl Nat Sci 8(2):715–718

    Article  CAS  Google Scholar 

  • Meena RS, Kumar S, Pandey A (2017) Response of sulfur and lime levels on productivity, nutrient content and uptake of sesame under guava (Psidium guajava L.) based agri-horti system in an acidic soil of eastern Uttar Pradesh, India. J Crop Weed 13(2):222–227

    Google Scholar 

  • Meena BL, Fagodiya RK, Prajapat K, Dotaniya ML, Kaledhonkar MJ, Sharma PC, Meena RS, Mitran T, Kumar S (2018a) Legume green manuring: an option for soil sustainability. In: Meena R, Das A, Yadav G, Lal R (eds) Legumes for soil health and sustainable management. Springer, Singapore, pp 387–408. https://link.springer.com/chapter/10.1007%2F978-981-13-0253-4_12

    Chapter  Google Scholar 

  • Meena RS, Mitran T, Kumar S, Yadav GS, Bohra JS, Datta R (2018b) Application of remote sensing for sustainable agriculture and forest management. Elsevier

    Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018c) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere. Rev Plant Growth Regul 84:207–223

    Article  CAS  Google Scholar 

  • Molaei A, Lakzian A, Datta R, Haghnia G, Astaraei A, Rasouli-Sadaghiani M, Ceccherini MT (2017a) Impact of chlortetracycline and sulfapyridine antibiotics on soil enzyme activities. Int Agrophys 31(4):499–505

    CAS  Google Scholar 

  • Molaei A, Lakzian A, Haghnia G, Astaraei A, Rasouli-Sadaghiani M, Ceccherini MT, Datta R (2017b) Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: an incubation study. PLoS One 12(7):e0180663

    Google Scholar 

  • Naser HM, Rahman MZ, Sultana S, Quddus MA, Haoque MA (2017) Remediation of heavy metal polluted soil through organic amendments. Bangladesh J Agric Res 42(4):589–598. https://doi.org/10.3329/bjar.v42i4.35786

    Article  Google Scholar 

  • Nash KL, Jensen MP, Schmidt MA (1998) Actinide immobilization in the subsurface environment by in-situ treatment with a hydrolytically unstable organophosphorus complexant: uranyl uptake by calcium phytate. J Alloys Compd 271–273:257–261. https://doi.org/10.1016/s0925-8388(98)00066-8

    Article  Google Scholar 

  • Natarajan A, Hegde R, Naidu L, Raizada A, Adhikari R, Patil S, Rajan K, Sarkar D (2010) Soil and plant nutrient loss during the recent floods in North Karnataka: implications and ameliorative measures. Curr Sci 99(10):1333–1340

    CAS  Google Scholar 

  • Nwoko C, Peter-Onoh C, Onoh GO (2012) Remediation of trace metal contaminated auto-mechanic soils with mineral supplementedorganic amendments. Univers J Environ Res Technol 2(6)

    Google Scholar 

  • Odukudu FB, Ayenimo JG, Adekunle AS, Yusuff AM, Mamba BB (2014) Safety evaluation of heavy metals exposure from consumer products. Int J Consum Stud 38(1):25–34. https://doi.org/10.1111/ijcs.12061

    Article  Google Scholar 

  • Okorie A, Entwistle J, Dean JR (2011) The application of in vitro gastrointestinal extraction to assess oral bioaccessibility of potentially toxic elements from an urban recreational site. Appl Geochem 26(5):789–796. https://doi.org/10.1016/j.apgeochem.2011.01.036

    Article  CAS  Google Scholar 

  • Oliva J, De Pablo J, Cortina J-L, Cama J, Ayora C (2011) Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite II™: column experiments. J Hazard Mater 194:312–323. https://doi.org/10.1016/j.jhazmat.2011.07.104

    Article  CAS  Google Scholar 

  • Oliver DP, Tiller KG, Conyers MK, Slattery WJ, Alston AM, Merry RH (1996) Effectiveness of liming to minimise uptake of cadmium by wheat and barley grain grown in the field. Aust J Agric Res 47(7):1181. https://doi.org/10.1071/ar9961181

    Article  CAS  Google Scholar 

  • Ozcan H, Guvenc S, Guvenc L, Demir G (2016) Municipal solid waste characterization according to different income levels: a case study. Sustainability 8(10):1044. https://doi.org/10.3390/su8101044

    Article  Google Scholar 

  • Parr JF, Smith S (1969) A multipurpose manifold assembly in evaluating microbiological effects of pesticides. Soil Sci 107:271–276

    Article  CAS  Google Scholar 

  • Park JH, Choppala GK, Bolan NS, Chung JW, Chuasavathi T (2011) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348(1–2):439–451. https://doi.org/10.1007/s11104-011-0948-y

