Skip to main content

Novel Drug Delivery System in Phytochemicals: Modern Era of Ancient Science

  • Chapter
  • First Online:
Book cover Herbal Medicine in India

Abstract

India has a long hereditary usage of numerous phytochemicals, and their formulations in the officially recognized alternative system of medicine viz. Ayurveda, Homeopathy, Yoga, Siddha, Unani, and Naturopathy. The ancient system of traditional Indian medicine uses medicinal plants to extract biologically active phytochemicals and formulate in various dosage forms. Biologically active phytochemicals have enormous therapeutic potential which can be further potentiated through various beneficial novel drug delivery systems (NDDS). In the recent past, development of NDDS based strategies for phytochemicals has gained considerable attention as the NDDS based formulations and dosage forms compared to conventional dosage form are more advantageous. The use of different form like nanoparticles, liposome, nanoemulsion, ethosome, microsphere, phytosomes, solid lipid nanoparticles have contributed significantly to the enhancement of therapeutic potential of plant-derived extracts and their constituents. The introduction of all these, the actives and extracts in the formulations have demonstrated remarkable improvement in the stability, solubility, sustained release profile, targeted delivery, improved therapeutic efficacy, and reduced toxicity. The rationale behind the development of NDDS based drug delivery strategies is to enhance drug delivery and an improved safety profile in the drug delivery process along with patient compliance. The NDDS will not only increase the market of phytochemicals but will also play a major role in providing better and effective therapy to mankind. The current chapter highlights the recent developments of novel drug delivery systems in phytochemicals and their classes, methods of preparation, administration, biological/pharmacological activity, safety, and applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou ElWafa AA, Mursi NM, El-Shaboury KM. A pharmaceutical study on certain ocular drug delivery systems. MS Thesis. Cairo University, Cairo (2003).

    Google Scholar 

  • Ainbinder D, Touitou E. Testosterone ethosomes for enhanced transdermal delivery. Drug Deliv. 2005;12:297–303.

    Article  CAS  PubMed  Google Scholar 

  • Ajazuddin, Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia. 2010;81:680–9.

    Article  CAS  PubMed  Google Scholar 

  • Al-Farsi A, Ellis PM. Treatment paradigms for patients with metastatic non-small cell lung cancer, squamous lung cancer: first, second, and third-line. Front Oncol. 2014;4:157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65:36–48.

    Article  CAS  PubMed  Google Scholar 

  • Anand P, Nair HB, Sung B, Kunnumakkara AB, Yadav VR, Tekmal RR, Aggarwal BB. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol. 2010;79:330–8.

    Article  CAS  PubMed  Google Scholar 

  • Anitha A, Maya S, Deepa N, Chennazhia KP, Naira SV, Tamurab H, Jayakumara R. Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydr Polym. 2011;83:452–61.

    Article  CAS  Google Scholar 

  • Anonymous. Transdermal patch. http://www.levinhealthcare.com. 2010.

  • Anuradha CA, Aukunuru J. Preparation, characterisation and in vivo evaluation of bis-demethoxy curcumin analogue (BDMCA) nanoparticles. Trop J Pharm Res. 2010;9:51–8.

    Article  CAS  Google Scholar 

  • Aqil F, Munagala R, Jeyabalan J, Vadhanam MV. Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett. 2013;334:133–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayala-Zavala JF, Soto-Valdez H, Gonzalez-Leon A, Alvarez-Parrilla E, Martın-Belloso O, Gonzalez-Aguilar GA. Microencapsulation of cinnamon leaf (cinnamomumzeylanicum) and garlic (Allium sativum) oils in β -cyclodextrin. J Incl Phenom Macrocycl Chem. 2008;60:359–68.

    Article  CAS  Google Scholar 

  • Baillie AJ, Coombs GH, Dolan TF, Laurie J. Non-ionic surfactant vesicles, niosomes, as delivery system for the anti-leishmanial drug, sodium stibogluconate. J Pharm Pharmacol. 1986;38:502–5.

