Skip to main content

Small Farmers and Sustainable N and P Management: Implications and Potential Under Changing Climate

  • Chapter
  • First Online:
Carbon and Nitrogen Cycling in Soil

Abstract

The use of inorganic fertilizers has been an efficient way to increase agricultural production. Ever-increasing global population threatening food security, risks of changing climate affecting plant productivity, and the need for environment-friendly agriculture are all requiring the rational use of fertilizers to improve their use efficiencies. The increase in agricultural production in the recent past and in the future is associated with intensified (many folds) use of nitrogen (N) fertilizers, whose irrational use threatens the neighboring micro- and macro-environments by polluting them (e.g., eutrophication) and thus affecting the functioning of nearby animal and plant ecosystems. Therefore, this chapter critically focuses on these challenges faced by the small farmers with persistence farming in managing the precise use of nitrogenous and phosphorus (P) fertilizers. A highlight is given on the socioeconomic features of this persistence farming, which are the key drivers for decision-making in all the agricultural activities of this type of farming. In addition, the interaction of fertilizer management and crop production is provided with respect to small farms, and the review on management strategies for rational use of fertilizers proposed by esteemed international organizations and agencies is described and analyzed with respect to scientific achievements. Best management practices for N and P fertilizers and their significance in agricultural production and plant functioning are proposed also. In last, the management of these two agriculturally important nutrients (N and P) is concluded for sustainable productivity on small farms, and the major players involved in this regard are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AN:

Ammonium nitrate

BMPs:

Best management practices

CAN:

Calcium ammonium nitrate

ENSET:

Efficient Nutrient Supply in East Africa

FAO:

Food and Agriculture Organization

H2S:

Hydrogen sulfide

HHV:

High heat value

HLPE:

High-Level Panel of Experts of the Committee on Food Security

IFA:

International Fertilizer Association

IFAD:

International Fund for Agricultural Development

MOB:

Methane-oxidizing bacteria

NH4 + :

Ammonium N

NMP:

Nutrient management plan

NO3 :

Nitrate N

NUE:

Nitrogen use efficiency

PGPRs:

Plant growth-promoting rhizobacteria

SPAD:

Soil plant analysis development

UAN:

Urea ammonium nitrate

UNEP:

United Nations Environment Programme

UNIDO:

United Nations Industrial Development Organization

WT:

Wild type

References

  • Abele S, Frohberg K (2003) Subsistence agriculture in Central and Eastern Europe: how to break the vicious circle? Studies on the agricultural and food sector in Central and Eastern Europe, vol 22. IOMA, Halle

    Google Scholar 

  • Adamopoulos T, Restuccia D (2014) The size distribution of farms and international productivity differences. Am Econ Rev 104:1667–1697

    Article  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    Article  CAS  Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology-2, vol 2. Krieger Publishing Company, Melbourne

    Google Scholar 

  • Atılgan A, Coşkan A, Saltuk B, Erkan M (2007) Antalya yöresindeki seralarda kimyasal ve organik gübre kullanım düzeyleri ve olası çevre etkileri. Ekoloji 15:37–47

    Google Scholar 

  • Bandaogo A, Bidjokazo F, Youl S, Safo E, Abaidoo R, Andrews O (2014) Effect of fertilizer deep placement with urea supergranule on nitrogen use efficiency of irrigated rice in Sourou Valley (Burkina Faso). Nutr Cycl Agroecosyst 102:79–89

    Article  CAS  Google Scholar 

  • Barrett CB, Bellemare MF, Hou JY (2010) Reconsidering conventional explanations of the inverse productivity–size relationship. World Dev 38:88–97

    Article  Google Scholar 

  • Bolger TP, Angus JF, Peoples MB (2003) Comparison of nitrogen mineralisation patterns from root residues of Trifolium subterraneum and Medicago sativa. Biol Fertil Soils 38:296–300

    Article  CAS  Google Scholar 

  • Bosc P-M, Berdegué JA, Goïta M, JDvd P, Sekine K, Zhang L (2013) Investing in smallholder agriculture for food security: a report by the high level panel of experts on food security and nutrition. FAO, Rome

    Google Scholar 

  • Brussaard L, de Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability Agriculture. Ecotoxicol Environ 121:233–244

    Google Scholar 

  • Carr P (2017) Guest editorial: conservation tillage for organic farming. Agriculture 7:19