    Article  CAS  Google Scholar 

  • Pendall E, Leavitt SW, Brooks T, Kimball BA, Pinter PJ, Wall GW, LaMorte RL, Wechsung G, Wechsung F, Adamsen F, Matthias AD, Thompson TL (2001) Elevated CO2 stimulates soil respiration in a FACE wheat field. Basic Appl Ecol 2(3):193–201. https://doi.org/10.1078/1439-1791-00053

    Article  CAS  Google Scholar 

  • Pierart A, Shahid M, Séjalon-Delmas N, Dumat C (2015) Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. J Hazard Mater 289:219–234. https://doi.org/10.1016/j.jhazmat.2015.02.011

    Article  CAS  Google Scholar 

  • Pipalde JS, Dotaniya ML (2018) Interactive effects of lead and nickel contamination on nickel mobility dynamics in spinach. Int J Environ Res 12(5):553–560. https://doi.org/10.1007/s41742-018-0107-x

    Article  Google Scholar 

  • Post WM, Kwon KC (2008) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6(3):317–327. https://doi.org/10.1046/j.1365-2486.2000.00308.x

    Article  Google Scholar 

  • Puga AP, Abreu CA, Melo LCA, Beesley L (2015) Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. J Environ Manag 159:86–93. https://doi.org/10.1016/j.jenvman.2015.05.036

    Article  CAS  Google Scholar 

  • Puschenreiter M, Horak O, Friesl W, Hartl W (2005) Low-cost agricultural measures to reduce heavy metal transfer into the food chain – a review. Plant Soil Environ 51(1):1–11. https://doi.org/10.17221/3549-pse

    Article  Google Scholar 

  • Qiao L (1997) The effects of clay amendment and composting on metal speciation in digested sludge. Water Res 31(5):951–964. https://doi.org/10.1016/s0043-1354(96)00290-4

    Article  CAS  Google Scholar 

  • Rajendiran S, Dotaniya ML, Coumar MV, Panwar NR, Saha JK (2015) Heavy metal polluted soils in India: status and counter measures. JNKVV Res J 49:320–337

    Google Scholar 

  • Rajendiran S, Basanta Singh T, Saha JK, Vassanda Coumar M, Dotaniya ML, Kundu S, Patra AK (2018) Spatial distribution and baseline concentration of heavy metals in swell–shrink soils of Madhya Pradesh. In: India environmental pollution. Springer, Singapore. https://doi.org/10.1007/978-981-10-5792-2_11

    Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574. https://doi.org/10.1016/j.biotechadv.2012.04.011

    Article  CAS  Google Scholar 

  • Ram K, Meena RS (2014) Evaluation of pearl millet and mungbean intercropping systems in arid region of Rajasthan (India). Bangladesh J Bot 43(3):367–370

    Article  Google Scholar 

  • Rijkenberg MJA, Depree CV (2010) Heavy metal stabilization in contaminated road-derived sediments. Sci Total Environ 408(5):1212–1220. https://doi.org/10.1016/j.scitotenv.2009.11.053

    Article  CAS  Google Scholar 

  • Roane TM, Kellogg ST (1996) Characterization of bacterial communities in heavy metal contaminated soils. Can J Microbiol 42(6):593–603. https://doi.org/10.1139/m96-080

    Article  CAS  Google Scholar 

  • Rodrigues SM, Cruz N, Coelho C, Henriques B, Carvalho L, Duarte AC, Pereira E, Römkens PFAM (2013) Risk assessment for Cd, Cu, Pb and Zn in urban soils: chemical availability as the central concept. Environ Pollut 183:234–242. https://doi.org/10.1016/j.envpol.2012.10.006

    Article  CAS  Google Scholar 

  • Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Chang 61(3):261–293. https://doi.org/10.1023/b:clim.0000004577.17928.fa

    Article  CAS  Google Scholar 

  • Rutgers M, Wouterse M, Drost SM, Breure AM, Mulder C, Stone D, Creamer RE, Winding A, Bloem J (2016) Monitoring soil bacteria with community-level physiological profiles using biolog™ ECO-plates in the Netherlands and Europe. Appl Soil Ecol 97:23–35. https://doi.org/10.1016/j.apsoil.2015.06.007

    Article  Google Scholar 

  • Sabir M, Waraich EA, Hakeem KR, Öztürk M, Ahmad HR, Shahid M (2013) Phytoremediation. In: Soil remediation and plants. Elsevier. https://doi.org/10.1016/b978-0-12-799937-1.00004-8

    Chapter  Google Scholar 

  • Saha JK, Selladurai R, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Soil protection policy. In: Environmental chemistry for a sustainable world. Springer Singapore. https://doi.org/10.1007/978-981-10-4274-4_13

