Skip to main content

Memory Dysfunction Correlates with the Dysregulated Dopaminergic System in the Ventral Tegmental Area in Alzheimer’s Disease

  • Chapter
  • First Online:
Application of Biomedical Engineering in Neuroscience

Abstract

Alzheimer’s disease (AD) is one of the neurodegenerative diseases associated with neuroinflammation. Tau neurofibrillary tangles and amyloid beta (Aβ) plaques can activate microglia and then elevate the levels of neuroinflammatory mediators in AD models. The elevation of cytokines levels can lead to increased Aβ production, which is one of the causes of the pathogenesis of AD. Although it is noteworthy that AD is associated with deficit in cholinergic system, it also demonstrated that AD is associated with dopaminergic neurodegeneration in the ventral tegmental area (VTA). The VTA sends dopaminergic inputs into the hippocampus and regulates the memory and learning functions. The depletion of dopaminergic neurons in the VTA in AD models might lead to memory impairments and cognition deficit. We suggest here that that neurodegeneration in the dopamine neurons is involved in the development of dysregulated behaviors in AD animal models. In this chapter, we illustrate the role of AD-associated neuroinflammation in dopaminergic neurodegeneration in the VTA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hebert LE, Weuve J, Scherr PA, Evans DA (2013) Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 80:1778–1783

    Article  PubMed  PubMed Central  Google Scholar 

  2. Duckett L (2001) Alzheimer’s dementia: morbidity and mortality. J Insurance Med (New York, NY) 33:227–234

    CAS  Google Scholar 

  3. Todd S, Barr S, Passmore AP (2013) Cause of death in Alzheimer’s disease: a cohort study. QJM Int J Med 106:747–753

    Article  CAS  Google Scholar 

  4. Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA (2003) Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 60:1119–1122

    Article  PubMed  Google Scholar 

  5. Weuve J, Hebert LE, Scherr PA, Evans DA (2014) Deaths in the United States among persons with Alzheimer’s disease (2010–2050). Alzheimer’s Dement 10:e40–e46

    Article  Google Scholar 

  6. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42:631–631

    Article  CAS  PubMed  Google Scholar 

  7. Bancher C, Brunner C, Lassmann H, Budka H, Jellinger K, Wiche G, Seitelberger F, Grundke-Iqbal I, Iqbal K, Wisniewski HM (1989) Accumulation of abnormally phosphorylated τ precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res 477:90–99

    Article  CAS  PubMed  Google Scholar 

  8. Brion J-P (1998) Neurofibrillary tangles and Alzheimer’s disease. Eur Neurol 40:130–140

    Article  CAS  PubMed  Google Scholar 

  9. Metaxas A, Kempf SJ (2016) Neurofibrillary tangles in Alzheimer’s disease: elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics. Neural Regener Res 11:1579

    Article  Google Scholar 

  10. Beharry C, Cohen LS, Di J, Ibrahim K, Briffa-Mirabella S, Alonso Adel C (2014) Tau-induced neurodegeneration: mechanisms and targets. Neurosci Bull 30:346–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118:53–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cacabelos R, Barquero M, Garcia P, Alvarez XA, de Seijas Varela E (1991) Cerebrospinal fluid interleukin-1 beta (IL-1 beta) in Alzheimer’s disease and neurological disorders. Methods Find Exp Clin Pharmacol 13:455–458

    CAS  PubMed  Google Scholar 

  13. Griffin WS, Stanley LC, Ling CHEN, White L, MacLeod V, Perrot LJ, White CL 3rd, Araoz C (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci 86:7611–7615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ng A, Tam WW, Zhang MW, Ho CS, Husain SF, McIntyre RS, Ho RC (2018) IL-1β, IL-6, TNF-α and CRP in elderly patients with depression or Alzheimer’s disease: systematic review and meta-analysis. Sci Rep 8:12050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Belkhelfa M, Rafa H, Medjeber O, Arroul-Lammali A, Behairi N, Abada-Bendib M, Makrelouf M, Belarbi S, Masmoudi AN, Tazir M (2014) IFN-γ and TNF-α are involved during Alzheimer disease progression and correlate with nitric oxide production: a study in Algerian patients. J Interferon Cytokine Res 34:839–847

    Article  CAS  PubMed  Google Scholar 

  16. Fillit H, Ding W, Buee L, Kalman J, Altstiel L, Lawlor B, Wolf-Klein G (1991) Elevated circulating tumor necrosis factor levels in Alzheimer’s disease. Neurosci Lett 129:318–320

    Article  CAS  PubMed  Google Scholar 

  17. Komurcu HF, Kilic N, Demirbilek ME, Akin KO (2016) Plasma levels of vitamin B12, epidermal growth factor and tumor necrosis factor alpha in patients with Alzheimer dementia. Int J Res Med Sci 4:734–738

    Article  Google Scholar 

  18. Swardfager W, Lanctôt K, Rothenburg L, Wong A, Cappell J, Herrmann N (2010) A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 68:930–941

    Article  CAS  PubMed  Google Scholar 

  19. Alasmari F, Alshammari MA, Alasmari AF, Alanazi WA, Alhazzani K (2018a) Neuroinflammatory cytokines induce amyloid beta neurotoxicity through modulating amyloid precursor protein levels/metabolism. Biomed Res Int 2018:3087475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Alasmari F, Ashby CR Jr, Hall FS, Sari Y, Tiwari AK (2018b) Modulation of the ATP-binding Cassette B1 transporter by neuro-inflammatory cytokines: role in the pathogenesis of Alzheimer’s disease. Front Pharmacol 9:658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, Read S, Satyamurthy N, Petric A, Huang SC, Barrio JR (2002) Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry 10:24–35

    Article  PubMed  Google Scholar 

  22. Forloni G, Demicheli F, Giorgi S, Bendotti C, Angeretti N (1992) Expression of amyloid precursor protein mRNAs in endothelial, neuronal and glial cells: modulation by interleukin-1. Mol Brain Res 16:128–134

    Article  CAS  PubMed  Google Scholar 

  23. Walther W, Kobelt D, Bauer L, Aumann J, Stein U (2015) Chemosensitization by diverging modulation by short-term and long-term TNF-alpha action on ABCB1 expression and NF-kappaB signaling in colon cancer. Int J Oncol 47:2276–2285

    Article  CAS  PubMed  Google Scholar 

  24. Alberdi E, Sánchez-Gómez MV, Cavaliere F, Pérez-Samartín A, Zugaza JL, Trullas R, Domercq M, Matute C (2010) Amyloid β oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium 47:264–272

    Article  CAS  PubMed  Google Scholar 

  25. Nobili A, Latagliata EC, Viscomi MT, Cavallucci V, Cutuli D, Giacovazzo G, Krashia P, Rizzo FR, Marino R, Federici M (2017) Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat Commun 8:14727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Holtzman-Assif O, Laurent V, Westbrook RF (2010) Blockade of dopamine activity in the nucleus accumbens impairs learning extinction of conditioned fear. Learn Mem 17:71–75

    Article  PubMed  Google Scholar 

  27. Russo SJ, Nestler EJ (2013) The brain reward circuitry in mood disorders. Nat Rev Neurosci 14:609–625

    Article  CAS  PubMed  Google Scholar 

  28. Tizabi Y, Bai L, Copeland RL Jr, Taylor RE (2007) Combined effects of systemic alcohol and nicotine on dopamine release in the nucleus accumbens shell. Alcohol Alcohol 42:413–416

    Article  CAS  PubMed  Google Scholar 

  29. Tizabi Y, Copeland RL Jr, Louis VA, Taylor RE (2002) Effects of combined systemic alcohol and central nicotine administration into ventral tegmental area on dopamine release in the nucleus accumbens. Alcohol Clin Exp Res 26:394–399

    Article  CAS  PubMed  Google Scholar 

  30. Di Chiara G (1998) A motivational learning hypothesis of the role of mesolimbic dopamine in compulsive drug use. J Psychopharmacol 12:54–67

    Article  PubMed  Google Scholar 

  31. Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46:703–713

    Article  CAS  PubMed  Google Scholar 

  32. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382:685–691

    Article  CAS  PubMed  Google Scholar 

  34. Chen WW, Zhang X, Huang WJ (2016) Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep 13:3391–3396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Crews L, Masliah E (2010) Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum Mol Genet 19:R12–R20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Toledo EM, Inestrosa NC (2010) Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1DeltaE9 mouse model of Alzheimer’s disease. Mol Psychiatry 15(272–285):28

    Google Scholar 

  37. Tu S, Okamoto S, Lipton SA, Xu H (2014) Oligomeric Abeta-induced synaptic dysfunction in Alzheimer’s disease. Mol Neurodegener 9:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Patel NS, Paris D, Mathura V, Quadros AN, Crawford FC, Mullan MJ (2005) Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J Neuroinflammation 2:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sivanesan S, Tan A, Rajadas J (2013) Pathogenesis of Abeta oligomers in synaptic failure. Curr Alzheimer Res 10:316–323

    Article  CAS  PubMed  Google Scholar 

  40. Dani M, Wood M, Mizoguchi R, Fan Z, Walker Z, Morgan R, Hinz R, Biju M, Kuruvilla T, Brooks DJ (2018) Microglial activation correlates in vivo with both tau and amyloid in Alzheimer’s disease. Brain 141:2740–2754

    PubMed  Google Scholar 

  41. Giovannini MG, Scali C, Prosperi C, Bellucci A, Vannucchi MG, Rosi S, Pepeu G, Casamenti F (2002) β-Amyloid-induced inflammation and cholinergic hypofunction in the rat brain in vivo: involvement of the p38MAPK pathway. Neurobiol Dis 11:257–274

    Article  CAS  PubMed  Google Scholar 

  42. Yates SL, Burgess LH, Kocsis-Angle J, Antal JM, Dority MD, Embury PB, Piotrkowski AM, Brunden KR (2000) Amyloid β and amylin fibrils induce increases in proinflammatory cytokine and chemokine production by THP-1 cells and murine microglia. J Neurochem 74:1017–1025

    Article  CAS  PubMed  Google Scholar 

  43. Perluigi M, Barone E, Di Domenico F, Butterfield DA (2016) Aberrant protein phosphorylation in Alzheimer disease brain disturbs pro-survival and cell death pathways. Biochimica et Biophysica Acta (BBA) Mol Basis Dis 1862:1871–1882

    Article  CAS  Google Scholar 

  44. Robertson LA, Moya KL, Breen KC (2004) The potential role of tau protein O-glycosylation in Alzheimer’s disease. J Alzheimer’s Dis 6:489–495

    Article  CAS  Google Scholar 

  45. Takahashi M, Tsujioka Y, Yamada T, Tsuboi Y, Okada H, Yamamoto T, Liposits Z (1999) Glycosylation of microtubule-associated protein tau in Alzheimer’s disease brain. Acta Neuropathol 97:635–641

    Article  CAS  PubMed  Google Scholar 

  46. Grundke-Iqbal I, Iqbal K, Tung Y-C, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci 83:4913–4917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Inoue H, Hiradate Y, Shirakata Y, Kanai K, Kosaka K, Gotoh A, Fukuda Y, Nakai Y, Uchida T, Sato E (2014) Site-specific phosphorylation of Tau protein is associated with deacetylation of microtubules in mouse spermatogenic cells during meiosis. FEBS Lett 588:2003–2008

    Article  CAS  PubMed  Google Scholar 

  48. Bharadwaj PR, Dubey AK, Masters CL, Martins RN, Macreadie IG (2009) Aβ aggregation and possible implications in Alzheimer’s disease pathogenesis. J Cell Mol Med 13:412–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Blasko I, Apochal A, Boeck G, Hartmann T, Grubeck-Loebenstein B, Ransmayr G (2001) Ibuprofen decreases cytokine-induced amyloid beta production in neuronal cells. Neurobiol Dis 8:1094–1101