    Article  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499

    Article  Google Scholar 

  • Cornia GA (1985) Farm size, land yields and the agricultural production function: an analysis for fifteen developing countries. World Dev 13:513–534

    Article  Google Scholar 

  • Coyle C, Creamer RE, Schulte RPO, O’Sullivan L, Jordan P (2016) A functional land management conceptual framework under soil drainage and land use scenarios. Environ Sci Pol 56:39–48

    Article  Google Scholar 

  • Crowder DW, Northfield TD, Strand MR, Snyder WE (2010) Organic agriculture promotes evenness and natural pest control. Nature 466:109–112

    Article  CAS  Google Scholar 

  • Crowther TW et al (2016) Quantifying global soil carbon losses in response to warming. Nature 540:104–108

    Article  CAS  Google Scholar 

  • Datta R, Anand S, Moulick A, Baraniya D, Pathan SI, Rejsek K, Vranova V, Sharma M, Sharma D, Kelkar A (2017a) How enzymes are adsorbed on soil solid phase and factors limiting its activity: a review. Int Agrophys 31(2):287–302

    Article  CAS  Google Scholar 

  • Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena R, Formanek P (2017b) Enzymatic degradation of lignin in soil: a review. Sustainability 9(7):1163

    Article  CAS  Google Scholar 

  • Datta R, Baraniya D, Wang Y-F, Kelkar A, Meena RS, Yadav GS, Teresa Ceccherini M, Formanek P (2017c) Amino acid: its dual role as nutrient and scavenger of free radicals in soil. Sustainability 9(8):1402

    Article  CAS  Google Scholar 

  • Deininger K, Byerlee D (2011) Rising global interest in farmland. The World Bank, Washington, DC. https://doi.org/10.1596/978-0-8213-8591-3

    Book  Google Scholar 

  • De-la-Peña C et al (2010) Root secretion of defense-related proteins is development-dependent and correlated with flowering time. J Biol Chem 285:30654–30665. https://doi.org/10.1074/jbc.m110.119040

    Article  Google Scholar 

  • Delgado J, Follett R (2010) Advances in nitrogen management for water quality. Soil and Water Conservation Society, Ankeny

    Google Scholar 

  • Delgado J, Alva A, Fares A, Paramasivam S, Mattos D Jr, Sajwan K (2006) Numerical modeling to study the fate of nitrogen in cropping systems and best management case studies. J Crop Improv 15:421–470

    Article  CAS  Google Scholar 

  • Delgado J, Shaffer M, Lal H, McKinney S, Gross C, Cover H (2008) Assessment of nitrogen losses to the environment with a Nitrogen Trading Tool (NTT). Comput Electron Agric 63:193–206

    Article  Google Scholar 

  • Dupont FM, Altenbach SB (2003) Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. J Cereal Sci 38:133–146

    Article  CAS  Google Scholar 

  • Eastwood R, Lipton M, Newell A (2010) Chapter 65: Farm size. In: Handbook of agricultural economics. Elsevier, Amsterdam. https://doi.org/10.1016/s1574-0072(09)04065-1

    Chapter  Google Scholar 

  • Ellis F (2005) Small farms, livelihood diversification, and rural-urban transitions: strategic issues in Sub-Saharan Africa. In: The future of small farms. IFPRI, Overseas Dev. Ins. and Imperial College, Kent, p 135

    Google Scholar 

  • Fairhust T (1999) The importance, distribution and causes of phosphorus deficiency as a constraint to crop production in the tropics. In: Agroforestry forum, pp 2–8

    Google Scholar 

  • FAO (2012) The state of food and agriculture 2012: investing in agriculture for a better future. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2013) 2000 world census of agriculture methodological review (1996–2005). Food and Agriculture organization of the United Nations, Rome

    Google Scholar 

  • FAO (2014a) Putting family farmers first to eradicate hunger. Food and Agriculture organization of the United Nations, Rome

    Google Scholar 

  • FAO (2014b) The State of Food and Agriculture 2014: innovation in family farming. Food and Agriculture organization of the United Nations, Rome

    Google Scholar 

  • Fließbach A, Winkler M, Lutz MP, Oberholzer H-R, Mäder P (2009) Soil amendment with Pseudomonas fluorescens CHA0: lasting effects on soil biological properties in soils low in microbial biomass and activity. Microb Ecol 57:611–623