    Article  CAS  PubMed  Google Scholar 

  • Balasubramaniam A, Kumar VA, Pillai KS. Formulation and in-vivo evaluation of niosome encapsulated daunorubicin hydrochloride. Drug Dev Ind Pharm. 2002;28:1181–93.

    Article  CAS  PubMed  Google Scholar 

  • Barragan-Montero V, Winum J, Moles J, Juan E, Clavel C, Montero J. Eur J Med Chem. 2005;40:1022–9.

    Article  CAS  PubMed  Google Scholar 

  • Bayarski Y.. http://www.google.com/Transdermalpatches/NDDS/Herbal drugs.in. 2010.

  • Bendas ER, Tadros MI. Enhanced transdermal delivery of sulbutamolsulfate via ethosomes. AAPS Pharm Sci Tech. 2007;8:1–7.

    Article  Google Scholar 

  • Benson HE, Watkinson AC. Topical and transdermal drug delivery: principles and practice. New Jersey: Wiley Online Library; 2011.

    Book  Google Scholar 

  • Blumenthal M, Goldberg A, Brinkmann J. Herbal medicine. Newton: Integrative Medicine Communications; 2000.

    Google Scholar 

  • Bombardelli E, Curri SB, Loggia DR, Del NP, Tubaro A, Gariboldi P. Fitoterapia. 1989;60:1–9.

    Google Scholar 

  • Bonifacio BV, Silva PB, Ramos MA, Negri KMS, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine. 2014;9:1–5.

    Article  PubMed  CAS  Google Scholar 

  • Brahmankar DM, Jaiswal SB. Biopharmaceutics and pharmacokinetics—a treatise. 1st ed. New Delhi: Vallabh Prakashan; 1998.. (reprint 2008):61:359–362

    Google Scholar 

  • Cevc G, Gebauer D, Steiber J, Schatzlein A, Blume G. Ultraflexible vesicles, transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochem Biophys Acta. 1998;1368:201–15.

    Article  CAS  PubMed  Google Scholar 

  • Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: an updated review. AAPS Pharm Sci Tech. 2005;6:E329–57.

    Article  Google Scholar 

  • Chan ES, Yim ZH, Phan SH, Mansa RF, Ravindra P. Encapsulation of herbal aqueous extract throughabsorption with ca-alginate hydrogel beads. Food Bioprod Process. 2010a;88(40239):195–201.

    Article  CAS  Google Scholar 

  • Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC. Polymeric nanoparticles for drug delivery. Methods Mol Biol. 2010b;624:163–75.

    Article  CAS  PubMed  Google Scholar 

  • Chao P, Deshmukh M, Kutscher HL, Gao D, Rajan SS, Hu P, Laskin DL, Stein S, Sinko PJ. Pulmonary targeting microparticulate campothecin delivery system: anticancer evaluation in a rat orthotopic lung cancer model. Anticancer Drugs. 2010;21:65–76.

    Article  CAS  PubMed  Google Scholar 

  • Cheson BD, Arbuck SG. Clinical trials referral resource. Clinical trials with topotecan. Oncology. 1993;7:49–51.

    CAS  PubMed  Google Scholar 

  • Costa G, Carbone PP, Gold GL, Owens AH Jr, Miller SP, Krant MJ, Bono VH Jr. Clinical trial of vinblastine in multiple myeloma. Cancer Chemother Rep 1. 1963;27:87–9.

    CAS  Google Scholar 

  • Darney PD. Hormonal implants: contraception for a new century. Am J Obstet Gynecol. 1994;170:1536–43.

    Article  CAS  PubMed  Google Scholar 

  • Das MK, Senapati PC. Furosemide loaded alginate microspheres prepared by ionic cross linking technique: morphology and release characteristics. Indian J Pharm Sci. 2008;70:77–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das RK, Kasoju N, Bora U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine. 2010;6:153–60.

    Google Scholar 

  • El Maghraby GM, Williams AC, Barry BW. Skin delivery of oestradiol from deformable and traditional liposomes: mechanistic studies. J Pharm Pharmacol. 1999;51:1123–34.

    Google Scholar 

  • El Maghraby GM, Williams AC, Barry BW. Oestradiol skin delivery from ultradeformable liposomes: refinement of surfactant concentration. Int J Pharm. 2000;196:63–74.

    Article  PubMed  Google Scholar 

  • Eldhose MP, Mathew F, Mathew NJ. Transfersomes – A Review. Int J Pharma Pharma Res. 2016;6:436–52.

    Google Scholar 

  • El-Samaligy MS, Afifi NN, Mahmoud EA. Int J Pharm. 2006;319:121–9.

    Article  CAS  PubMed  Google Scholar 

  • Frei E, Franzino A, Shnider BI, Costa G, Colsky J, Brindley CO, Hosley JF, Gold GL, Jonsson U. Clinical studies of vinblastine. Cancer Chemother Rep 1. 1961;12:125–9.

    Google Scholar 

  • Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm. 2004;282:1–18.

    Article  CAS  PubMed  Google Scholar 

  • Fry DW, White JC, Goldman ID. Rapid secretion of low molecular weight solutes from liposomes without dilution. Anal Biochem. 1978;90:809–15.

    Article  CAS  PubMed  Google Scholar 

  • Fu RQ, He FC, Meng DS, Chen L. Taxol PLA nanoparticles. ACTA Academiae Medicinae Militaris Tertiae. 2006;28:1573–4.

    CAS  Google Scholar 

  • Gera M, Sharma N, Ghosh M, Huynh DL, Lee SJ, Min T, Kwon T, Jeong DK. Nanoformulations of curcumin: an emerging paradigm for improved remedial application. Oncotarget. 2017;8:66680–98.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goyal A, Kumar S, Nagpal M, Singh I, Arora S. Potential of novel drug delivery system for herbal drugs. Ind J Pharm Edu Res. 2011;45:3.

    Google Scholar 

  • Jadon PS, Gajbhiye V, Jadon RS, Gajbhiye KR, Ganesh N. Enhanced oral bioavailability of griseofulvin via niosomes. AAPS Pharm Sci Tech. 2009;10:1186–92.

    Article  CAS  Google Scholar 

  • Jain NK. Liposomes as drug carriers, controlled and novel drug delivery. 1st ed: CBS Publisher; 2005. p. 321–6.

    Google Scholar 

  • Jain S, Singh P, Mishra V, Vyas SP. Mannosylated niosomes as adjuvant carrier system for oral genetic immunization against Hepatitis B. Immunol Lett. 2005;101:41–9.

    Article  CAS  PubMed  Google Scholar 

  • James JS. DOXIL approved for KS. AIDS Treat News. 1995;236:6.

    Google Scholar 

  • Kanan K, Karar PK, Manavalan R. Formulation and evaluation of sustained release microspheres ofacetazolamide by solvent evaporation technique. J Pharm Sci Res. 2009;1:36–9.

    Google Scholar 

  • Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47:113–31.

    Article  CAS  PubMed  Google Scholar 

  • Kidd PM. Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts. Altern Med Rev. 2009;14:226–46.

    PubMed  Google Scholar 

  • Kidd P, Head K. A review of the bioavailability and clinical efficacy of milk thistle phytosome: a silybin-phosphatidylchoiine complex (Siliphos’). Altern Med Rev. 2005;10(3):193–203.

    PubMed  Google Scholar 

  • Koli JR, Lin S. Development of anti oxidantethosomes for topical delivery utilizing the synergistic properties of Vit A palmitate, Vit E and Vit C. AAPS Pharm Sci Tec. 2009;11:1–8.

    Google Scholar 

  • Kshirsagar AC, Yenge VB, Sarkar A, Singhal RS. Efficacy of pullulan in emulsification of turmeric oleoresin and its subsequent microencapsulation. Food Chem. 2009;113:1139–45.

    Article  CAS  Google Scholar 

  • Kumar VS, Kesari A. Herbosome—a novel carrier for herbal delivery. Int J Curr Pharm Res. 2011;3:36–41.

    CAS  Google Scholar 

  • Kumar K, Rai AK. Development and evaluation of floating microspheres of curcumin. Trop J Pharm Res. 2012;11:713–9.

    Article  CAS  Google Scholar 

  • Kumar R, Kumar MS, Mahadevan N. Multipleemulsions: a review. Int J Adv Pharm Res. 2012;2:9–19.

    Google Scholar 

  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75:1–18.

    Article  CAS  PubMed  Google Scholar 

  • Kwon GS. Block copolymer micelles as drug delivery systems. Adv Drug Deliv Rev. 2002;54:167.

    Article  CAS  Google Scholar 

  • Kwon GS, Okano T. Polymeric micelles as new drug carriers. Adv Drug Deliv Rev. 1996;21:107–16.

    Article  CAS  Google Scholar 

  • Lachman L, Lieberman HA, Kanig JL. The Theory and practice of Industrial Pharmacy. 3rd ed. Philadelphia: Lea & Febiger; 1996. p. 510–1.

    Google Scholar 

  • Lasic DD. Liposomes: from physics to applications. Amsterdam/London, New York, Tokyo: Elsevier; 1993.

    Google Scholar 

  • Le BG, Rysanek N. Cyclodextrins and their industrial uses. Duchene D Ed.; Editions de Santé. 1987.p.107–30.

    Google Scholar 

  • Legha SS, Tenney DM, Krakoff IR. Phase I study of taxol using a 5-day intermittent schedule. J Clin Oncol. 1986;4:762–6.

    Article  CAS  PubMed  Google Scholar 

  • Leo E, Scatturin A, Vighi E, Dalpiaz A. Polymeric nanoparticles as drug controlled release systems: anew formulation strategy for drugs with small or largemolecular weight. J Nanosci Nanotechnol. 2006;6:3070–9.

    Article  CAS  PubMed  Google Scholar 

  • Li HR, Li SF, Dua HQ. Preparation of liposomes containing extracts of Tripterygium wilfordii and evaluation of its stability. Zhongguo Zhong Yao Za Zhi. 2007;32:2128–31.

    CAS  PubMed  Google Scholar 

  • Lieberman HA, Rieger MM, Banker GS. Pharmaceutical dosage forms: disperse systems. 2nd ed. New York: Marcel Dekker Inc.; 1998. p. 339–44.

    Book  Google Scholar 

  • Lin J, Sahakian DC, de Morais SM, Xu JJ, Polzer RJ, Winter SM. The role of absorption, distribution, metabolism, excretion and toxicity in drug discovery. Curr Top Med Chem. 2003;3:1125–54.

    Article  PubMed  Google Scholar 

  • Lindner K. Using cyclodextrin aroma complexes in the catering. Food Nahrung. 2006;26:675–80.

    Article  Google Scholar 

  • Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44:235–49.

    Article  CAS  PubMed  Google Scholar 

  • Lodzki M, Godin B, Rakou L, Mechoulam R, Gallily R, Touitou E. Cannabidiol-transdermal delivery and anti-inflammatory effect in a murine model. J Control Release. 2003;93(3):377–87.

    Article  CAS  PubMed  Google Scholar 

  • Loftsson T, Stefansson E. Effect of cyclodextrins on topical drug delivery tothe eye. Drug Dev Ind Pharm. 1997;23:473–81.

    Article  CAS  Google Scholar 

  • Lu Y, Hou SX, Chen T, Sun YY, Yang BX, Yuan ZY. Preparation of transferosomes of vicristine sulfate and study on its precutaneous penetration. Zhongguo Zhong Yao Za Zhi. 2005;30:900–3.

    CAS  PubMed  Google Scholar 

  • Lucas-Abellan C, Fortea I, Lopez-Nicolas JM, Nunez-Delicado E. Cyclodextrins as resveratrol carrier system. Food Chem. 2007;104:39–44.

    Article  CAS  Google Scholar 

  • Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79:727–47.

    Article  CAS  PubMed  Google Scholar 

  • Marczylo TH, Verschoyle RD, Cooke DN, Morazzoni P, Steward WP, Gescher AJ. Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemother Pharmacol. 2007;60:171–7.

    Article  CAS  PubMed  Google Scholar 

  • Mastropaolo D, Camerman A, Luo Y, Brayer GD, Camerman N. Crystal and molecular structure of paclitaxel (taxol). Proc Natl Acad Sci U S A. 1995;92:6920–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathew A, Fukuda T, Nagaoka Y, Hasumura T, Morimoto H, Yoshida Y, Maekawa T, Venugopal K, Kumar DS. Curcumin Loaded-PLGA nanoparticles conjugated withTet-1 peptide for potential use in Alzheimer’s disease. PLoS One. 2012;7(3):e32616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauri P, Simonetti P, Gardana C. Liquid chromatography/atmospheric pressure chemical ionization mass spectrometry of terpene lactones in plasma of volunteers dosed with Ginkgo biloba L. extracts. Rapid Commun Mass Spectrom. 2001;15:929–34.

    Article  CAS  PubMed  Google Scholar 

  • Mei Z, Chen H, Weng T, Yang Y, Yang X. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur J Pharm Biopharm. 2003;56:189–96.

    Article  CAS  PubMed  Google Scholar 

  • Merdan VM, Alhaique F, Touitou E. Vesicular carriers for topical delivery. Acta Techno Legis Medicament. 1998;12:1–6.

    Google Scholar 

  • Mishra D, Mishra PK, Dubey V, Nahar M, Jain NK. Systemic and mucosal immune response induced by transcutaneous immunization using Hepatitis B surface antigen-loaded modified liposomes. J Control Release. 2007;33:424–33.

    Google Scholar 

  • Muir AH, Robb R, McLaren M, Daly F, Belch JJ. The use of Ginkgo biloba in Raynaud’s disease: a double-blind placebo-controlled trial. J Vasc Med. 2002;7:265–7.

    Article  Google Scholar 

  • Mujaffar F, Singh UK, Chauhan L. Review of microemulsion as futuristic drug delivery. Int J Pharm Sci. 2013;5:39–51.

    Google Scholar 

  • Musthaba SM, Baboota S, Ahmed S, Ahuja A, Ali J. Status of novel drug delivery technology for phytotherapeutics. Expert Opin Drug Deliv. 2009;6:625–37.

    Article  CAS  PubMed  Google Scholar 

  • Nazzal S, Smalyukh II, Lavrentovich OD, Khan MA. Preparation and in vitro characterization of a eutectic based semisolid self nanoemulsified drug delivery system of ubiquinone: mechanism and progress of emulsion formation. Int J Pharm. 2002;235:247–65.

    Article  CAS  PubMed  Google Scholar 

  • Orlikova B, Diederich M. Power from the garden: plant compounds as inhibitors of the hallmarks of cancer. Curr Med Chem. 2012;19:2061–87.

    Article  CAS  PubMed  Google Scholar 

  • Overby A, Zhao CM, Chen D. Plant phytochemicals: potential anticancer agents against gastric cancer. Curr Opin Pharmacol. 2014;19C:6–10.

    Article  CAS  Google Scholar 

  • Pandey S, Goyani M, Devmurari V, Fakir J. Transferosomes: a Novel approach for transdermal drug delivery. Pharm Lett. 2009;1:143–50.

    Google Scholar 

  • Paolino D, Lucania G, Mardente D, Alhaique F, Fresta M. Ethosomes for skin delivery of ammonium glycyrrhizinate: in vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers. J Control Release. 2005;106:99–110.

    Article  CAS  PubMed  Google Scholar 

  • Patel R, Singh SK, Singh S, Sheth NR, Gendle R. Development and characterization of curcumin loaded transferosomes for transdermal delivery. J Pharm Sci. 2009;1:71–80.

    Google Scholar 

  • Pawar P, Kalamkar R, Jain A, Aberkar S. Ethosomes: a novel tool for herbal drug delivery. IJPPR Human. 2015;3:191–202.

    CAS  Google Scholar 

  • Pimple S, Manjappa AS, Ukawala M, Murthy RS. PLGA nanoparticles loaded with etoposide and quercetin dihydrate individually: in vitro cell line study to ensure advantage of combination therapy. Cancer Nanotechnol. 2012;3:25–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26:1261–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prausnitz MR, Langer R, Mitragotri S. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3:115–24.

    Article  CAS  PubMed  Google Scholar 

  • Priprem A, Watanatorn J, Sutthiparinyanont S, Phachonpai W, Muchimapura S. Anxiety and cognitive effects of Quercetin liposomes in rats. Nanomedicine. 2008;4:70–8.

    Article  CAS  PubMed  Google Scholar 

  • Rajera R, Nagpal K, Singh SK, Mishra DN. Niosomes: a controlled and novel drug delivery system. Biol Pharm Bull. 2011;34:945–53.

    Article  CAS  PubMed  Google Scholar 

  • Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36:887–913.

    Article  CAS  Google Scholar 

  • Riondel J, Jacrot M, Picot F, Beriel H, Mouriquand C, Potier P. Therapeutic response to taxol of six human tumors xenografted into nude mice. Cancer Chemother Pharmacol. 1986;17:137–42.

    Article  CAS  PubMed  Google Scholar 

  • Rossi R, Basilico F, Rossoni G, Riva A, Morazzoni P, Mauri PL. J Pharm Biomed Anal. 2009;50:224–7.

    Article  CAS  PubMed  Google Scholar 

  • Russo GL. Ins and outs of dietary phytochemicals in cancer chemoprevention. Biochem Pharmacol. 2007;74:533–44.

    Article  CAS  PubMed  Google Scholar 

  • Saltzman WM, Fung LK. Polymeric implants for cancer chemotherapy. Adv Drug Deliv Rev. 1997;26:209–30.

    Article  CAS  PubMed  Google Scholar 

  • Saraf S, Kaur CD. Phytoconstituents as photoprotective novel cosmetic formulations. Pharmacogn Rev. 2010;4:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahiwala A, Misra A. Studies in topical application of niosomally entrapped Nimesulide. J Pharm Pharm Sci. 2002;5:220–5.

    CAS  PubMed  Google Scholar 

  • Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MN. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci. 2009;37:223–30.

    Article  CAS  PubMed  Google Scholar 

  • Sheena IP, Singh UV, Kamath R, Uma Devi P, Udupa N. Niosomal with a ferin A, with better tumor efficiency. Indian J Pharm Sci. 1998;60:45–8.

    Google Scholar 

  • Simon YL, Jackson J, Miyake H, Burt H, Gleave ME. Polymeric micellar paclitaxel phosphorylates Bcl-2 and induces apoptotic regression of androgen-independent LNCaP prostate tumors. Prostate. 2000;44:156–63.

    Article  Google Scholar 

  • Singh D. Application of novel drug delivery system in enhancing the therapeutic potential of phytoconstituents. Asian J Pharm. 2015;9(4):S1–S12.

    Google Scholar 

  • Singh HP, Utreja P, Tiwari AK, Jain S. Elastic liposomal formulation for sustained delivery of colchicine: in vitro characterization and in vivo evaluation of anti-gout activity. AAPS J. 2009;11:54–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szejtli J. Cyclodextrins and their inclusion complexes. Budapest: AkadémiaiKiadó; 1982. p. 296.

    Google Scholar 

  • Szejtli J. Cyclodextrin technology. Dordrecht: Kluwer Academic; 1988. p. 450.

    Book  Google Scholar 

  • Teng Y, Morrison ME, Munk P, Webber SE, Prochazka K. Release kinetics studies of aromatic molecules into water from block polymer micelles. Macromolecules. 1998;31:3578–87.

    Article  CAS  Google Scholar 

  • Thamake SI, Raut SL, Ranjan AP, Gryczynski Z, Vishwanatha JK. Surface functionalization of PLGA nanoparticles by non-covalent insertion of a homo-bifunctional spacer for active targeting in cancer therapy. Nanotechnology. 2011;22(3):035101.

    Article  CAS  PubMed  Google Scholar 

  • Thompson DO. Cyclodextrins—enabling excipients: their present and future use in pharmaceuticals. Crit Rev Ther Drug. 1997;14:1–104.

    Article  CAS  Google Scholar 

  • Touitou E, Alkabes M, Dayan N, Eliaz M. Ethosomes: the novel vesicular carriers for enhanced skin delivery. Pharm Res. 1997;14:305–6.

    Google Scholar 

  • Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm. 1998;33:172–6.

    Google Scholar 

  • Vadhanam MV, Ravoori S, Aqil F, Gupta RC. Chemoprevention of mammary carcinogenesis by sustained systemic delivery of ellagic acid. Eur J Cancer Prev. 2011;20:484–91.

    Article  CAS  PubMed  Google Scholar 

  • Varde NK, Pack DW. Microspheres for controlled release drug delivery. Expert Opin Biol Ther. 2004;4:35–51.

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Pathak K. Therapeutic and cosmeceutical potential of ethosomes: an overview. J Adv Pharm Technol Res. 2010;1:274–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vyas A, Saraf S, Saraf S. Cyclodextrin based novel drug delivery system. J Incl Phenom Macrocycl Chem. 2008;62:23–42.

    Article  CAS  Google Scholar 

  • Wall JG, Burris HA, Von Hoff DD, Rodriguez G, Kneuper-Hall R, Shaffer D, et al. A phase I clinical and pharmacokinetic study of the topoisomerase I inhibitor topotecan (SK&F 104864) given as an intravenous bolus every 21 days. Anticancer Drugs. 1992;3:337–45.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Jiang Y, Wang YW, et al. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem. 2008;108:419–24.

    Article  CAS  PubMed  Google Scholar 

  • Weiss R, Fintelmann V. Herbal medicine. 2nd ed. Stuttgart, New York: Thieme; 2000.

    Google Scholar 

  • Wen Z, Liu B, Zheng Z, You X, Pu Y, Li Q. Preparation of liposomes entrapping essential oil from Atractylodes macrocephala Koidz by modified RESS technique. Chem Eng Res Design. 2010;88:1102–7.

    Article  CAS  Google Scholar 

  • Wiernik PH, Schwartz EL, Strauman JJ, Dutcher JP, Lipton RB, Paietta E. Phase I clinical and pharmacokinetic study of taxol. Cancer Res. 1987;47:2486–93.

    CAS  PubMed  Google Scholar 

  • Xiao L, Zhang YH, Xu JC, Jin XH. Preparation of floating rutin-alginate-chitosan microcapsule. Chin Trad Herb Drugs. 2008;2:209–12.

    Google Scholar 

  • Xiao-Ying L, Luo JB, Yan ZH, Rong HS, Huang WM. Preparation and in vitro-in vivo evaluations of topically applied capsaicin transferosomes. Yao Xue Xue Bao. 2006;41:461–6.

    PubMed  Google Scholar 

  • Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci. 2010;351:19–29.

    Article  CAS  PubMed  Google Scholar 

  • You J, Cui FD, Han X, Wang YS, Yang L, Yu YW, Li OP. Study of the preparation of sustained releasemicrospheres containing zedoary turmeric oil by the emulsion solvent diffusion method and evaluation of theself emulsification and bioavailability of the oil. Colloids Surf B Biointerfaces. 2006;48:35–41.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Jasti B, Li X. Formulation and characterization of silibinin-loaded sterically stabilized solid lipid nanoparticles. Drug Deliv. 2007;15:381–7.

    Article  CAS  Google Scholar 

  • Zhao HR, Wang K, Zhao Y, Pan LQ. Novel sustained release implant of herbal extract using chitosan. Biomaterials. 2002;23:4459–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinku Baishya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baishya, R., Hati Boruah, J.L., Bordoloi, M.J., Kumar, D., Kalita, P. (2020). Novel Drug Delivery System in Phytochemicals: Modern Era of Ancient Science. In: Sen, S., Chakraborty, R. (eds) Herbal Medicine in India. Springer, Singapore. https://doi.org/10.1007/978-981-13-7248-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7248-3_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7247-6

  • Online ISBN: 978-981-13-7248-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics