Skip to main content

Diversity of Antimutagenic Phytocompounds from Indian Medicinal Plants

  • Chapter
  • First Online:
Herbal Medicine in India

Abstract

An array of diverse bioactive secondary metabolites synthesized by plants is known for their pharmacological and therapeutic properties. Considerable progress has been made in the last several years on understanding on mutation-related health problems and the potential role of plant extracts and phytocompounds as antimutagenic agent. Various in vitro assays have been developed to scrutinize the antimutagenic efficacy of antimutagenic agents derived from natural products. This chapter presents review of literature pertaining to diversity of antimutagenic phytocompounds from food and traditionally used Indian medicinal plants and their mode of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003;23(1/A):363–98.

    CAS  PubMed  Google Scholar 

  • Aqil F, Vadhanam MV, Gupta RC. Enhanced activity of punicalagin delivered via polymeric implants against benzo [a] pyrene-induced DNA adducts. Mutat Res. 2012;743(1):59–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacanli M, Aydin S, BaÅŸaran AA, BaÅŸaran N. Are all phytochemicals useful in the preventing of DNA damage? Food Chem Toxicol. 2017;109(Pt 1):210–7.

    Article  CAS  PubMed  Google Scholar 

  • BenSaad LA, Kim KH, Quah CC, Kim WR, Shahimi M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum. BMC Complement Altern Med. 2017;17(1):47.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bhandari P, Kumar N, Gupta AP, Singh B, Kaul VK. A rapid RP-HPTLC densitometry method for simultaneous determination of major flavonoids in important medicinal plants. J Sep Sci. 2007;30(13):2092–6.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya S. Natural antimutagens: a review. Res J Med Plant. 2011;5(2):116–26.

    Article  CAS  Google Scholar 

  • Chakraborty P. Herbal genomics as tools for dissecting new metabolic pathways of unexplored medicinal plants and drug discovery. Biochimie Open. 2018;6:9–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Teng H, Xie Z, Cao H, Cheang WS, Skalicka-Woniak K, Georgiev MI, Xiao J. Modifications of dietary flavonoids towards improved bioactivity: an update on structure–activity relationship. Crit Rev Food Sci Nutr. 2018;58(4):513–27.

    Article  CAS  PubMed  Google Scholar 

  • Cushnie TT, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005;26(5):343–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Flora S, Bronzetti G, Sobels FH. Assessment of antimutagenicity and anticarcinogenicity. Mutat Res. 1992;267:153–5.

    Article  PubMed  Google Scholar 

  • De Oliveira AP, De Sousa JF, Da Silva MA, Hilário F, Resende FA, De Camargo MS, Vilegas W, dos Santos LC, Varanda EA. Estrogenic and chemopreventive activities of xanthones and flavones of Syngonanthus (Eriocaulaceae). Steroids. 2013;78(11):1053–63.

    Article  PubMed  CAS  Google Scholar 

  • Devi HP, Mazumder PB, Devi LP. Antioxidant and antimutagenic activity of Curcuma caesia Roxb. rhizome extracts. Toxicol Rep. 2015;2:423–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sayed WM, Hussin WA, Al-Faiyz YS, Ismail MA. The position of imidazopyridine and metabolic activation are pivotal factors in the antimutagenic activity of novel imidazo [1, 2-a] pyridine derivatives. Eur J Pharmacol. 2013;715(1–3):212–8.

    Article  CAS  PubMed  Google Scholar 

  • Frassinetti S, Della Croce CM, Caltavuturo L, Longo V. Antimutagenic and antioxidant activity of Lisosan G in Saccharomyces cerevisiae. Food Chem. 2012;135(3):2029–34.

    Article  CAS  PubMed  Google Scholar 

  • Galmarini CM, Mackey JR, Dumontet C. Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol. 2002;3(7):415–24.

    Article  CAS  PubMed  Google Scholar 

  • Gautam S, Saxena S, Kumar S. Fruits and vegetables as dietary sources of antimutagens. J Food Chem Nanotechnol. 2016;2(3):97–114.

    Google Scholar 

  • Geetha T, Malhotra V, Chopra K, Kaur IP. Antimutagenic and antioxidant/prooxidant activity of quercetin. Indian J Exp Biol. 2005;43(1):61–67.