    Article  Google Scholar 

  • Flores H (1999) ‘Radicle’ biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226

    Article  CAS  Google Scholar 

  • Follett R, Delgado J (2002) Nitrogen fate and transport in agricultural systems. J Soil Water Conserv 57:402–408

    Google Scholar 

  • Follett RF, Keeney DR, Cruse RM, Meisinger JJ, Randall GW (1991) Estimating nitrogen budgets for soil-crop systems. Soil Science Society of America, Madison

    Book  Google Scholar 

  • Freitas IF, Novais RF, Villani EMA, Novais SV (2013) Phosphorus extracted by ion exchange resins and mehlich-1 from oxisols (latosols) treated with different phosphorus rates and sources for varied soil-source contact periods. Rev Bras Ciênc Solo 37:667–677

    Article  Google Scholar 

  • Giller KE, Beare MH, Lavelle P, Izac AMN, Swift MJ (1997) Agricultural intensification, soil biodiversity and agroecosystem function. Appl Soil Ecol 6:3–16

    Article  Google Scholar 

  • Gojon A (2017) Nitrogen nutrition in plants: rapid progress and new challenges. J Exp Bot 68:2457–2462

    Article  CAS  Google Scholar 

  • Guiñazú LB, Andrés JA, Del Papa MF, Pistorio M, Rosas SB (2009) Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti. Biol Fertil Soils 46:185–190

    Article  Google Scholar 

  • Haines-Young R, Potschin-Young M (2018) Revision of the common international classification for ecosystem services (CICES V5.1): a policy brief. One Ecosystem 3:e27108

    Article  Google Scholar 

  • Harris JA et al (2011) Does soil biology hold the key to optimized slurry management? A manifesto for research. Soil Use Manag 27:464–469

    Article  Google Scholar 

  • Hazell P, Poulton C, Wiggins S, Dorward A (2010) The future of small farms: trajectories and policy priorities. World Dev 38:1349–1361

    Article  Google Scholar 

  • Heidari M, Karami V (2014) Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress. J Saudi Soc Agric Sci 13:9–13

    Google Scholar 

  • Heltberg R (1998) Rural market imperfections and the farm size— productivity relationship: evidence from Pakistan. World Dev 26:1807–1826

    Article  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    Article  CAS  Google Scholar 

  • Hochmuth G, Mylavarapu R, Hanlon E (2014) The four Rs of fertilizer management University of Florida, Electronic Data Information Source

    Google Scholar 

  • Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308

    Article  CAS  Google Scholar 

  • Holzhaider JC, Sibley MD, Taylor AH, Singh PJ, Gray RD, Hunt GR (2011) The social structure of New Caledonian crows. Anim Behav 81:83–92. https://doi.org/10.1016/j.anbehav.2010.09.015

    Article  Google Scholar 

  • IFAD U (2013) Smallholders, food security and the environment. International Fund for Agricultural Development, Rome

    Google Scholar 

  • International F (2013) Powering up smallholder farmers to make food fair: a five point agenda

    Google Scholar 

  • Jayne TS, Chamberlin J, Headey DD (2014) Land pressures, the evolution of farming systems, and development strategies in Africa: a synthesis. Food Policy 48:1–17

    Article  Google Scholar 

  • Johnston AM, Bruulsema TW (2014) 4R nutrient stewardship for improved nutrient use efficiency. Procedia Eng 83:365–370

    Article  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, van Hees PAW (2003) Organic acid behavior in soils misconceptions and knowledge gaps. Plant Soil 248:31–41

    Article  CAS  Google Scholar 

  • Keesstra SD et al (2016) The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2:111–128

    Article  Google Scholar 

  • Khabarov N, Obersteiner M (2017) Global phosphorus fertilizer market and national policies: a case study revisiting the 2008 price peak. Front Nutr 4:22. https://doi.org/10.3389/fnut.2017.00022

    Article  Google Scholar 

  • Khalil S, Loynachan TE, Tabatabai MA (1994) Mycorrhizal dependency and nutrient uptake by improved and unimproved corn and soybean cultivars. Agron J 86:949

    Article  Google Scholar 

  • Kirankumar R, Jagadeesh K, Krishnaraj P, Patil M (2010) Enhanced growth promotion of tomato and nutrient uptake by plant growth promoting rhizobacterial isolates in presence of tobacco mosaic virus pathogen. Karnataka J Agric Sci 21:309–311

    Google Scholar 

  • Kogbe JOS, Adediran JA (2003) Influence of nitrogen, phosphorus and potassium application on the yield of maize in the savanna zone of Nigeria. Afr J Biotechnol 2:345–349

    Article  Google Scholar 

  • Koukoulakis P, Papadopoulos A (2001) Soil analysis interpretation. A. Stamoulis Publications, Athens. (in Greek)

    Google Scholar 

  • Larson DF, Otsuka K, Matsumoto T, Kilic T (2013) Should African rural development strategies depend on smallholder farms? An exploration of the inverse-productivity hypothesis. Agric Econ 45:355–367

    Article  Google Scholar 

  • Liu B, Tu C, Hu S, Gumpertz M, Ristaino JB (2007) Effect of organic, sustainable, and conventional management strategies in grower fields on soil physical, chemical, and biological factors and the incidence of Southern blight. Appl Soil Ecol 37:202–214

    Article  Google Scholar 

  • Liu TQ, Fan DJ, Zhang XX, Chen J, Li CF, Cao CG (2015) Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crop Res 184:80–90

    Article  Google Scholar 

  • Lopez-Bellido R, Shepherd C, Barraclough P (2004) Predicting post-anthesis N requirements of bread wheat with a Minolta SPAD meter. Eur J Agron 20:313–320

    Article  Google Scholar 

  • Lowder SK, Skoet J, Raney T (2016) The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev 87:16–29

    Article  Google Scholar 

  • Lu C, Tian H (2017) Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth Syst Sci Data 9:181–192

    Article  Google Scholar 

  • Lucas JA (2010) Advances in plant disease and pest management. J Agric Sci 149:91–114

    Article  Google Scholar 

  • Łukowiak R, Grzebisz W, Sassenrath GF (2016) New insights into phosphorus management in agriculture—a crop rotation approach. Sci Total Environ 542:1062–1077

    Article  CAS  Google Scholar 

  • Marles RJ (2017) Mineral nutrient composition of vegetables, fruits and grains: the context of reports of apparent historical declines. J Food Compos Anal 56:93–103

    Article  CAS  Google Scholar 

  • Masso C, Baijukya F, Ebanyat P, Bouaziz S, Wendt J, Bekunda M, Vanlauwe B (2017) Dilemma of nitrogen management for future food security in sub-Saharan Africa – a review. Soil Res 55:425

    Article  Google Scholar 

  • Masters WA, Djurfeldt AA, De Haan C, Hazell P, Jayne T, Jirström M, Reardon T (2013) Urbanization and farm size in Asia and Africa: implications for food security and agricultural research. Glob Food Sec 2:156–165

    Article  Google Scholar 

  • Matheyarasu R, Sheshadri B, Bolan NS, Naidu R (2017) Nutrient budgeting as an approach to assess and manage the impacts of long-term irrigation using abattoir wastewater water. Air Soil Pollut 228:1–14

    Article  CAS  Google Scholar 

  • Maxwell S (2005) Six characters (and a few more) in search of an author: how to rescue rural development before it’s too late. Agric Econ 32:61–73

    Article  Google Scholar 

  • Meena RS, Yadav RS (2014) Phonological performance of groundnut varieties under sowing environments in hyper arid zone of Rajasthan, India. J App and Nat Sci 6(2):344–348

    CAS  Google Scholar 

  • Meena RS, Kumar S, Pandey A (2017) Response of sulfur and lime levels on productivity, nutrient content and uptake of sesame under guava (Psidium guajava L.) based agri-horti system in an acidic soil of eastern Uttar Pradesh, India. J Crop and Weed 13(2):222–227

    Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Regul 84:207–223

    Article  CAS  Google Scholar 

  • Meisinger JJ, Randall GW (1991) Estimating nitrogen budgets for soil–crop systems. In: Follett, et al. (ed) Managing nitrogen for groundwater quality and farm profitability. SSSA, Madison, pp 85–124

    Google Scholar 

  • Meisinger J, Delgado J (2002) Principles for managing nitrogen leaching. J Soil Water Conserv 57:485–498

    Google Scholar 

  • Mendes R et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  Google Scholar 

  • Mole B (2014) Earth & environment: nutrients may drop as CO2rises: crops’ iron, zinc and protein may fall 5 to 10 percent by 2050. Sci News 185:12–12

    Google Scholar 

  • Mosier A, Doran J, Freney J (2002) Managing soil denitrification. J Soil Water Conserv 57:505–512

    Google Scholar 

  • Nagayets O (2005) Small farms: current status and key trends. In: The future of small farms, vol 355. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15:327–337

    Google Scholar 

  • Njoroge S, Zingore S (2015) 4R practices for efficient phosphorus management in Western Kenya, vol 99. IPNI, Norcross

    Google Scholar 

  • Noor MA (2017) Nitrogen management and regulation for optimum NUE in maize–a mini review. Cogent Food Agric 3(1):1348214

    Google Scholar 

  • Palta JA, Fillery IRP (1995) N application increases pre-anthesis contribution of dry matter to grain yield in wheat grown on a duplex soil. Aust J Agric Res 46:507

    Article  Google Scholar 

  • Pathak H, Bhatia A, Jain N, Aggarwal P (2010) Greenhouse gas emission and mitigation in Indian agriculture–a review. In: ING bulletins on regional assessment of reactive nitrogen, bulletin, vol 19. ING, SCON, New Delhi, pp 1–34

    Google Scholar 

  • Pathak H, Jain N, Bhatia A, Kumar A, Chatterjee D (2016) Improved nitrogen management: a key to climate change adaptation and mitigation. Indian J Fertil 12:151–162

    Google Scholar 

  • Paul EA (2014) Soil microbiology, ecology, and biochemistry. In: Perspective soil microbiology, ecology and biochemistry. Elsevier Science, Saint Louis, pp 3–24

    Google Scholar 

  • Peoples MB, Mosier AR, Freney JR (1995) Minimizing gaseous losses of nitrogen. In: Bacon PE (ed) Nitrogen fertilization in the environment. Dekker, New York, pp 565–602

    Google Scholar 

  • Pidwirny M (2002) Fundamentals of physical geography. Introduction to biogeography and ecology. The nitrogen cycle British Columbia Canada

    Google Scholar 

  • Raju S (1989) Fertiliser use in Andhra Pradesh: an analysis of factors affecting consumption. Artha Vijnana: J Gokhale Inst Polit Econ 31:313

    Article  Google Scholar 

  • Raun WR, Johnson GV (1999) Improving nitrogen use efficiency for cereal production. Agron J 91:357

    Article  Google Scholar 

  • Reeve JR, Schadt CW, Carpenter-Boggs L, Kang S, Zhou J, Reganold JP (2010) Effects of soil type and farm management on soil ecological functional genes and microbial activities. ISME J 4:1099–1107

    Article  Google Scholar 

  • Rodelas B, González-López J, Martínez-Toledo MV, Pozo C, Salmerón V (1999) Influence of Rhizobium/Azotobacter and Rhizobium/Azospirillum combined inoculation on mineral composition of faba bean (Vicia faba L.). Biol Fertil Soils 29:165–169

    Article  CAS  Google Scholar 

  • Roe M, Pinchen H, Church S, Finglas P (2015) McCance and Widdowson’s the composition of foods seventh summary edition and updated composition of foods integrated dataset. Nutr Bull 40:36–39

    Article  Google Scholar 

  • Savci S (2012) An agricultural pollutant: chemical fertilizer. Int J Environ Sci Dev 3:73–80

    Article  Google Scholar 

  • Schadt CW, Classen AT (2007) Soil microbiology, ecology, and biochemistry. Soil Sci Soc Am J 71:1420

    Article  CAS  Google Scholar 

  • Schulte RPO, Creamer RE, Donnellan T, Farrelly N, Fealy R, O’Donoghue C, O’hUallachain D (2014) Functional land management: a framework for managing soil-based ecosystem services for the sustainable intensification of agriculture. Environ Sci Pol 38:45–58

    Article  Google Scholar 

  • Shaffer MJ, Delgado JA (2002) Essentials of a national nitrate leaching index assessment tool. J Soil Water Conserv 57:327–335

    Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155

    Article  CAS  Google Scholar 

  • Shcherbak I, Millar N, Robertson GP (2014) Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc Natl Acad Sci 111:9199–9204

    Article  CAS  Google Scholar 

  • Smil V (2000) Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Environ 25:53–88

    Article  Google Scholar 

  • Smith T, Rana RS, Missiaen P, Rose KD, Sahni A, Singh H, Singh L (2007) High bat (Chiroptera) diversity in the Early Eocene of India. Naturwissenschaften 94:1003–1009

    Article  CAS  Google Scholar 

  • Solanki RL, Naagar KC, Agarwal SK (2017) Effect of fertilizer based on soil testing for better production of maize (Zea mays L.) in South Rajasthan, India. Int J Curr Microbiol App Sci 6:725–728. https://doi.org/10.20546/ijcmas.2017.608.092

    Article  Google Scholar 

  • Souza RM, Sobral LF, Viégas PRA, Oliveira A Jr, Carvalho MCS (2014) Eficiência agronômica de fosfatos de rocha em solo com elevado teor de cálcio trocável. Rev Bras Ciênc Solo 38:1816–1825

    Article  Google Scholar 

  • Stotzky G, Norman AG (1961) Factors limiting microbial activities in soil. Arch Mikrobiol 40:341–369

    Article  CAS  Google Scholar 

  • Suh S, Yee S (2011) Phosphorus use-efficiency of agriculture and food system in the US. Chemosphere 84:806–813

    Article  CAS  Google Scholar 

  • Sun X et al (2017) Subsoiling practices change root distribution and increase post-anthesis dry matter accumulation and yield in summer maize. PLoS One 12:e0174952

    Article  CAS  Google Scholar 

  • Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (2005) Principles and applications of soil microbiology, vol QR111 S674 2005. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi H, Yamaya T (2005) Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase 1;1. Plant J 42:641

    Article  CAS  Google Scholar 

  • Tamene L, Amede T, Kihara J, Tibebe D, Schulz S (2017) A review of soil fertility management and crop response to fertilizer application in Ethiopia: towards development of site-and context-specific fertilizer recommendation

    Google Scholar 

  • Teeling EC, Springer MS, Madsen O, Bates P, O’Brien SJ, Murphy WJ (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–584

    Article  CAS  Google Scholar 

  • Tilman D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284. https://doi.org/10.1126/science.1057544

    Article  CAS  Google Scholar 

  • Tisdale S, Nelson W, Beaton J, Havlin J (1993) Soil fertility and fertilizers. Macmillan Publishing Company, New York 5th

    Google Scholar 

  • UNEP, UNIDO, IFA (1998) Mineral fertilizer production and the environment part 1. United Nations Enviornment Programme, Industry and the Environment, Paris

    Google Scholar 

  • Vanlauwe B et al (2015) Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation. Soil 1:491–508

    Article  Google Scholar 

  • Vonk J, Shackelford TK (eds) (2012) The Oxford handbook of comparative evolutionary psychology. Oxford Library of Psychology. Oxford University Press, New York

    Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080

    Article  CAS  Google Scholar 

  • Wiggins S, Kirsten J, Llambí L (2010) The future of small farms. World Dev 38:1341–1348

    Article  Google Scholar 

  • Withers PJA et al (2015) Stewardship to tackle global phosphorus inefficiency: the case of Europe. Ambio 44:193–206

    Article  CAS  Google Scholar 

  • World Bank (2007) World development report 2008 (overview). The World Bank. https://doi.org/10.1596/978-0-8213-7297-5

  • Wu M, Li G, Li W, Liu J, Liu M, Jiang C, Li Z (2017) Nitrogen fertilizer deep placement for increased grain yield and nitrogen recovery efficiency in rice grown in Subtropical China. Front Plant Sci 8:1227

    Article  Google Scholar 

  • Zahoor W, Khanzada H, Bashir U, Aziz K, Zahir S, Faheem A (2014) Role of nitrogen fertilizer in crop productivity and environmental pollution. Int J Agric For 4:201–206

    Google Scholar 

  • Zaidi A, Khan MS, Amil M (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21

    Article  Google Scholar 

  • Zhu Z (2000) Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction. Soil Environ Sci 9:1–6

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehmood Ali Noor or Wei Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noor, M.A. et al. (2020). Small Farmers and Sustainable N and P Management: Implications and Potential Under Changing Climate. In: Datta, R., Meena, R., Pathan, S., Ceccherini, M. (eds) Carbon and Nitrogen Cycling in Soil. Springer, Singapore. https://doi.org/10.1007/978-981-13-7264-3_6

Download citation

Publish with us

Policies and ethics