Skip to main content

Abstract

Plant breeding is the continuous endeavor to develop superior plant phenotypes that are better adapted to human needs by utilizing the available genetic variation. It has been practiced for thousands of years ever since the beginning of human civilization, initially as an art by the farmers and later as a science by breeders. The aim of plant breeding is to improve the quality, diversity, and performance of food, fiber, forage, industrial, and other economically important crops. Crop breeding is a rapidly advancing science and has made use of recent genetic and biotechnological innovations to efficiently develop better crop varieties. After initial genetical work by Mendel on garden pea, the later part of the nineteenth century saw a jump in the interest in plant breeding with the cultivators aiming at producing hardier and higher-yielding crops. Rapid advances using conventional breeding techniques led to Green Revolution during the period between 1960 and 1980 when a remarkable increase in the production of wheat and rice was achieved primarily in wheat and rice by development of high-yielding varieties. Advances in plant biotechnology, molecular markers, and genomics have enabled breeders to formulate new tools for the analysis and manipulation of genetic variability and the development of improved plant types. Molecular tools are being increasingly used in plant breeding to widen its impact for meeting the global needs for sustainable increases in agricultural productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, Boughman J, Brelsford A, Buerkle CA, Buggs R (2013) Hybridization and speciation. J Evol Biol 26:229–246

    Article  CAS  PubMed  Google Scholar 

  • Abd El-Moneim AM (1993) Selection for non-shattering common vetch, Vicia sativa L. Plant Breed 110:168–171

    Article  Google Scholar 

  • An G, Watson BD, Stachel S, Gordon MP, Nester EW (1985) New cloning vehicles for transformation of higher plants. EMBO J 4:277–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anandaraj M, Prasath D, Kandiannan K, Zachariah TJ, Srinivasan V (2014) Genotype by environment interaction effects on yield and curcumin in turmeric (Curcuma longa L.). Indus Crops Prod 53:358–364

    Article  CAS  Google Scholar 

  • Anderson E (1956) Man as a maker of new plants and new plant communities. In: Thomas W (ed) Man’s role in changing the face of the earth. University of Chicago Press, Chicago, pp 763–777

    Google Scholar 

  • Argyris JM, Díaz A, Ruggieri V, Fernández M, Jahrmann T, Gibon Y, Picó B, Martín-Hernández AM, Monforte AJ, Garcia-Mas J (2017) QTL analyses in multiple populations employed for the fine mapping and identification of candidate genes at a locus affecting sugar accumulation in melon (Cucumis melo L.). Front Plant Sci 8:1679

    Article  PubMed  PubMed Central  Google Scholar 

  • Babu R, Nair SK, Prasanna BM, Gupta HS (2004) Integrating marker-assisted selection in crop breeding- prospects and challenges. Curr Sci 87:607–619

    CAS  Google Scholar 

  • Bahadur V, Yeshudas V, Meena OP (2016) Nature and magnitude of genetic variability and diversity analysis of Indian turmeric accessions using agro-morphological descriptors. Can J Plant Sci 96:371–381

    Article  Google Scholar 

  • Bahtoee A, Zargari K, Baniani E (2012) An investigation on fiber production of different kenaf (Hibiscus cannabinus L.) genotypes. World Appl Sci J 16:63–66

    Google Scholar 

  • Baltiņa I, Stramkale V, Tetere R, Ozoliņa N (2011) Estimation of fibres from different flax varieties for textile production. Mat Sci Textile Cloth Technol 6:56–62

    Google Scholar 

  • Banta LM, Montenegro M (2008) Agrobacterium and plant biotechnology. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York, pp 73–147

    Chapter  Google Scholar 

  • Barcaccia G (2010) Molecular markers for characterizing and conserving crop plant Germplasm. In: Jain S, Brar D (eds) Molecular techniques in crop improvement. Springer, Dordrecht, pp 231–254

    Chapter  Google Scholar 

  • Barrière Y, Méchin V, Denoue D, Bauland C, Laborde J (2010) QTL for yield, earliness, and cell wall quality traits in topcross experiments of the F838 × F286 early maize RIL progeny. Crop Sci 50:1761–1772

    Article  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Batayeva D, Labaco B, Ye C, Li X, Usenbekov B, Rysbekova A, Dyuskalieva G, Vergara G, Reinke R, Leung H (2018) Genome-wide association study of seedling stage salinity tolerance in temperate japonica rice germplasm. BMC Genet 19:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Becker D (1990) Binary vectors which allow the exchange of plant selectable markers and reporter genes. Nucleic Acids Res 18:203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhargava A, Srivastava S (2013) Quinoa: botany, production and uses. CABI, Wallingford

    Book  Google Scholar 

  • Bhargava A, Shukla S, Chatterjee A, Singh SP (2004) Selection response in vegetable amaranth (A. tricolor) for different foliage cuttings. J Appl Hortic 6:43–44

    Article  Google Scholar 

  • Bhargava A, Shukla S, Dixit BS, Bannerji R, Ohri D (2006) Variability and genotype x cutting interactions for different nutritional components in Chenopodium album L. Hortic Sci 33:29–38

    Article  Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2007a) Evaluation of foliage yield and leaf quality traits in Chenopodium spp. in multiyear trials. Euphytica 153:199–213

    Article  Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2007b) Effect of sowing dates and row spacings on yield and quality components of quinoa (Chenopodium quinoa) leaves. Indian J Agric Sci 77:748–751

    CAS  Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2008) Genotype x environment interaction studies in Chenopodium album L.: an underutilized crop with promising potential. Comm Biomet Crop Sci 3:3–15

    Google Scholar 

  • Blum A, Jordan WR (1985) Breeding crop varieties for stress environments. Crit Rev Plant Sci 2:199–238

    Article  Google Scholar 

  • Boscaiu M, Lull C, Lidon A, Bautista I, Donat P, Mayoral O, Vicente O (2008) Plant responses to abiotic stress in their natural habitats. Bull UASVM Hortic 65:53–58

    Google Scholar 

  • Bourion V, Rizvi SMH, Fournier S, de Larambergue H, Galmiche F, Marget P, Duc G, Burstin J (2010) Genetic dissection of nitrogen nutrition in pea through a QTL approach of root, nodule, and shoot variability. Theor Appl Genet 121:71–86

    Article  PubMed  Google Scholar 

  • Brenner DM (2002) Non-shattering grain amaranth populations. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 104–106

    Google Scholar 

  • Brim CA, Burton JW (1979) Recurrent selection in soybeans: II: selection for increased percent protein in seeds. Crop Sci 19:494–498

    Article  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Byrne S, Guiney E, Barth S, Donnison I, Mur LAJ, Milbourne D (2009) Identification of coincident QTL for days to heading, spike length and spikelets per spike in Lolium perenne L. Euphytica 166:61–70