    Google Scholar 

  • González-Gallego J, García-Mediavilla MV, Sánchez-Campos S, Tuñón MJ. Anti-inflammatory and immunomodulatory properties of dietary flavonoids. In: Polyphenols in human health and disease; 2014. p. 435–52.

    Chapter  Google Scholar 

  • Gunes H, Gulen D, Mutlu R, Gumus A, Tas T, Topkaya AE. Antibacterial effects of curcumin: an in vitro minimum inhibitory concentration study. Toxicol Ind Health. 2016;32(2):246–50.

    Article  CAS  PubMed  Google Scholar 

  • Gupta C, Vikram A, Tripathi DN, Ramarao P, Jena GB. Antioxidant and antimutagenic effect of quercetin against DEN induced hepatotoxicity in rat. Phytother Res. 2010;24(1):119–28.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton SM, Teel RW. Effects of isothiocyanates on cytochrome P-450 1A1 and 1A2 activity and on the mutagenicity of heterocyclic amines. Anticancer Res. 1996;16(6B):3597–602.

    CAS  PubMed  Google Scholar 

  • Harborne JB. Nature, distribution and function of plant flavonoids. Prog Clin Biol Res. 1986;213:15–24.

    CAS  PubMed  Google Scholar 

  • Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Dis. 2015;14(2):111.

    Article  CAS  Google Scholar 

  • Hong CE, Cho MC, Jang HA, Lyu SY. Mutagenicity and anti-mutagenicity of Acanthopanax divaricatus var. albeofructus. J Toxicol Sci. 2011;36(5):661–8.

    Article  PubMed  Google Scholar 

  • Hour TC, Liang YC, Chu IS, Lin JK. Inhibition of eleven mutagens by various tea extracts (−) epigallocatechin-3-gallate, gallic acid and caffeine. Food Chem Toxicol. 1999;37(6):569–79.

    Article  CAS  PubMed  Google Scholar 

  • KamiÅ„ski K, Obniska J, Chlebek I, Liana P, PÄ™kala E. Synthesis and biological properties of new N-Mannich bases derived from 3-methyl-3-phenyl-and 3, 3-dimethyl-succinimides. Eur J Med Chem. 2013;66:12–21.

    Article  PubMed  CAS  Google Scholar 

  • Kant V, Gopal A, Pathak NN, Kumar P, Tandan SK, Kumar D. Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats. Int Immunopharmacol. 2014;20(2):322–30.

    Article  CAS  PubMed  Google Scholar 

  • Kaur IP. Antimutagenicity of curcumin and related compounds against genotoxic heterocyclic amines from cooked food: the structural requirement. Food Chem. 2008;111(3):573–9.

    Article  CAS  Google Scholar 

  • Kaur S, Kumar S, Kaur P, Chandel M. Study of antimutagenic potential of phytoconstituents isolated from Terminalia arjuna in the Salmonella/Microsome Assay. Am J Biomed Sci. 2010;2(2):164–77.

    Article  Google Scholar 

  • Kaur A, Kaur D, Arora S. Evaluation of antioxidant and antimutagenic potential of Justicia adhatoda leaves extract. African J Biotech. 2015;14(21):1807–19.

    Article  CAS  Google Scholar 

  • Khan MS, Qais FA, Ahmad I, Hussain A, Alajmi MF. Genotoxicity inhibition by Syzygium cumini (L.) seed fraction and rutin: understanding the underlying mechanism of DNA protection. Toxicol Res. 2018;7(2):156–71.

    Article  CAS  Google Scholar 

  • Khare CP. Indian medicinal plants: an illustrated dictionary. Berlin: Springer; 2008.

    Google Scholar 

  • Korkina LG, Afanas' Ev IB. Antioxidant and chelating properties of flavonoids. In: Advances in pharmacology, vol. 38. Cambridge: Academic Press; 1996. p. 151–63.

    Google Scholar 

  • Luc Rochette, Stéliana Ghibu, Carole Richard, Marianne Zeller, Yves Cottin, Catherine Vergely. Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential. Mol Nutr Food Res. 2013;57(1):114–25.

    Google Scholar 

  • Marnewick JL, Gelderblom WC, Joubert E. An investigation on the antimutagenic properties of South African herbal teas. Mutat Res. 2000;471(1):157–66.