    Google Scholar 

  • Seaman JC, Hutchison JM, Jackson BP, Vulava VM (2003) In situ treatment of metals in contaminated soils with phytate. J Environ Qual 32(1):153. https://doi.org/10.2134/jeq2003.0153

    Article  CAS  Google Scholar 

  • Shahid M, Sabir M, Arif Ali M, Ghafoor A (2014) Effect of organic amendments on phytoavailability of nickel and growth of berseem (Trifolium alexandrinum) under nickel contaminated soil conditions. Chem Speciat Bioavailab 26(1):37–42. https://doi.org/10.3184/095422914x13886890590610

    Article  Google Scholar 

  • Shamina Imran Pathan TV, Giagnoni L, Datta R, Baldrian P, Nannipieri P, Renella G (2018) Microbial expression profiles in the rhizosphere of two maize lines differing in N use efficiency. Plant Soil:401–413

    Article  CAS  Google Scholar 

  • Sharma A, Talukder G (1987) Effects of metals on chromosomes of higher organisms. Environ Mutagen 9(2):191–226. https://doi.org/10.1002/em.2860090210

    Article  CAS  Google Scholar 

  • Shazia G, Alia N, Iftikhar F, Muhammad I (2015) Reducing heavy metals extraction from contaminated soils using organic and inorganic amendments–a review. Pol J Environ Stud 24:1423–1426

    Google Scholar 

  • Sihag SK, Singh MK, Meena RS, Naga S, Bahadur SR, Gaurav, Yadav RS (2015) Influences of spacing on growth and yield potential of dry direct seeded rice (Oryza sativa L.) cultivars. Ecoscan 9(1–2):517–519

    Google Scholar 

  • Singh J, Kalamdhad AS (2012) Concentration and speciation of heavy metals during water hyacinth composting. Bioresour Technol 124:169–179

    Article  CAS  Google Scholar 

  • Smičiklas I, Smiljanić S, Perić-Grujić A, Šljivić-Ivanović M, Mitrić M, Antonović D (2014) Effect of acid treatment on red mud properties with implications on Ni(II) sorption and stability. Chem Eng J 242:27–35. https://doi.org/10.1016/j.cej.2013.12.079

    Article  CAS  Google Scholar 

  • Smil V (2000) Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Environ 25(1):53–88. https://doi.org/10.1146/annurev.energy.25.1.53

    Article  Google Scholar 

  • Soares MAR, Quina MJ, Quinta-Ferreira RM (2015) Immobilisation of lead and zinc in contaminated soil using compost derived from industrial eggshell. J Environ Manag 164:137–145. https://doi.org/10.1016/j.jenvman.2015.08.042

    Article  CAS  Google Scholar 

  • Sresty TVS, Madhava Rao KV (1999) Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeonpea. Environ Exp Bot 41(1):3–13. https://doi.org/10.1016/s0098-8472(98)00034-3

    Article  CAS  Google Scholar 

  • Staddon PL, Fitter AH, Graves JD (1999) Effect of elevated atmospheric CO2 on mycorrhizal colonization, external mycorrhizal hyphal production and phosphorus inflow in Plantago lanceolata and Trifolium repens in association with the arbuscular mycorrhizal fungus Glomus mosseae. Glob Chang Biol 5(3):347–358. https://doi.org/10.1046/j.1365-2486.1999.00230.x

    Article  Google Scholar 

  • Stefano DC, Milea D, Porcino N, Sammartano S (2006) Speciation of Phytate ion in aqueous solution sequestering ability toward mercury(II) cation in NaClaqat different ionic strengths. J Agric Food Chem 54(4):1459–1466. https://doi.org/10.1021/jf0522208

    Article  CAS  Google Scholar 

  • Stefano DC, Lando G, Milea D, Pettignano A, Sammartano S (2010) Formation and stability of cadmium(II)/Phytate complexes by different electrochemical techniques. Critical analysis of results. J Solut Chem 39:179–195

    Google Scholar 

  • Tarnawski S, Hamelin J, Jossi M, Aragno M, Fromin N (2006) Phenotypic structure of Pseudomonas populations is altered under elevated pCO2 in the rhizosphere of perennial grasses. Soil Biol Biochem 38(6):1193–1201. https://doi.org/10.1016/j.soilbio.2005.10.003

    Article  CAS  Google Scholar 

  • The World Bank Annual Report 2015 (2015) World Bank annual report. The World Bank. https://doi.org/10.1596/978-1-4648-0574-5

  • Thornton I, Farago ME, Thums CR, Parrish RR, McGill RAR, Breward N, Fortey NJ, Simpson P, Young SD, Tye AM, Crout NMJ, Hough RL, Watt J (2008) Urban geochemistry: research strategies to assist risk assessment and remediation of brownfield sites in urban areas. Environ Geochem Health 30(6):565–576. https://doi.org/10.1007/s10653-008-9182-9

    Article  CAS  Google Scholar 

  • USEPA (2008) Landfill methane outreach program: basic information. Available: http://www.epa.gov/lmop/overview.htm. Accessed 6 May 2018

    Google Scholar 

  • Uchimiya M, Cantrell KB, Hunt PG, Novak JM, Chang SC (2012) Retention of heavy metals in a Typic Kandiudult amended with different manure-based biochars. J Environ Qual 41:1138–1149

    Article  CAS  Google Scholar 

  • Varma D, Meena RS, Kumar S (2017) Response of mungbean to fertility and lime levels under soil acidity in an alley cropping system in Vindhyan Region, India. Int J Chem Stud 5(2):384–389

    Google Scholar 

  • Varrault G, Bermond A (2011) Kinetics as a tool to assess the immobilization of soil trace metals by binding phase amendments for in situ remediation purposes. J Hazard Mater 192(2):808–812. https://doi.org/10.1016/j.jhazmat.2011.05.097

    Article  CAS  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Google Scholar 

  • Verma SK, Singh SB, Prasad SK, Meena RN, Meena RS (2015b) Influence of irrigation regimes and weed management practices on water use and nutrient uptake in wheat (Triticum aestivum L. Emend. Fiori and Paol.). Bangladesh J Bot 44(3):437–442

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30(1):159–163. https://doi.org/10.1007/s10529-007-9515-2

    Article  CAS  Google Scholar 

  • Wellman DM, Icenhower JP, Owen AT (2006) Comparative analysis of soluble phosphate amendments for the remediation of heavy metal contaminants: effect on sediment hydraulic conductivity. Environ Chem 3(3):219. https://doi.org/10.1071/en05023

    Article  CAS  Google Scholar 

  • Wellman DM, Pierce EM, Valenta MM (2007) Efficacy of soluble sodium tripolyphosphate amendments for the in-situ immobilisation of uranium. Environ Chem 4(5):293. https://doi.org/10.1071/en07030

    Article  CAS  Google Scholar 

  • Wu S, Shi Y, Zhou S, Wang C, Chen H (2016) Modeling and mapping of critical loads for heavy metals in Kunshan soil. Sci Total Environ 569-570:191–200. https://doi.org/10.1016/j.scitotenv.2016.06.072

    Article  CAS  Google Scholar 

  • Xie Y, Fan J, Zhu W, Amombo E, Lou Y, Chen L, Fu J (2016) Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.00755

  • Xiong T, Austruy A, Pierart A, Shahid M, Schreck E, Mombo S, Dumat C (2016) Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture. J Environ Sci 46:16–27. https://doi.org/10.1016/j.jes.2015.08.029

    Article  Google Scholar 

  • Yadav GS, Babu S, Meena RS, Debnath C, Saha P, Debbaram C, Datta M (2017a) Effects of godawariphosgold and single supper phosphate on groundnut (Arachis hypogaea) productivity, phosphorus uptake, phosphorus use efficiency and economics. Indian J Agric Sci 87(9):1165–1169

    CAS  Google Scholar 

  • Yadav GS, Datta R, Imran Pathan S, Lal R, Meena RS, Babu S, Das A, Bhowmik S, Datta M, Saha P (2017b) Effects of conservation tillage and nutrient management practices on soil fertility and productivity of rice (Oryza sativa L.)–rice system in North Eastern Region of India. Sustainability 9(10):1816

    Google Scholar 

  • Yadav GS, Lal R, Meena RS, Babu S, Das A, Bhomik SN, Datta M, Layak J, Saha P (2017c) Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in North Eastern Region of India. Ecol Indic

    Google Scholar 

  • Yoon JK, Cao X, Ma LQ (2007) Application methods affect phosphorus-induced lead immobilization from a contaminated soil. J Environ Qual 36(2):373. https://doi.org/10.2134/jeq2006.0316

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to Dr. H.M. Meena, Scientist, ICAR-Central Arid Zone Research Institute, Jodhpur, India, for providing motivation and incorporating suggestions during the writing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasudev Meena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meena, V. et al. (2020). Sustainable C and N Management Under Metal-Contaminated Soils. In: Datta, R., Meena, R., Pathan, S., Ceccherini, M. (eds) Carbon and Nitrogen Cycling in Soil. Springer, Singapore. https://doi.org/10.1007/978-981-13-7264-3_9

Download citation

Publish with us

Policies and ethics