    Article  Google Scholar 

  • Cao Z, Guo Y, Yang Q, He Y, Fetouh M, Warner RM, Deng Z (2018) Genome-wide search for quantitative trait loci controlling important plant and flower traits in Petunia using an interspecific recombinant inbred population of Petunia axillaris and Petunia exserta. G3 (Bethesda) 8:2309–2317

    Article  CAS  Google Scholar 

  • Castro P, Lewers KS (2016) Identification of quantitative trait loci (QTL) for fruit-quality traits and number of weeks of flowering in the cultivated strawberry. Mol Breed 36:138

    Article  CAS  Google Scholar 

  • Cavagnaro PF, Iorizzo M, Yildiz M, Senalik D, Parsons J, Ellison S, Simon PW (2014) A gene-derived SNP-based high resolution linkage map of carrot including the location of QTL conditioning root and leaf anthocyanin pigmentation. BMC Genomics 15:1118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chauhan JS, Tyagi MK, Kumar PR, Tyagi P, Singh M, Kumar S (2002) Breeding for oil and seed meal quality in rapeseed-mustard in India- a review. Agric Rev 23:71–92

    Google Scholar 

  • Choi SR, Yu X, Dhandapani V, Li X, Wang Z, Lee SY, Oh SH, Pang W, Ramchiary N, Hong CP, Park S, Piao Z, Kim H, Lim YP (2017) Integrated analysis of leaf morphological and color traits in different populations of Chinese cabbage (Brassica rapa ssp. pekinensis). Theor Appl Genet 130:1617–1634

    Article  PubMed  Google Scholar 

  • Chopra S (2014) Techniques and tools of modern plant breeding: field crops. In: Ricroch A, Chopra S, Fleischer S (eds) Plant biotechnology. Springer, Cham

    Google Scholar 

  • Choudhary N, Bawa V, Paliwal R, Singh B, Bhat MA, Mir JI, Gupta M, Sofi PA, Thudi M, Varshney RK, Mir RR (2018) Gene/QTL discovery for anthracnose in common bean (Phaseolus vulgaris L.) from North-Western Himalayas. PLoS One 13:e0191700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chunthawodtiporn J, Hill T, Stoffel K, Van Deynze A (2018) Quantitative trait loci controlling fruit size and other horticultural traits in bell pepper (Capsicum annum). Plant Genome 11:160125

    Article  CAS  Google Scholar 

  • Clarke JM (1981) Effect of delayed harvest on shattering losses in oats, barley and wheat. Can J Plant Sci 61:25–28

    Article  Google Scholar 

  • Cober ER, Voldeng HD (2000) Developing high-protein, high-yield soybean populations and lines. Crop Sci 40:39–42

    Article  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B 363:557–572

    Article  CAS  PubMed  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Constable G, Llewellyn D, Walford SA, Clement JD (2014) Cotton breeding for fiber quality improvement. In: Cruz VMV, Dierig DA (eds) Industrial crops: breeding for bioenergy and bioproducts. Springer, New York, pp 191–232

    Google Scholar 

  • Costa F, Peace CP, Stella S, Serra S, Musacchi S, Bazzani M, Sansavini S, Van de Weg WE (2010) QTL dynamics for fruit firmness and softening around an ethylene-dependent polygalacturonase gene in apple (Malus×domestica Borkh.). J Exp Bot 61:3029–3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Crow JF (1998) 90 years ago: the beginning of hybrid maize. Genetics 148:923–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullis C (2011) Linum. In: Cole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Berlin, pp 177–189

    Chapter  Google Scholar 

  • Darwin CR (1859) On the origin of species. John Murray, London

    Google Scholar 

  • Das S, Singh M, Srivastava R, Bajaj D, Saxena MS, Rana JC, Bansal KC, Tyagi AK, Parida SK (2016) mQTL-seq delineates functionally relevant candidate gene harbouring a major QTL regulating pod number in chickpea. DNA Res 23:53–65

    CAS  PubMed  Google Scholar 

  • Davey MW, Keulemans J (2004) Determining the potential to breed for enhanced antioxidant status in Malus: mean inter- and intravarietal fruit vitamin C and glutathione contents at harvest and their evolution during storage. J Agric Food Chem 52:8031–8038

    Article  CAS  PubMed  Google Scholar 

  • Davies CS, Nielsen SS, Nielsen NC (1987) Flavor improvement of soybean preparations by genetic removal of lipoxygenase-2. J Am Oil Chem Soc 64:1428–1433

    Article  CAS  Google Scholar 

  • de la Riva GA, Gonzalez-Cabrera J, Vazquez-Padron R, Ayra-Pardo C (1998) Agrobacterium tumefaciens: a natural tool for plant transformation. Electron J Biotechnol 1:1–16

    Google Scholar 

  • DeCleene M, DeLey J (1976) The host range of crown gall. Bot Rev 42:389–466

    Article  Google Scholar 

  • Dekkers JCM, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3:22–32

    Article  CAS  PubMed  Google Scholar 

  • Desgroux A, Baudais VN, Aubert V, Le Roy G, de Larambergue H, Miteul H, Aubert G, Boutet G, Duc G, Baranger A, Burstin J, Manzanares-Dauleux M, Pilet-Nayel M-L, Bourion V (2018) Comparative genome-wide-association mapping identifies common loci controlling root system architecture and resistance to Aphanomyces euteiches in pea. Front Plant Sci 8:2195

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimitrijevic A, Horn R (2017) Sunflower hybrid breeding: from markers to genomic selection. Front Plant Sci 8:2238

    Article  PubMed  Google Scholar 

  • Diouf L, Pan Z, He SP, Gong WF, Jia YH, Magwanga RO, Romy KRE, Or Rashid H, Kirungu JN, Du X (2017) High-density linkage map construction and mapping of salt-tolerant QTLs at seedling stage in upland cotton using genotyping by sequencing (GBS). Int J Mol Sci 18:2622

    Article  PubMed Central  CAS  Google Scholar 

  • Diouf IA, Derivot L, Bitton F, Pascual L, Causse M (2018) Water deficit and salinity stress reveal many specific QTL for plant growth and fruit quality traits in tomato. Front Plant Sci 9:279

    Article  PubMed  PubMed Central  Google Scholar 

  • Divilov K, Barba P, Cadle-Davidson L, Reisch BI (2018) Single and multiple phenotype QTL analyses of downy mildew resistance in interspecific grapevines. Theor Appl Genet 131:1133–1143

    Article  PubMed  PubMed Central  Google Scholar 

  • Doebley JF (1990) Molecular evidence and the evolution of maize. Econ Bot 44(3 Suppl):6–27

    Article  CAS  Google Scholar 

  • Dong Y, Wang Y-Z (2015) Seed shattering: from models to crops. Front Plant Sci 6:476

    PubMed  PubMed Central  Google Scholar 

  • Dudley JW (1973) Seventy generations of selection for oil and protein content in the corn kernel. In: Proceedings of the 28th annual corn and sorghum research conference, American Seed Trade Association, Washington, DC

    Google Scholar 

  • Dudley JW (1994) Plant breeding- a vital part of improvement in crop yields, quality and production efficiency. In: Burris RH, Frey KJ (eds) Historical perspectives in plant science. Iowa State University Press, Ames, pp 162–177

    Google Scholar 

  • Duvick DN (2001) Biotechnology in the 1930s: the development of hybrid maize. Nat Rev Genet 2:69–74

    Article  CAS  PubMed  Google Scholar 

  • Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145

    Article  Google Scholar 

  • Duvick DN, Smith JSC, Cooper M (2004) Long-term selection in a commercial hybrid maize breeding program. In: Janick J (ed) Plant breeding reviews, vol 24. Wiley, New York, pp 109–151

    Google Scholar 

  • Dwivedi S, Khan M, Srivastava SK, Syamasunder KV, Srivastava A (2004) Essential oil composition of different accessions of Mentha x piperita L. grown on the northern plains of India. Flavour Fragr J 19:437–440

    Article  CAS  Google Scholar 

  • Elliott W, Perlinger G (1977) Inheritance of shattering in wild rice Zizania aquatica, from Great Lakes region, North America. Crop Sci 17:851–853

    Article  Google Scholar 

  • Ellis THN, Hofer JI, Timmerman-Vaughan GM, Coy CJ, Hellens RP (2011) Mendel, 150 years on. Trends Plant Sci 16:590–596

    Article  CAS  PubMed  Google Scholar 

  • Evenson RE, Gollin D (2003) Assessing the impact of the green revolution, 1960 to 2000. Science 300:758

    Article  CAS  PubMed  Google Scholar 

  • Everett L, Stucker R (1983) A comparison of selection methods for reduced shattering in wild rice. Crop Sci 23:956–960

    Article  Google Scholar 

  • Fairbanks DJ, Rytting B (2001) Mendelian controversies: a botanical and historical review. Am J Bot 88:733–752

    Article  Google Scholar 

  • FAO (Food and Agricultural Organization) (1996) World food summit: food for all. FAO, Rome

    Google Scholar 

  • FAO (Food and Agricultural Organization) (2017) The state of food security and nutrition in the world. FAO, Rome

    Google Scholar 

  • Farooq S, Azam F (2002a) Molecular markers in plant breeding- I: concepts and characterization. Pak J Biol Sci 5:1135–1140

    Article  Google Scholar 

  • Farooq S, Azam F (2002b) Molecular markers in plant breeding- II: some prerequisites for use. Pak J Biol Sci 5:1141–1147

    Article  Google Scholar 

  • Fernandes LS, Royaert S, Corrêa FM, Mustiga GM, Marelli J-P, Corrêa RX, Motamayor JC (2018) Mapping of a major QTL for Ceratocystis wilt disease in an F1 population of Theobroma cacao. Front Plant Sci 9:155

    Article  PubMed  PubMed Central  Google Scholar 

  • Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O (2015) Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front Plant Sci 6:978

    Article  PubMed  PubMed Central  Google Scholar 

  • Flor HH (1956) The complementary genic systems in flax and flaxrust. Adv Genet 8:29–54

    Article  Google Scholar 

  • Foolad MR, Sharma A (2005) Molecular markers as selection tools in tomato breeding. Acta Hortic 695:225–240

    Article  Google Scholar 

  • Fulton TM, Bucheli P, Voirol E, Lopez J, Peetiard V, Tanksley SD (2002) Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica 127:163–177

    Article  CAS  Google Scholar 

  • Gasura E, Mashingaidze AB, Mukasa SB (2008) Genetic variability for tuber yield, quality, and virus disease complex in Uganda sweetpotato germplasm. Afr Crop Sci J 16:147–160

    Google Scholar 

  • Gayon J (2016) From Mendel to epigenetics: history of genetics. C R Biol 339:225–230

    Article  PubMed  Google Scholar 

  • Gelli M, Konda AR, Liu K, Zhang C, Clemente TE, Holding DR, Dweikat IM (2017) Validation of QTL mapping and transcriptome profiling for identification of candidate genes associated with nitrogen stress tolerance in sorghum. BMC Plant Biol 17:123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gelwin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  CAS  Google Scholar 

  • George MLC, Prasanna BM, Rathore RS, Setty TAS, Kasim F, Azrai M, Vasal S, Balla O, Hautea D, Canama A, Regalado E, Vargas M, Khairallah M, Jeffers D, Hoisington D (2003) Identification of QTLs conferring resistance to downy mildews of maize in Asia. Theor Appl Genet 107:544–551

    Article  CAS  PubMed  Google Scholar 

  • Gepts P (2002) A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci 42:1780–1790

    Article  Google Scholar 

  • Gepts P, Hancock J (2006) The future of plant breeding. Crop Sci 46:1630–1634

    Article  Google Scholar 

  • Girwani A, Madhavi A, Suresh Kumar T, Satyanarayana Reddy G (2011) Evaluation of custard apple hybrids for fruit yield and quality attributing characters. Acta Hortic 890:251–254

    Article  Google Scholar 

  • Goodman MM (2004) Plant breeding requirements for applied molecular biology. Crop Sci 44:1913–1914

    Article  Google Scholar 

  • Govindaswami S, Ghosh AK (1974) Breeding for high protein content in rice. Indian J Genet Plant Breed 34(A):628–641

    Google Scholar 

  • Grant WF (1996) Seed pod shattering in the genus Lotus (Fabaceae)- a synthesis of diverse evidence. Can J Plant Sci 76:447–456

    Article  Google Scholar 

  • Grauda D, Stramkale V, Miķelsone A, Rashal I (2008) Evaluation and utilisation of Latvian flax genetic resources in breeding. Latvian J Agron 10:112–117

    Google Scholar 

  • Gros-Balthazard M (2013) Hybridization in the genus Phoenix: a review. Emirates J Food Agric 25:831–842

    Article  Google Scholar 

  • Guo H, Ding W, Chen J, Chen X, Zheng Y, Wang Z, Liu J (2014) Genetic linkage map construction and QTL mapping of salt tolerance traits in Zoysiagrass (Zoysia japonica). PLoS One 9:e107249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta PK (2002) Molecular markers and QTL analysis in crop plants. Curr Sci 83:113–114

    Google Scholar 

  • Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80:524–535

    CAS  Google Scholar 

  • Hamdan YAS, Perez-Vich B, Fernandez-Martinez JM, Velasco L (2008) Inheritance of very high linoleic acid content and its relationship with nuclear male sterility in safflower. Plant Breed 127:507–509

    Article  Google Scholar 

  • Hasanuzzaman M, Nahar K, Rahman A, Al Mahmud J, Hossain S, Alam K, Oku H, Fujita M (2017) Actions of biological trace elements in plant abiotic stress tolerance. In: Naeem M, Ansari A, Gill S (eds) Essential plant nutrients. Springer, Cham, pp 213–274

    Chapter  Google Scholar 

  • Hassan SA, Mohammed MI (2015) Breeding for dual purpose attributes in sorghum: identification of materials and associations among fodder and grain yield and related traits. J Plant Breed Crop Sci 7:94–100

    CAS  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink J-L, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690

    Article  Google Scholar 

  • Hindmarsh RA (2003) Genetic modification and doubly green revolution. Society 40:9–19

    Article  Google Scholar 

  • Holland J (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161

    Article  CAS  PubMed  Google Scholar 

  • Hospital F (2003) Marker-assisted breeding. In: Newbury HJ (ed) Plant molecular breeding. Blackwell Science Publishers, London, pp 30–56

    Google Scholar 

  • Hospital F, Charcosset A (1997) Marker-assisted introgression of quantitative trait loci. Genetics 147:1469–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hospital F, Chevalet C, Mulsant P (1992) Using markers in gene introgression breeding programs. Genetics 231:1199–1210

    Article  Google Scholar 

  • Hossain MS, Monshi FI, Tabassum R (2017) Assessment of genetic variability of some exotic hybrid varieties of rice (Oryza sativa L.) in Bangladesh. J Plant Sci 12:22–29

    Article  Google Scholar 

  • House LR (1985) A guide to sorghum breeding. ICRISAT, Patancheru

    Google Scholar 

  • Inoue M, Gao ZS, Cai HW (2004) QTL analysis of lodging resistance and related traits in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 109:1576–1585

    Article  CAS  PubMed  Google Scholar 

  • Jannink J-L, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomic 9:166–177

    Article  CAS  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang P, Xie X, Huang M (2016) Potential yield increase of hybrid rice at five locations in Southern China. Rice 9:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson VA, Mattern PJ (1978) Improvement of wheat protein quality and quantity by breeding. Adv Exp Med Biol 105:301–316

    Article  CAS  PubMed  Google Scholar 

  • Jönsson R (1977) Breeding for improved oil and meal quality in rape (Brassica napus L.) and turnip rape (Brassica campestris L.). Hereditas 87:205–218

    Article  Google Scholar 

  • Kamei A, Tsuro M, Kubo N, Hayashi T, Wang N, Fujimura T, Hirai M (2010) QTL mapping of clubroot resistance in radish (Raphanus sativus L.). Theor Appl Genet 120:1021–1027

    Article  PubMed  Google Scholar 

  • Kandel R, Chen CY, Grau CR, Dorrance AE, Liu JQ, Wang Y, Wang D (2018) Soybean resistance to white mold: evaluation of soybean germplasm under different conditions and validation of QTL. Front Plant Sci 9:505

    Article  PubMed  PubMed Central  Google Scholar 

  • Kant L, Mani V, Gupta HS (2001) Winter×spring wheat hybridization a promising avenue for yield enhancement. Plant Breed 120:255–259

    Article  Google Scholar 

  • Kearsey MJ (1998) The principles of QTL analysis (a minimal mathematics approach). J Exp Bot 49:1619–1623

    Article  CAS  Google Scholar 

  • Kearsey MJ, Farquhar AGL (1998) QTL analysis in plants: where are we now? Heredity 80:137–142

    Article  PubMed  Google Scholar 

  • Keilwagen J, Lehnert H, Berner T, Budahn H, Nothnagel T, Ulrich D, Dunemann F (2017) The terpene synthase gene family of carrot (Daucus carota L.): identification of QTLs and candidate genes associated with terpenoid volatile compounds. Front Plant Sci 8:1930

    Article  PubMed  PubMed Central  Google Scholar 

  • Kellogg EA (1997) Plant evolution: the dominance of maize. Curr Biol 7:R411–R413

    Article  CAS  PubMed  Google Scholar 

  • Kenaschuk EO (1975) In: Harpiak JT (ed) Oilseed and pulse crops in Western Canada- a symposium. Western Co-Operative Fertilizers, Calgary, pp 203–221

    Google Scholar 

  • Khan MM, Al-Yahyai R, Al-Said F (2017) The lime: botany, production and uses. CABI, Wallingford

    Book  Google Scholar 

  • Khush GS (1995) Modern varieties- their real contribution to food security and equity. GeoJournal 35:275–284

    Article  Google Scholar 

  • Khush GS (1999) Green revolution: preparing for 21st century. Genome 42:646–655

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (2001) Green revolution: the way forward. Nat Rev Genet:815–822

    Article  CAS  PubMed  Google Scholar 

  • Kiani SP, Maury P, Sarrafi A, Grieu P (2008) QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Sci 175:565–573

    Article  CAS  Google Scholar 

  • Klahre U, Gurba A, Hermann K, Saxenhofer M, Bossolini E, Guerin PM, Kuhlemeier C (2011) Pollinator choice in Petunia depends on two major genetic loci for floral scent production. Curr Biol 21:730–739

    Article  CAS  PubMed  Google Scholar 

  • Knapp SJ (1998) Marker-assisted selection as a strategy for increasing the probability of selecting superior genotypes. Crop Sci 38:1164–1174

    Article  Google Scholar 

  • Kohler GW, Lincoln RE, Porter JW, Zscheile FP, Caldwell RM, Harper RH, Silver W (1947) Selection and breeding for high β-carotene content (provitamin A) in tomato. Bot Gaz 109:212–225

    Article  Google Scholar 

  • Kumar A, Banga SS, Meena PD, Kumar PR (2015) Brassica oilseeds breeding and management. CABI, Wallingford

    Book  Google Scholar 

  • Kumar S, Hash CT, Nepolean T, Mahendrakar MD, Satyavathi CT, Singh G, Rathore A, Yadav RS, Gupta R, Srivastava RK (2018a) Mapping grain iron and zinc content quantitative trait loci in an Iniadi-derived immortal population of pearl millet. Genes (Basel) 9:E248

    Article  CAS  Google Scholar 

  • Kumar A, Sandhu N, Dixit S, Yadav S, Swamy BPM, Shamsudin NAA (2018b) Marker-assisted selection strategy to pyramid two or more QTLs for quantitative trait-grain yield under drought. Rice 11:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumawat G, Raje RS, Bhutani S, Pal JK, Mithra ASVCR, Gaikwad K, Sharma TR, Singh NK (2012) Molecular mapping of QTLs for plant type and earliness traits in pigeon pea (Cajanus cajan L. Millsp.). BMC Genet 13:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Lal RK (2014) Breeding for new chemotypes with stable high essential oil yield in Ocimum. Ind Crop Prod 59:41–49

    Article  CAS  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecomte L, Duffé P, Buret M, Servin B, Hospital F, Causse M (2004) Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109:568–668

    Article  CAS  Google Scholar 

  • Li B, Tian L, Zhang J, Huang L, Han F, Yan S, Wang L, Zheng H, Sun J (2014) Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. BMC Genomics 15:1086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang D, Chen M, Qi X, Xu Q, Zhou F, Chen X (2016) QTL mapping by SLAF-seq and expression analysis of candidate genes for aphid resistance in cucumber. Front Plant Sci 7:1000

    PubMed  PubMed Central  Google Scholar 

  • Liu F, Li F, Du G, Xiao F (2013) Balanced fertilization improves fiber yield and quality of winter flax (Linum usitatissimum L.). Amer J Pl Sci 4:291–296

    Article  CAS  Google Scholar 

  • Lo S, Muñoz-Amatriaín M, Boukar O, Herniter I, Cisse N, Guo YN, Roberts PA, Xu S, Fatokun C, Close TJ (2018) Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Sci Rep 8:6261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lӧrz H, Wenzel G (2005) Molecular marker systems in plant breeding and crop improvement. Springer, New York

    Book  Google Scholar 

  • Martínez-García PJ, Parfitt DE, Bostock RM, Fresnedo-Ramírez J, Vazquez-Lobo A, Ogundiwin EA, Gradziel TM, Crisosto CH (2013) Application of genomic and quantitative genetic tools to identify candidate resistance genes for brown rot resistance in peach. PLoS One 8:e78634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masari A, Kaewwongwal A, Somta P, Srinives P (2017) Inheritance and a major quantitative trait locus of seed starch content in mungbean (Vigna radiata (L.) Wilczek). Euphytica 213:166

    Article  Google Scholar 

  • Masumoto H, Takagi H, Mukainari Y, Terauchi R, Fukunaga K (2016) Genetic analysis of NEKODE1 gene involved in panicle branching of foxtail millet, Setaria italica (L.) P. Beauv., and mapping by using QTL-seq. Mol Breed 36:59

    Article  CAS  Google Scholar 

  • Mayr E (1986) Joseph Gottlieb Kolreuter's contributions to biology. Osiris 2:135–176

    Article  Google Scholar 

  • McClure KA, Gardner KM, Douglas GM, Song J, Forney CF, DeLong J, Fan L, Du L, Toivonen PMA, Somers DJ, Rajcan I, Myles S (2018) A genome-wide association study of apple quality and scab resistance. Plant Genome 11:170075

    Article  CAS  Google Scholar 

  • McCouch S (2004) Diversifying selection in plant breeding. PLoS Biol 2:e347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McLaughlin SP (1996) Domestication of Hesperaloe: progress, problems, and prospects. In: Janick J (ed) Progress in new crops. ASHS Press, Arlington, pp 395–402

    Google Scholar 

  • Melito S, DAmelia V, Garramone R, Villano C, Carputo D (2017) Tuber yield and processing traits of potato advanced selections. Adv Hort Sci 31:151–156

    Google Scholar 

  • Mohammed MS, Russom Z, Abdul SD (2009) Inheritance of hairiness and pod shattering, heritability and correlation studies in crosses between cultivated cowpea (Vigna unguiculata (L.) Walp.) and its wild (var. pubescens) relative. Euphytica 171:397–407

    Article  Google Scholar 

  • Mondal S, Joshi AK, Huerta-Espino J, Singh RP (2015) Early maturity in wheat for adaptation to high temperature stress. In: Ogihara Y, Takumi S, Handa H (eds) Advances in wheat genetics: from genome to field. Springer, Tokyo, pp 239–245

    Chapter  Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan C, Ladbrooke Z, Bruce D, Child R, Arthur A (2000) Breeding oilseed rape for pod shattering resistance. J Agric Sci (Cambridge) 135:347–359

    Article  Google Scholar 

  • Mühleisen J, Maurer HP, Stiewe G, Bury P, Reif JC (2013) Hybrid breeding in barley. Crop Sci 53:819–824

    Article  Google Scholar 

  • Muthulakshmi ST, Balamohan N, Amutha R, Baby Rani W, Indira K, Mareeswari P (2007) Interspecific hybridization in papaya (Carica papaya L.). Res J Agric Biol Sci 3:260–263

    Google Scholar 

  • Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad F, Alsaleh A, Labhane N, Özkan H, Chung G, Baloch FS (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip 32:261–285

    Article  CAS  Google Scholar 

  • Naeem M, Chauhan MSM, Khan AH, Salahudin S (2002) Evaluation of different varieties of Sorghum for green fodder yield potential. Asian J Plant Sci 1:142–143

    Article  Google Scholar 

  • Negi SS, Rajan S (2007) Improvement of guava through breeding. Acta Hortic 735:31–37

    Article  Google Scholar 

  • Nenova N, Georgiev G (2012) Vokil and Veleka- perspective sunflower hybrids. Agric Sci 45:25–29

    Google Scholar 

  • Nester EW (2014) Agrobacterium: nature’s genetic engineer. Front Plant Sci 5:730

    PubMed  Google Scholar 

  • Nesumi H, Matsumoto R (2003) Improvement of citrus scion cultivars by crossbreeding in Japan. Proc Int Soc Citricul IX Congr 2000:46–47

    Google Scholar 

  • Njoku D, Gracen V, Egesi CN, Asante I, Offei SK, Okogbenin E (2011) Breeding for enhanced β-carotene content in cassava: constraints and accomplishments. J Crop Improv 25:560–571

    Article  CAS  Google Scholar 

  • Normile D (2008) Reinventing rice to feed the world. Science 321:330–333

    Article  CAS  PubMed  Google Scholar 

  • Onyemaobi I, Ayalew H, Liu H, Siddique KHM, Yan G (2018) Identification and validation of a major chromosome region for high grain number per spike under meiotic stage water stress in wheat (Triticum aestivum L.). PLoS One 13:e0194075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oram R, Salisbury P, Kirk J, Burton W (1999) Brassica juncea breeding. In: Salisbury PA, potter TD, McDonald G, green AG (eds) canola in Australia: the first thirty years. Organising Committee of the 10th international rapeseed congress, Canberra, Australia, pp 37–40

    Google Scholar 

  • Pandey S, Dhillon NPS, Sureja AK, Singh D, Malik AA (2010) Hybridization for increased yield and nutritional content of snake melon (Cucumis melo L. var. flexuosus). Plant Gen Resour 8:127–131

    Article  CAS  Google Scholar 

  • Pandey MK, Khan AW, Singh VK, Vishwakarma MK, Shasidhar Y, Kumar V, Garg V, Bhat RS, Chitikineni A, Janila P, Guo B, Varshney RK (2016) QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnol J 15:927–941

    Article  CAS  Google Scholar 

  • Patra N, Tanveer H, Khanuja S, Shasany AK, Singh HP, Singh VR, Kumar S (2001) A unique interspecific hybrid spearmint clone with growth properties of Mentha arvensis L. and oil qualities of Mentha spicata L. Theor Appl Genet 102:471–476

    Article  Google Scholar 

  • Peacock HA, Wilsie CP (1957) Selection for resistance to seed pod shattering in birdsfoot trefoil (Lotus corniculatus L’). Agron J 49:429–431

    Article  Google Scholar 

  • Prakash S, Chopra VL (1988) Introgression of resistance to shattering in Brassica napus from Brassica juncea through non homologous recombination. Plant Breed 101:167–168

    Article  Google Scholar 

  • Pumphrey MO, Bernardo R, Anderson JA (2007) Validating the Fhb1 QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci 47:200–206

    Article  CAS  Google Scholar 

  • Raymond FD, Alley MM, Parrish DJ, Thomason WE (2009) Plant density and hybrid impacts on corn grain and forage yield and nutrient uptake. J Plant Nutr 32:395–409

    Article  CAS  Google Scholar 

  • Redding R (1988) A general explanation of subsistence change: from hunting and gathering to food production. J Anthrop Archaeo 7:56–97

    Article  Google Scholar 

  • Ribaut J-M, Hoisington D (1998) Marker-assisted selection: new tools and strategies. Trends Plant Sci 3:236–239

    Article  Google Scholar 

  • Ribaut JM, Edmeades G, Perotti E, Hoisington D (2000) QTL analysis, MAS results and perspectives for drought-tolerance improvement in tropical maize. In: Ribaut JM, Poland D (eds) Molecular approaches for the genetic improvement of cereals for stable production in water-limited environments. CIMMYT, Mexico, pp 131–136

    Google Scholar 

  • Romeu JF, Monforte AJ, Sánchez G, Granell A, García-Brunton J, Badenes ML, Ríos G (2014) Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biol 14:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rughkla A, McComb JA, Jones MGK (2006) Intra-and interspecific pollination of Santalum spicatum and S. album. Aust J Bot 45:1083–1095

    Article  Google Scholar 

  • Sankari HS (2000) Linseed (Linum usitatissimum L.) cultivars and breeding lines as stem biomass producers. J Agron Crop Sci 184:225–231

    Article  Google Scholar 

  • Santos JRP, Ndeve AD, Huynh B-L, Matthews WC, Roberts PA (2018) QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance. PLoS One 13:e0189185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sartie A, Asiedu R (2014) Segregation of vegetative and reproductive traits associated with tuber yield and quality in water yam (Dioscorea alata L.). Afric J Biotechnol 13:2807–2818

    Article  Google Scholar 

  • Scorza R, Pooler M (1999) Growth and yield of F1 hybrid peaches developed from doubled haploids. HortSci 34:928–931

    Article  Google Scholar 

  • Sehgal D, Skot L, Singh R, Srivastava RK, Das SP, Taunk J, Sharma PC, Pal R, Raj B, Hash CT, Yadav RS (2015) Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits. PLoS One 10:e0122165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Semagn K, Bjornstad A, Ndjiondjop MN (2006a) An overview of molecular marker methods for plants. Afr J Biotechnol 5:2540–2568

    CAS  Google Scholar 

  • Semagn K, Bjornstad A, Ndjiondjop MN (2006b) Progress and prospects of marker assisted backcrossing as a tool in crop breeding programs. Afr J Biotechnol 5:2588–2603

    CAS  Google Scholar 

  • Sharma HC, Crouch JH, Sharma KK, Seetharama N, Hash CT (2002) Applications of biotechnology for crop improvement: prospects and constraints. Plant Sci 163:381–395

    Article  CAS  Google Scholar 

  • Shukla S, Bhargava A, Chatterjee A, Pandey AC, Mishra BK (2010a) Diversity in phenotypic and nutritional traits in vegetable amaranth (Amaranthus tricolor), a nutritionally underutilized crop. J Sci Food Agric 90:139–144

    Article  CAS  PubMed  Google Scholar 

  • Shukla S, Bhargava A, Chatterjee A, Pandey AC, Rastogi A, Kumar A (2010b) Genetic interrelationship among nutritional and quantitative traits in the vegetable amaranth. Crop Breed Appl Biotech 10:16–22

    Article  CAS  Google Scholar 

  • Sivasakthi K, Thudi M, Tharanya M, Kale SM, Kholová J, Halime MH, Jaganathan D, Baddam R, Thirunalasundari T, Gaur PM, Varshney RK, Vadez V (2018) Plant vigour QTLs co-map with an earlier reported QTL hotspot for drought tolerance while water saving QTLs map in other regions of the chickpea genome. BMC Plant Biol 18:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Small E, Marcus D (2002) Hemp: a new crop with new uses for North America. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 284–326

    Google Scholar 

  • Sood S, Kumar N (2010) Heterosis for fruit yield and related horticultural traits in bell pepper. Int J Veg Sci 16:361–373

    Article  Google Scholar 

  • Soule M, Porter L, Medina J, Santana GP, Blair MW, Miklas PN (2011) Comparative QTL map for white mold resistance in common bean, and characterization of partial resistance in dry bean lines VA19 and I9365-31. Crop Sci 51:123–139

    Article  Google Scholar 

  • Sripaoraya S (2009) Pineapple hybridization and selection in Thailand. Acta Hortic 822:57–62

    Article  Google Scholar 

  • Stansfield WD (2009) Mendel’s search for true breeding hybrids. J Hered 100:2–6

    Article  PubMed  Google Scholar 

  • Stoskopf NC, Tomes DT, Christie BR (1993) Plant breeding: theory and practice. Westview Press, Boulder

    Google Scholar 

  • Su Y, Liu Y, Li Z, Fang Z, Yang L, Zhuang M, Zhang Y (2015) QTL analysis of head splitting resistance in cabbage (Brassica oleracea L. var. capitata) using SSR and InDel markers based on whole-genome re-sequencing. PLoS One 10:e0138073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sukhatme PV (1961) The world’s hunger and future needs in food supplies. J R Stat Soc 124:463–525

    Google Scholar 

  • Sun R, Chang Y, Yang F, Wang Y, Li H, Zhao Y, Chen D, Wu T, Zhang X, Han Z (2015) A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs controlling apple fruit quality. BMC Genomics 16:747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suzuki K, Hattori Y, Uraji M, Ohta N, Iwata K, Murata K, Kato A, Yoshida K (2000) Complete nucleotide sequence of a plant tumor-inducing Ti plasmid. Gene 242:331–336

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Mukasa Y, Morishita T, Takigawa S, Noda T (2012) Traits of shattering resistant buckwheat “W/SK86GF”. Breed Sci 62:360–364

    Article  PubMed  PubMed Central  Google Scholar 

  • Swaminathan MS (2006) An evergreen revolution. Crop Sci 46:2293–2303

    Article  Google Scholar 

  • Tandzi LN, Mutengwa CS, Ngonkeu ELM, Woïn N, Gracen V (2017) Breeding for quality protein maize (QPM) varieties: a review. Agron 7:80

    Article  CAS  Google Scholar 

  • Tao A, Huang L, Wu G, Afshar RK, Qi J, Xu J, Fang P, Lin L, Zhang L, Lin P (2017) High-density genetic map construction and QTLs identification for plant height in white jute (Corchorus capsularis L.) using specific locus amplified fragment (SLAF) sequencing. BMC Genomics:18, 355

    Google Scholar 

  • Tiwari DK, Pandey P, Giri SP, Dwivedi JL (2011) Heterosis studies for yield and its components in rice hybrids using CMS system. Asian J Plant Sci 10:29–42

    Article  Google Scholar 

  • Topdar N, Kundu A, Sinha MK, Sarkar D, Das M, Banerjee S, Kar CS, Satya P, Balyan HS, Mahapatra BS, Gupta PK (2013) A complete genetic linkage map and QTL analyses for bast fibre quality traits, yield and yield components in jute (Corchorus olitorius L.). Cytol Genet 47:129–137

    Article  Google Scholar 

  • Torres Flores JL, García BM, Prasanna BM, Alvarado G, San Vicente FM, Crossa J (2017) Grain yield and stability of white early maize hybrids in the highland valleys of Mexico. Crop Sci 57:3002–3015

    Article  Google Scholar 

  • Tripathi MK, Chaudhary B, Singh SR, Bhandari HR (2013) Growth and yield of sunhemp (Crotalaria juncea L.) as influenced by spacing and topping practices. Afr J Agric Res 2:3744–3749

    Google Scholar 

  • Tsuchiya T (1986) Studies on shattering resistance in soybean breeding. Rep Hokkaido Pref Agr Exp Sta 58:1–53

    Google Scholar 

  • Tullu A, Tarán B, Warkentin T, Vandenburg A (2008) Construction of an intraspecific linkage map and QTL analysis for earliness and plant height in lentil. Crop Sci 48:2254–2264

    Article  Google Scholar 

  • van der Plank JE (1983) Durable resistance in crops: should the concept of physiological races die? In: Lamberti F, Waller JM, van der Graaff NA (eds) Durable resistance in crops. Plenum Press, New York, pp 41–44

    Google Scholar 

  • Van Roon E, Bleijenberg HJ (1964) Breeding caraway for non-shattering seed. Euphytica 13:281–293

    Article  Google Scholar 

  • Verma P, Goyal R, Chahota RK, Sharma TR, Abdin MZ, Bhatia S (2015) Construction of a genetic linkage map and identification of QTLs for seed weight and seed size traits in lentil (Lens culinaris Medik.). PLoS One 10:e0139666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verma S, Zurn JD, Salinas N, Mathey MM, Denoyes B, Hancock JF, Finn CE, Bassil NV, Whitaker VM (2017) Clarifying sub-genomic positions of QTLs for flowering habit and fruit quality in U.S. strawberry (Fragaria ananassa) breeding populations using pedigree-based QTL analysis. Hortic Res 4:17062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vijayan K, Srivastava PP, Raju PJ, Saratchandra B (2012) Breeding for higher productivity in mulberry. Czech J Genet Plant Breed 48:147–156

    Article  Google Scholar 

  • Viloria Z, Grosser JW (2005) Acid citrus fruit improvement via interploid hybridization using allotetraploid somatic hybrid and autotetraploid breeding parents. J Am Soc Hortic Sci 130:392–402

    Article  Google Scholar 

  • Visioni A, Gyawali S, Selvakumar R, Gangwar OP, Shekhawat PS, Bhardwaj SC, Al-Abdallat AM, Kehel Z, Verma RPS (2018) Genome wide association mapping of seedling and adult plant resistance to barley stripe rust (Puccinia striiformis f. sp. hordei) in India. Front Plant Sci 9:520

    Article  PubMed  PubMed Central  Google Scholar 

  • Viteri DM, Cregan PB, Trapp JJ, Miklas PN, Singh SP (2014) A new common bacterial blight resistance QTL in VAX 1 common bean and interaction of the new QTL, SAP6, and SU91 with bacterial strains. Crop Sci 54:1598–1608

    Article  CAS  Google Scholar 

  • Wang Y, Scarth R, Campbell GC (2005) Inheritance of seed shattering in interspecific hybrids between Fagopyrum esculentum and F. homotropicum. Crop Sci 45:693–697

    Article  Google Scholar 

  • Wang R, Ripley VL, Rakow G (2007) Pod shatter resistance evaluation in cultivars and breeding lines of Brassica napus, B. juncea and Sinapis alba. Plant Breed 126:588–595

    Article  Google Scholar 

  • Wang Y-H, Wu D-H, Huang J-H, Tsao S-J, Hwu K-K, Lo H-F (2016) Mapping quantitative trait loci for fruit traits and powdery mildew resistance in melon (Cucumis melo). Bot Stud 57:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warkentin TD, Smykal P, Coyne CJ, Weeden N, Domoney C, Bing D-J, Leonforte A, Xuxiao Z, Dixit GP, Boros L, McPhee KE, McGee RJ, Burstin J, Ellis THN (2015) Pea (Pisum sativum). In: De Ron AM (ed) Grain legumes. Handbook of plant breeding. Springer, New York

    Google Scholar 

  • Wei Q, Wang Y, Qin X, Zhang Y, Zhang Z, Wang J, Li J, Lou Q, Chen J (2014) An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genomics 15:1158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei QZ, Fu WY, Wang YZ, Qin XD, Wang J, Li J, Lou QF, Chen JF (2016) Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis. Sci Rep 6:27496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch RM, House WA, Beebe S, Cheng Z (2000) Genetic selection for enhanced bioavailable levels of iron in bean (Phaseolus vulgaris L.) seeds. J Agric Food Chem 48:3576–3580

    Article  CAS  PubMed  Google Scholar 

  • Wenzel G (2006) Molecular plant breeding: achievements in green biotechnology and future perspectives. Appl Microbiol Biotechnol 70:642–650

    Article  CAS  PubMed  Google Scholar 

  • Whitford R, Fleury D, Reif JC, Garcia M, Okada T, Korzun V, Langridge P (2013) Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. J Exp Bot 64:5411–5428

    Article  CAS  PubMed  Google Scholar 

  • Wilkes HG (1967) Teosinte: the closest relative of maize. The Bussey Institution of Harvard University, Cambridge, MA

    Google Scholar 

  • Wilkes HG (1979) Mexico and Central America as a center for the origin of agriculture and the evolution of maize. Crop Improv 6:1–18

    Google Scholar 

  • Williams K, Sorrells ME (2014) Three-dimensional seed size and shape QTL in hexaploid wheat (Triticum aestivum L.) populations. Crop Sci 54:98–110

    Article  Google Scholar 

  • Wilson RF (2004) Seed composition. In: Boerma HR, Specht JE (eds) Soybean: improvement, production, and uses. American Society of Agronomy, Madison, pp 621–677

    Google Scholar 

  • Witcombe J, Hollington P, Howarth C, Reader S, Steele K (2008) Breeding for abiotic stresses for sustainable agriculture. Philos Trans R Soc B Biol Sci 363:703–716

    Article  CAS  Google Scholar 

  • Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen L, Wood GE, Almeida NF, Woo L, Chen Y, Paulsen IT, Eisen JA, Karp PD, Bovee D Sr, Chapman P, Clendenning J, Deatherage G, Gillet W, Grant C, Kutyavin T, Levy R, Li M-J, McClelland E, Palmieri A, Raymond C, Rouse G, Saenphimmachak C, Wu Z, Romero P, Gordon D, Zhang S, Yoo H, Tao Y, Biddle P, Jung M, Krespan W, Perry M, Gordon-Kamm B, Liao L, Kim S, Hendrick C, Zhao Z-Y, Dolan M, Chumley F, Tingey SV, Tomb J-F, Gordon MP, Olson MV, Nester EW (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294:2317–2323

    Article  CAS  PubMed  Google Scholar 

  • Xue D, Huang Y, Zhang X, Kang W, Westcott S, Li C, Chen M, Zhang G, Lance R (2009) Identification of QTLs associated with salinity tolerance at late growth stage in barley. Euphytica 169:187–196

    Article  Google Scholar 

  • Xue H, Shi T, Wang F, Zhou H, Yang J, Wang L, Wang S, Su Y, Zhang Z, Qiao Y, Li X (2017) Interval mapping for red/green skin color in Asian pears using a modified QTL-seq method. Hort Res 4:17053

    Article  CAS  Google Scholar 

  • Yamamoto T, Terakami S, Takada N, Nishio S, Onoue N, Nishitani C, Kunihisa M, Inoue E, Iwata H, Hayashi T, Itai A, Saito T (2014) Identification of QTLs controlling harvest time and fruit skin color in Japanese pear (Pyrus pyrifolia Nakai). Breed Sci 64:351–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Wang Y, Zhang G, Wang X, Wu L, Ke H, Liu H, Ma Z (2016) Detection and validation of one stable fiber strength QTL on c9 in tetraploid cotton. Mol Gen Genomics 291:1625–1638

    Article  CAS  Google Scholar 

  • Yang Y, Chen T, Ling X, Ma Z (2018a) Gbvdr6, a gene encoding a receptor-like protein of cotton (Gossypium barbadense), confers resistance to Verticillium wilt in Arabidopsis and upland cotton. Front Plant Sci 8:2272

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X, Islam MS, Sood S, Maya S, Hanson EA, Comstock J, Wang J (2018b) Identifying quantitative trait loci (QTLs) and developing diagnostic markers linked to orange rust resistance in sugarcane (Saccharum spp.). Front Plant Sci 9:350

    Article  PubMed  PubMed Central  Google Scholar 

  • Yazici K, Sahin A (2016) Characterization of pomegranate (Punica granatum L.) hybrids and their potential use in further breeding. Turk J Agric For 40:813–824

    Article  CAS  Google Scholar 

  • Ye J, Yang Y, Chen B, Shi J, Luo M, Zhan J, Wang X, Liu G, Wang H (2017) An integrated analysis of QTL mapping and RNA sequencing provides further insights and promising candidates for pod number variation in rapeseed (Brassica napus L.). BMC Genomics 18:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoder JI, Goldsbrough AP (1994) Transformation systems for generating marker free transgenic plants. BioTechnol 12:263–267

    Article  CAS  Google Scholar 

  • Yoon JY, Lee WM, Woo JG (1999) Quality improvement of major kimchi vegetables through plant breeding and biotechnology. Acta Hortic 483:49–55

    Article  Google Scholar 

  • Yoon JB, Kwon A-W, Ham T-H, Kim S, Thomson M, Hechanova SL, Jena KK, Park Y (2015) Marker-assisted breeding. In: Koh HJ, Kwon SY, Thomson M (eds) Current technologies in plant molecular breeding. Springer, Dordrecht, pp 95–144

    Chapter  Google Scholar 

  • Yoshitsu Y, Takakusagi M, Abe A, Takagi H, Uemura A, Yaegashi H, Terauchi R, Takahata Y, Hatakeyama K, Yokoi S (2017) QTL-seq analysis identifies two genomic regions determining the heading date of foxtail millet, Setaria italica (L.) P. Beauv. Breed Sci 67:518–527

    Article  PubMed  PubMed Central  Google Scholar 

  • Young ND (1999) A cautiously optimistic vision for marker-assisted breeding. Mol Breed 5:505–510

    Article  Google Scholar 

  • Zeng L, Meredith WR, Boykin DL (2011) Germplasm potential for continuing improvement of fiber quality in upland cotton: combining ability for lint yield and fiber quality. Crop Sci 51:60–68

    Article  Google Scholar 

  • Zhang GM, Zheng TQ, Chen Z, Wang YL, Wang Y, Shi YM, Wang CC, Zhang LY, Ma JT, Deng LW, Li W, Xu TT, Liang CZ, Xu JL, Li ZK (2018) Joint exploration of favorable haplotypes for mineral concentrations in milled grains of rice (Oryza sativa L.). Front Plant Sci 9:447

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao YH, Guo YS, Lin H, Liu ZD, Ma HF, Guo XW, Li K, Yang XX, Niu ZZ, Shi GG (2015) Quantitative trait locus analysis of grape weight and soluble solid content. Genet Mol Res 14:9872–9281

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Tseng Y-C, Peng Z, Lopez Y, Chen CY, Tillman BL, Dang P, Wang J (2018) Refining a major QTL controlling spotted wilt disease resistance in cultivated peanut (Arachis hypogaea L.) and evaluating its contribution to the resistance variations in peanut germplasm. BMC Genetics 19:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu S, Kaeppler HF (2003) Identification of quantitative trait loci for resistance to crown rust in oat line MAM17-5. Crop Sci 43:358–366

    Article  CAS  Google Scholar 

  • Zhu Y, Yin Y, Yang K, Li J, Sang Y, Huang L, Fan S (2015) Construction of a high-density genetic map using specific length amplified fragment markers and identification of a quantitative trait locus for anthracnose resistance in walnut (Juglans regia L.). BMC Genomics 16:614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zubrzycki JE, Maringolo CA, Filippi CV, Quiróz FJ, Nishinakamasu V, Puebla AF, Di Rienzo JA, Escande A, Lia VV, Heinz RA, Hopp HE, Cervigni GDL, Paniego NB (2017) Main and epistatic QTL analyses for Sclerotinia head rot resistance in sunflower. PLoS One 12:e0189859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zupan J, Zambryski P (1997) The Agrobacterium DNA transfer complex. Crit Rev Plant Sci 16:279–295

    Article  CAS  Google Scholar 

  • Zupan J, Muth TR, Draper O, Zambryski P (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23:11–28

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhargava, A., Srivastava, S. (2019). Plant Breeding. In: Participatory Plant Breeding: Concept and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-7119-6_2

Download citation

Publish with us

Policies and ethics