    Article  CAS  PubMed  Google Scholar 

  • Maron DM, Ames BN. Revised methods for the Salmonella mutagenicity test. Mutat Res. 1983;113(3–4):173–215.

    Article  CAS  PubMed  Google Scholar 

  • Martinez R, Chacon-Garcia L. The search of DNA-intercalators as antitumoral drugs: what it worked and what did not work. Curr Med Chem. 2005;12(2):127–51.

    Article  CAS  PubMed  Google Scholar 

  • Masuoka N, Matsuda M, Kubo I. Characterisation of the antioxidant activity of flavonoids. Food Chem. 2012;131(2):541–5.

    Article  CAS  Google Scholar 

  • Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. In: The molecular targets and therapeutic uses of curcumin in health and disease. Boston, MA: Springer; 2007. p. 105–25.

    Google Scholar 

  • Mladenović M, Matić S, Stanić S, Solujić S, Mihailović V, Stanković N, Katanić J. Combining molecular docking and 3-D pharmacophore generation to enclose the in vivo antigenotoxic activity of naturally occurring aromatic compounds: Myricetin, quercetin, rutin, and rosmarinic acid. Biochem Pharmacol. 2013;86(9):1376–96.

    Article  PubMed  CAS  Google Scholar 

  • Mortelmans K, Riccio ES. The bacterial tryptophan reverse mutation assay with Escherichia coli WP2. Mutat Res. 2000;455(1):61–9.

    Article  CAS  PubMed  Google Scholar 

  • Mortelmans K, Zeiger E. The Ames Salmonella/microsome mutagenicity assay. Mutat Res. 2000;455(1):29–60.

    Article  CAS  PubMed  Google Scholar 

  • Nag D, Ghosh M, Mukherjee A. Antimutagenic and genoprotective effects of Saraca asoca bark extract. Toxicol Ind Health. 2015;31(8):696–703.

    Article  CAS  PubMed  Google Scholar 

  • Nagabhushan M, Amonkar AJ, Bhide SV. In vitro antimutagenicity of curcumin against environmental mutagens. Food Chem Toxicol. 1987;25(7):545–7.

    Article  CAS  PubMed  Google Scholar 

  • Nair CJ, Ahamad S, Khan W, Anjum V, Mathur R. Development and validation of high-performance thin-layer chromatography method for simultaneous determination of polyphenolic compounds in medicinal plants. Pharm Res. 2017;9(Suppl 1):S67.

    Google Scholar 

  • Nardemir G, Yanmis D, Alpsoy L, Gulluce M, Agar G, Aslan A. Genotoxic, antigenotoxic and antioxidant properties of methanol extracts obtained from Peltigera horizontalis and Peltigera praetextata. Toxicol Ind Health. 2015;31(7):602–13.

    Article  CAS  PubMed  Google Scholar 

  • Novick A, Szilard L. Anti-mutagens. Nature. 1952;170:926–7.

    Article  CAS  PubMed  Google Scholar 

  • Orhan F, Gulluce M, Ozkan H, Alpsoy L. Determination of the antigenotoxic potencies of some luteolin derivatives by using a eukaryotic cell system, Saccharomyces cerevisiae. Food Chem. 2013;141(1):366–72.

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Sekar KC, Tamta S, Rawal RS. Assessment of phytochemicals, antioxidant and antimutagenic activity in micropropagated plants of Quercus serrata, a high value tree species of Himalaya. Plant Biosystems. 2017;15:1–8.

    Google Scholar 

  • Parvathy KS, Negi PS, Srinivas P. Antioxidant, antimutagenic and antibacterial activities of curcumin-β-diglucoside. Food Chem. 2009;115(1):265–71.

    Article  CAS  Google Scholar 

  • Parvathy KS, Negi PS, Srinivas P. Curcumin–amino acid conjugates: synthesis, antioxidant and antimutagenic attributes. Food Chem. 2010;120(2):523–30.

    Article  CAS  Google Scholar 

  • Podgórska B, Chec E, Ulanowska K, Wêgrzyn G. Optimisation of the microbiological mutagenicity assay based on genetically modified Vibrio harveyi strains. J Appl Genet. 2005;46(2):241–6.

    PubMed  Google Scholar 

  • Puliyappadamba VT, Thulasidasan AK, Vijayakurup V, Antony J, Bava SV, Anwar S, Sundaram S, Anto RJ. Curcumin inhibits B [a] PDE-induced procarcinogenic signals in lung cancer cells, and curbs B [a] P-induced mutagenesis and lung carcinogenesis. Biofactors. 2015;41(6):431–42.

    Article  CAS  PubMed  Google Scholar 

  • Quillardet P, Hofnung M. The SOS Chromotest, a colorimetric bacterial assay for genotoxins: procedures. Mutat Res. 1985;147(3):65–78.

    Article  CAS  PubMed  Google Scholar 

  • Quillardet P, de Bellecombe C, Hofnung M. The SOS Chromotest, a colorimetric bacterial assay for genotoxins: validation study with 83 compounds. Mutat Res. 1985;147(3):79–95.

    Article  CAS  PubMed  Google Scholar 

  • Raffa D, Maggio B, Raimondi MV, Plescia F, Daidone G. Recent discoveries of anticancer flavonoids. Eur J Med Chem. 2017;142:213–28.

    Article  CAS  PubMed  Google Scholar 

  • Ragunathan I, Panneerselvam N. Antimutagenic potential of curcumin on chromosomal aberrations in Allium cepa. J Zhejiang Univ Sci B. 2007;8(7):470–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ralhan R, Kaur J. Alkylating agents and cancer therapy. Exp Opin Ther Pat. 2007;17(9):1061–75.

    Article  CAS  Google Scholar 

  • Rauf A, Imran M, Orhan IE, Bawazeer S. Health perspectives of a bioactive compound curcumin: a review. Trends Food Sci Technol. 2018:7.

    Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20(7):933–56.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues T, Reker D, Schneider P, Schneider G. Counting on natural products for drug design. Nat Chem. 2016;8(6):531.

    Article  CAS  PubMed  Google Scholar 

  • Sanderson BJ, Shield AJ. Mutagenic damage to mammalian cells by therapeutic alkylating agents. Mutat Res. 1996;355(1):41–57.

    Article  PubMed  Google Scholar 

  • Sangwan NS, Shanker S, Sangwan RS, Kumar S. Plant-derived products as antimutagens. Phytother Res. 1998;12(6):389–99.

    Article  CAS  Google Scholar 

  • Satish A, Kumar RP, Rakshith D, Satish S, Ahmed F. Antimutagenic and antioxidant activity of Ficus benghalensis stem bark and Moringa oleifera root extract. Int J Chem Analyt Sci. 2013;4(2):45–8.

    Article  CAS  Google Scholar 

  • Seeram NP, Adams LS, Henning SM, Niu Y, Zhang Y, Nair MG, Heber D. In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J Nutr Biochem. 2005;16(6):360–7.

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Sharma UK, Gupta AP, Sinha AK. Simultaneous determination of epicatechin, syringic acid, quercetin-3-O-galactoside and quercitrin in the leaves of Rhododendron species by using a validated HPTLC method. J food Com Ana. 2010;23(3):214–9.

    Article  CAS  Google Scholar 

  • Sharma S, Sharma S, Vig AP. Evaluation of antimutagenic and protective effects of Parkinsonia aculeata L. leaves against H2 O2 induced damage in pBR322 DNA. Physiol Mol Biol Plants. 2016;22(1):17–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shon MY, Choi SD, Kahng GG, Nam SH, Sung NJ. Antimutagenic, antioxidant and free radical scavenging activity of ethyl acetate extracts from white, yellow and red onions. Food Chem Toxicol. 2004;42(4):659–66.

    Article  CAS  PubMed  Google Scholar 

  • Shukla Y, Arora A, Taneja P. Antimutagenic potential of curcumin on chromosomal aberrations in Wistar rats. Mutat Res. 2002;515(1):197–202.

    Article  CAS  PubMed  Google Scholar 

  • Simic MG. Mechanisms of inhibition of free-radical processes in mutagenesis and carcinogenesis. Mutat Res. 1988;202(2):377–86.

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Singh JP, Kaur A, Singh N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: a review. Food Chem. 2018;261:75–86.