    Article  CAS  PubMed  Google Scholar 

  50. Yamamoto M, Kiyota T, Horiba M, Buescher JL, Walsh SM, Gendelman HE, Ikezu T (2007) Interferon-γ and tumor necrosis factor-α regulate amyloid-β plaque deposition and β-secretase expression in Swedish mutant APP transgenic mice. Am J Pathol 170:680–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Caruso G, Fresta CG, Musso N, Giambirtone M, Grasso M, Spampinato SF, Merlo S, Drago F, Lazzarino G, Sortino MA (2019) Carnosine prevents Aβ-induced oxidative stress and inflammation in microglial cells: a key role of TGF-β1. Cells 8:64

    Article  PubMed Central  Google Scholar 

  52. Morales I, Guzmán-Martínez L, Cerda-Troncoso C, Farías GA, Maccioni RB (2014) Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Fron Cell Neurosci 8:112

    Google Scholar 

  53. Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Ki Wan O, Hong JT (2008) Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation 5:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sutinen EM, Pirttilä T, Anderson G, Salminen A, Ojala JO (2012) Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-β production in human neuron-like cells. J Neuroinflamm 9:199

    Article  CAS  Google Scholar 

  55. Wang Z, Jackson RJ, Hong W, Taylor WM, Corbett GT, Moreno A, Liu W, Li S, Frosch MP, Slutsky I, Young-Pearse TL, Spires-Jones TL, Walsh DM (2017) Human brain-derived Abeta oligomers bind to synapses and disrupt synaptic activity in a manner that requires APP. J Neurosci 37:11947–11966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Koffie RM, Meyer-Luehmann M, Hashimoto T, Adams KW, Mielke ML, Garcia-Alloza M, Micheva KD, Smith SJ, Kim ML, Lee VM, Hyman BT, Spires-Jones TL (2009) Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci U S A 106:4012–4017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jurgensen S, Antonio LL, Mussi GE, Brito-Moreira J, Bomfim TR, De Felice FG, Garrido-Sanabria ER, Cavalheiro EA, Ferreira ST (2011) Activation of D1/D5 dopamine receptors protects neurons from synapse dysfunction induced by amyloid-beta oligomers. J Biol Chem 286:3270–3276

    Article  PubMed  CAS  Google Scholar 

  58. Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A (2002) Tau is essential to beta -amyloid-induced neurotoxicity. Proc Natl Acad Sci U S A 99:6364–6369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Iqbal K, Fei L, Gong C-X, Grundke-Iqbal I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7:656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Morales I, Jiménez JM, Mancilla M, Maccioni RB (2013) Tau oligomers and fibrils induce activation of microglial cells. J Alzheimer’s Dis 37:849–856

    Article  CAS  Google Scholar 

  61. Rohn TT, Head E, Joseph HS, Anderson AJ, Bahr BA, Cotman CW, Cribbs DH (2001) Correlation between caspase activation and neurofibrillary tangle formation in Alzheimer’s disease. Am J Pathol 158:189–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kobayashi K, Nakano H, Hayashi M, Shimazaki M, Fukutani Y, Sasaki K, Sugimori K, Koshino Y (2003) Association of phosphorylation site of tau protein with neuronal apoptosis in Alzheimer’s disease. J Neurol Sci 208:17–24

    Article  CAS  PubMed  Google Scholar 

  63. Wang J-Z, Grundke-Iqbal I, Iqbal K (2007) Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci 25:59–68

    Article  PubMed  PubMed Central  Google Scholar 

  64. Croft CL, Kurbatskaya K, Hanger DP, Noble W (2017) Inhibition of glycogen synthase kinase-3 by BTA-EG 4 reduces tau abnormalities in an organotypic brain slice culture model of Alzheimer’s disease. Sci Rep 7:7434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Oka M, Fujisaki N, Maruko-Otake A, Ohtake Y, Shimizu S, Saito T, Hisanaga S-I, Iijima KM, Ando K (2017) Ca2+/calmodulin-dependent protein kinase II promotes neurodegeneration caused by tau phosphorylated at Ser262/356 in a transgenic Drosophila model of tauopathy. J Biochem 162:335–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Futch HS, Croft CL, Truong VQ, Krause EG, Golde TE (2017) Targeting psychologic stress signaling pathways in Alzheimer’s disease. Mol Neurodegener 12:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Vyas S, Rodrigues AJ, Silva JM, Tronche F, Almeida OFX, Sousa N, Sotiropoulos I (2016) Chronic stress and glucocorticoids: from neuronal plasticity to neurodegeneration. Neural Plastic 2016

    Google Scholar 

  68. Bachis A, Cruz MI, Nosheny RL, Mocchetti I (2008) Chronic unpredictable stress promotes neuronal apoptosis in the cerebral cortex. Neurosci Lett 442:104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Carroll JC, Iba M, Bangasser DA, Valentino RJ, James MJ, Brunden KR, Lee VM-Y, Trojanowski JQ (2011) Chronic stress exacerbates tau pathology, neurodegeneration, and cognitive performance through a corticotropin-releasing factor receptor-dependent mechanism in a transgenic mouse model of tauopathy. J Neurosci 31:14436–14449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ennis GE, Yang A, Resnick SM, Ferrucci L, O’brien RJ, Moffat SD (2017) Long-term cortisol measures predict Alzheimer disease risk. Neurology 88:371–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Echouffo-Tcheugui JB, Conner SC, Himali JJ, Maillard P, DeCarli CS, Beiser AS, Vasan RS, Seshadri S (2018) Circulating cortisol and cognitive and structural brain measures: the Framingham Heart Study. Neurology 91:e1961–e1e70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yagami T, Kohma H, Yamamoto Y (2012) L-type voltage-dependent calcium channels as therapeutic targets for neurodegenerative diseases. Curr Med Chem 19:4816–4827

    Article  CAS  PubMed  Google Scholar 

  73. Limbrick DD Jr, Churn SB, Sombati S, DeLorenzo RJ (1995) Inability to restore resting intracellular calcium levels as an early indicator of delayed neuronal cell death. Brain Res 690:145–156

    Article  PubMed  Google Scholar 

  74. Hynd MR, Scott HL, Dodd PR (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 45:583–595

    Article  CAS  PubMed  Google Scholar 

  75. Wildburger NC, Lin-Ye A, Baird MA, Lei D, Bao J (2009) Neuroprotective effects of blockers for T-type calcium channels. Mol Neurodegener 4:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Marder K (2004) Memantine approved to treat moderate to severe Alzheimer’s disease. Curr Neurol Neurosci Rep 4:349–350

    Article  PubMed  Google Scholar 

  77. Ferreira IL, Ferreiro E, Schmidt J, Cardoso JM, Pereira CMF, Carvalho AL, Oliveira CR, Rego AC (2015) Aβ and NMDAR activation cause mitochondrial dysfunction involving ER calcium release. Neurobiol Age 36:680–692

    Article  CAS  Google Scholar 

  78. He Y, Cui J, Lee JCM, Ding S, Chalimoniuk M, Simonyi A, Sun AY, Gu Z, Weisman GA, Wood WG (2011) Prolonged exposure of cortical neurons to oligomeric amyloid-β impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (-)-epigallocatechin-3-gallate. ASN Neuro 3:AN20100025

    Article  CAS  Google Scholar 

  79. Butzlaff M, Ponimaskin E (2016) The role of serotonin receptors in Alzheimer’s disease. In: Opera Medica et Physiologica

    Google Scholar 

  80. Li Y, Sun H, Chen Z, Xu H, Guojun B, Zheng H (2016) Implications of GABAergic neurotransmission in Alzheimer’s disease. Fron Age Neurosci 8:31

    Google Scholar 

  81. Stuber GD, Britt JP, Bonci A (2012) Optogenetic modulation of neural circuits that underlie reward seeking. Biol Psychiatry 71:1061–1067

    Article  PubMed  Google Scholar 

  82. Guzmán-Ramos K, Moreno-Castilla P, Castro-Cruz M, McGaugh JL, Martínez-Coria H, LaFerla FM, Bermúdez-Rattoni F (2012) Restoration of dopamine release deficits during object recognition memory acquisition attenuates cognitive impairment in a triple transgenic mice model of Alzheimer’s disease. Learn Mem 19:453–460

    Article  PubMed  CAS  Google Scholar 

  83. De Marco M, Venneri A (2018) Volume and connectivity of the ventral tegmental area are linked to neurocognitive signatures of Alzheimer’s disease in humans. J Alzheimers Dis 63:167–180

    Article  PubMed  CAS  Google Scholar 

  84. Hall H, Reyes S, Landeck N, Bye C, Leanza G, Double K, Thompson L, Halliday G, Kirik D (2014) Hippocampal Lewy pathology and cholinergic dysfunction are associated with dementia in Parkinson’s disease. Brain 137:2493–2508

    Article  PubMed  Google Scholar 

  85. Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, Tye KM, Deisseroth K, Malenka RC (2012) Input-specific control of reward and aversion in the ventral tegmental area. Nature 491:212–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Leemburg S, Canonica T, Luft A (2018) Motor skill learning and reward consumption differentially affect VTA activation. Sci Rep 8:687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Rincón-Cortés M, Grace AA (2017) Sex-dependent effects of stress on immobility behavior and VTA dopamine neuron activity: modulation by ketamine. Int J Neuropsychopharmacol 20:823–832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Ambrée O, Richter H, Sachser N, Lewejohann L, Dere E, de Souza Silva MA, Herring A, Keyvani K, Paulus W, Schäbitz W-R (2009) Levodopa ameliorates learning and memory deficits in a murine model of Alzheimer’s disease. Neurobiol Aging 30:1192–1204

    Article  PubMed  CAS  Google Scholar 

  89. Koch G, Di Lorenzo F, Bonnì S, Giacobbe V, Bozzali M, Caltagirone C, Martorana A (2014) Dopaminergic modulation of cortical plasticity in Alzheimer’s disease patients. Neuropsychopharmacology 39:2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Martorana A, Di Lorenzo F, Esposito Z, Giudice TL, Bernardi G, Caltagirone C, Koch G (2013) Dopamine D2-agonist Rotigotine effects on cortical excitability and central cholinergic transmission in Alzheimer’s disease patients. Neuropharmacology 64:108–113

    Article  CAS  PubMed  Google Scholar 

  91. Martorana A, Mori F, Esposito Z, Kusayanagi H, Monteleone F, Codeca C, Sancesario G, Bernardi G, Koch G (2009) Dopamine modulates cholinergic cortical excitability in Alzheimer’s disease patients. Neuropsychopharmacology 34:2323

    Article  CAS  PubMed  Google Scholar 

  92. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C, Daniele A, Ghirlanda S, Gainotti G, Tonali PA (2004) Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 75:555–559

    Article  PubMed  Google Scholar 

  93. Nardone R, Bergmann J, Kronbichler M, Kunz A, Klein S, Caleri F, Tezzon F, Ladurner G, Golaszewski S (2008) Abnormal short latency afferent inhibition in early Alzheimer’s disease: a transcranial magnetic demonstration. J Neural Transm 115:1557–1562

    Article  PubMed  Google Scholar 

  94. Appiah-Kubi LS, Chaudhuri KR (2002) Sustained dopamine agonism with cabergoline in Parkinson’s disease. In: Mapping the progress of Alzheimer’s and Parkinson’s disease. Springer, Boston

    Google Scholar 

  95. Juarez B, Han M-H (2016) Diversity of dopaminergic neural circuits in response to drug exposure. Neuropsychopharmacology 41:2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Margolis EB, Lock H, Chefer VI, Shippenberg TS, Hjelmstad GO, Fields HL (2006) κ opioids selectively control dopaminergic neurons projecting to the prefrontal cortex. Proc Natl Acad Sci 103:2938–2942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The book chapter was written during the period of fund supported by the International Scientific Partnership Program (ISPP-146) from the Deanship of Scientific Research, King Saud University.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fawaz Alasmari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alasmari, F., Al-Harbi, N.O., Alanazi, M.M., Alasmari, A.F., Sari, Y. (2019). Memory Dysfunction Correlates with the Dysregulated Dopaminergic System in the Ventral Tegmental Area in Alzheimer’s Disease. In: Paul, S. (eds) Application of Biomedical Engineering in Neuroscience. Springer, Singapore. https://doi.org/10.1007/978-981-13-7142-4_5

Download citation

Publish with us

Policies and ethics