    Article  CAS  PubMed  Google Scholar 

  • SÅ‚oczyÅ„ska K, PÄ™kala E, Wajda A, WÄ™grzyn G, Marona H. Evaluation of mutagenic and antimutagenic properties of some bioactive xanthone derivatives using Vibrio harveyi test. Lett Appl Microbiol. 2010;50(3):252–7.

    Article  PubMed  CAS  Google Scholar 

  • SÅ‚oczyÅ„ska K, Powroźnik B, PÄ™kala E, Waszkielewicz AM. Antimutagenic compounds and their possible mechanisms of action. J App Genet. 2014;55(2):273–85.

    Article  CAS  Google Scholar 

  • Snijman PW, Swanevelder S, Joubert E, Green IR, Gelderblom WC. The antimutagenic activity of the major flavonoids of rooibos (Aspalathus linearis): Some dose–response effects on mutagen activation–flavonoid interactions. Mutat Res. 2007;631(2):111–23.

    Article  CAS  PubMed  Google Scholar 

  • Ulanowska K, WÄ™grzyn G. Mutagenic activity of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. J Appl Genet. 2006;47(1):85–7.

    Article  PubMed  Google Scholar 

  • Ulanowska K, Piosik J, Gwizdek-WiÅ›niewska A, WÄ™grzyn G. Impaired mutagenic activities of MPDP+ (1-methyl-4-phenyl-2, 3-dihydropyridinium) and MPP+ (1-methyl-4-phenylpyridinium) due to their interactions with methylxanthines. J Geriatr Psychiatry Neurol. 2007;15(15):5150–7.

    CAS  Google Scholar 

  • Varshney M, Vijayan V, Meshram GP. Chemopreventive effects of ellagic acid against genotoxicity induced by benzo (a) pyrene. Toxicol Environ Chem. 2015;97(6):786–98.

    Article  CAS  Google Scholar 

  • Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr Metab (Lond). 2015;12(1):60.

    Article  CAS  Google Scholar 

  • Watanabe M, Kobayashi H, Ohta T. Rapid inactivation of 3-chloro-4-(dichloromethyl)-5-hydroxy-2 (5H)-furanone (MX), a potent mutagen in chlorinated drinking water, by sulfhydryl compounds. Mutat Res. 1994;312(2):131–8.

    Article  CAS  PubMed  Google Scholar 

  • Weakley SM, Jiang J, Kougias P, Lin PH, Yao Q, Brunicardi FC, Gibbs RA, Chen C. Role of somatic mutations in vascular disease formation. Exp Rev Mol Diag. 2010;10(2):173–85.

    Article  CAS  Google Scholar 

  • Zahin M, Aqil F, Ahmad I. Broad spectrum antimutagenic activity of antioxidant active fraction of Punica granatum L. peel extracts. Mutat Res. 2010;703(2):99–107.

    Article  CAS  PubMed  Google Scholar 

  • Zahin M, Ahmad I, Gupta RC, Aqil F. Punicalagin and ellagic acid demonstrate antimutagenic activity and inhibition of benzo [a] pyrene induced DNA adducts. Biomed Res Int. 2014;2014:467465.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zahin M, Ahmad I, Aqil F. Antioxidant and antimutagenic potential of Psidium guajava leaf extracts. Drug Chem Toxicol. 2017;40(2):146–53.

    Article  CAS  PubMed  Google Scholar 

  • Zahin M, Khan MS, AbulQais F, Abulreesh HH, Ahmad I. Antioxidant properties and anti-mutagenic potential of Piper Cubeba fruit extract and molecular docking of certain bioactive compounds. Drug ChemToxicol. 2018;41(3):358–67.

    CAS  Google Scholar 

  • Zimmermann FK, Kern R, Rasenberger H. A yeast strain for simultaneous detection of induced mitotic crossing over, mitotic gene conversion and reverse mutation. Mutat Res. 1975;28(3):381–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, M.S., Ahmad, I. (2020). Diversity of Antimutagenic Phytocompounds from Indian Medicinal Plants. In: Sen, S., Chakraborty, R. (eds) Herbal Medicine in India. Springer, Singapore. https://doi.org/10.1007/978-981-13-7248-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7248-3_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7247-6

  • Online ISBN: 978-981-13-7248-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics