Skip to main content

Physical Mechanisms of Wave-Induced Sediment Resuspension

  • Chapter
  • First Online:
Wave-Forced Sediment Erosion and Resuspension in the Yellow River Delta

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

Abstract

In this chapter, the physical mechanisms of waves in causing sediment erosion and resuspension were investigated through field observations and laboratory flume experiments. To achieve this goal, several test devices were specially designed and developed. Sediments are found to experience an attenuation in erodibility under waves as pore pressure build-ups, i.e., the seabed liquefies. Besides, two modes of pore pressure response: transient pore pressure and residual pore pressure, were found to induce sediment resuspension through the way of “pumping” sediments out of the interior of the seabed. In the Yellow River Delta, waves not only erode sediments from the seabed surface, but also “pumping” internal fine-grained sediments into the overlying water column.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldridge JN, Rees JM (1997) Interpreting observations of near-bed sediment concentration and estimation of ‘pick-up’ function constants, pp 289–303. In: Burt N, Parker R, Watts J (Eds.), Cohesive sediments. Wiley, Chichester, 458 pp

    Google Scholar 

  • Aberle J, Nikora V, Walters R (2004) Effects of bed material properties on cohesive sediment erosion. Mar Geol 20(7):83–93

    Article  Google Scholar 

  • Bennett RH (1977) Pore-water pressure measurements: Mississippi delta submarine sediments. Mar Geotechnol 2(1–4):177–189

    Article  Google Scholar 

  • Baldock TE, Holmes P (1999) Seepage effects on sediment transport by waves and currents. Coast Eng 1998:3601–3614

    Google Scholar 

  • Bartholdy J, Flemming BW, Ernstsen VB et al (2010) Hydraulic roughness over simple subaqueous dunes. Geo-Mar Lett 30(1):63–76

    Article  Google Scholar 

  • Clukey EC, Kulhawy FH, Liu PLF et al (1985) The impact of wave loads and pore-water pressure generation on initiation of sediment transport. Geo-Mar Lett 5(3):177–183

    Article  Google Scholar 

  • Chu ZX, Sun XG, Zhai SK et al (2006) Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China: based on remote sensing images. Mar Geol 227(1):13–30

    Article  Google Scholar 

  • De Wit PJ, Kranenburg C (1997) The wave-induced liquefaction of cohesive sediment beds. Estuar Coast Shelf Sci 45(2):261–271

    Article  Google Scholar 

  • Feng J (1992) Laboratory experiments on cohesive soil-bed fluidisation by water waves (Thesis, Report No. UFL/COEL-92/005). University of Florida, Gainesville, USA p. 108

    Google Scholar 

  • Foda MA, Tzang S (1994) Resonant fluidization of silty soil by water waves. J Geophys Res 99:20463–20475

    Article  Google Scholar 

  • Friedrichs M, Graf G, Van Duren LA (2006) Bio-fluid-dynamics: Exchange processes at the sediment-water interface. J Sea Res 55(1):1–2

    Article  Google Scholar 

  • Green MO, Coco G (2014) Review of wave-driven sediment resuspension and transport in estuaries. Rev Geophys 52(1):77–117

    Article  Google Scholar 

  • Gao S, Jia JJ (2002) Modeling suspended sediment distribution in continental shelf upwelling/downwelling settings. Geo-Mar Lett 22(4):218–226

    Article  Google Scholar 

  • Grabowski RC, Droppo IG, Wharton G (2011) Erodibility of cohesive sediment: The importance of sediment properties. Earth Sci Rev 105:101–120

    Article  Google Scholar 

  • Guillén J, Jiménez JA, Palanques A, Gracia V, Puig P, Sánchez-Arcilla A (2002) Sediment resuspension across a microtidal, low-energy inner shelf. Cont Shelf Res 22(2):305–325

    Article  Google Scholar 

  • Hooshmand A, Horner-Devine AR, Lamb MP (2015) Structure of turbulence and sediment stratification in wave-supported mud layers. J Geophys Res Oceans 120:2430–2448

    Article  Google Scholar 

  • Jia Y, Zhang L, Zheng J, Liu X, Jeng DS, Shan H (2014) Effects of wave-induced seabed liquefaction on sediment re-suspension in the Yellow River Delta. Ocean Engineering, 89:146–156

    Google Scholar 

  • Jeng DS, Zhao HY (2015) Twodimensional model for pore pressure accumulations in marine sediments. J Waterway Port Coast Ocean Engineering, ASCE 141:04014042

    Article  Google Scholar 

  • Lesht BM, Clarke TL, Young RA, Swift DJP, Freeland GL (1980) An empirical relationship between the concentration of resuspended sediment and near bottom wave-orbital velocity. Geophys Res Lett 7(12):1049–1052

    Article  Google Scholar 

  • Myrhaug D, Holmedal LE et al (2014) A rational approach to seepage flow effects on bottom friction beneath random waves. Appl Ocean Res 47:322–328

    Article  Google Scholar 

  • Mörz T, Karlik EA, Kreiter S, Kopf A (2007) An experimental setup for fluid venting in unconsolidated sediments: New insights to fluid mechanics and structures. Sed Geol 196:251–267

    Article  Google Scholar 

  • Maa PY, Wright LD, Shannon TW (1993) VIMS Sea Carousel: A field instrument for studying sediment transport. Mar Geol 115(3):271–287

    Article  Google Scholar 

  • Neumeier U, Lucas CH, Collins M (2006) Erodibility and erosion patterns of mudflat sediments investigated using an annular flume. Aquat Ecol 40:543–554

    Article  Google Scholar 

  • Nichols RJ, Sparks RSJ, Wilson CJN (1994) Experimental studies of the fluidization of layered sediments and the formation of fluid escape structures. Sedimentology 41:233–253

    Article  Google Scholar 

  • Paphitis D, Collins MB (2005) Sediment resuspension events within the (microtidal) coastal waters of Thermaikos Gulf, northern Greece. Cont Shelf Res 25(19):2350–2365

    Article  Google Scholar 

  • Precht E, Huettel M (2004) Rapid wave-driven advective pore water exchange in a permeable coastal sediment. J Sea Res 51(2):93–107

    Article  Google Scholar 

  • Parchure TM, Mehta AJ (1985) Erosion of soft cohesive sediment deposits. J Hydraul Eng 111(10):1308–1326

    Article  Google Scholar 

  • Prior DB, Suhayda JN, Lu NZ, Bornhold BD, Keller GH, Wiseman WJ, Wright LD, Yang ZS (1989) Storm wave reactivation of a submarine land-slide. Nature 341(6237):47–50

    Article  Google Scholar 

  • Roberts J, Jepsen R, Gotthard D, Lick W (1998) Effects of particle size and bulk density on erosion of quartz particles. J Hydraul Eng 124(12):1261–1268

    Article  Google Scholar 

  • Simon A, Collison AJC (2001) Pore-water pressure effects on the detachment of cohesive streambeds: seepage forces and matric suction. Earth Surf Proc Land 26:1421–1442

    Article  Google Scholar 

  • Sumer B.M., Fredsøe J. (2002) The mechanics of scour in the marine environment. World Scientif 552

    Google Scholar 

  • Sanford L, Maa JPY (2001) A unified erosion formulation for fine sediments. Mar Geol 179:9–23

    Article  Google Scholar 

  • Seed HB, Rahman MS (1978) Wave-induced pore pressure in relation to ocean floor stability of cohesionless soils. Mar Georesour Geotechnol 3(2):123–150

    Article  Google Scholar 

  • Sassa S, Sekiguchi H (2001) Analysis of wave-induced liquefaction of sand beds. Geotechnique 51:115–126

    Article  Google Scholar 

  • Santos IR, Eyre BD, Huettel M (2012) The driving forces of porewater and groundwater flow in permeable coastal sediments: A review. Estuar Coast Shelf Sci 98:1–15

    Article  Google Scholar 

  • Schaaff E, Grenz C, Pinazo C, Lansard B (2006) Field and laboratory measurements of sediment erodibility: A comparison. J Sea Res 55(1):30–42

    Article  Google Scholar 

  • Sumer BM, Hatipoglu F, Fredsøe J, Sumer SK (2006) The sequence of sediment behaviour during wave-induced liquefaction. Sedimentology 53:611–629

    Article  Google Scholar 

  • Smith AJ, Herne DE, Turner JV (2009) Wave effects on submarine groundwater seepage measurement. Adv Water Resour 32(6):820–833

    Article  Google Scholar 

  • Tzang SY (1998) Unfluidized soil responses of a silty seabed to monochromatic waves. Coast Eng 35:283–301

    Article  Google Scholar 

  • Tzang S, Ou S (2006) Laboratory flume studies on monochromatic wave-fine sandy bed interactions: Part 1. Soil fluidization. Coastal Engineering 53:956–982

    Google Scholar 

  • Thompson CEL, Couceiro F, Fones GR et al (2011) In situ flume measurements of resuspension in the North Sea. Estuar Coast Shelf Sci 94(1):77–88

    Article  Google Scholar 

  • Van Rijn L C (1989) Sediment transport by waves and currents. Report H461. Delft Hydraulics

    Google Scholar 

  • Willets BB, Drossos ME (1975) Local erosion caused by rapid infiltration. J. Hyd. Div. ASCE 101:1477–1488

    Google Scholar 

  • Wolanski E, Spagnol S (2003) Dynamics of the turbidity maximum in King Sound, tropical Western Australia. Estuar Coast Shelf Sci 56:877–890

    Article  Google Scholar 

  • Wright LD, Boon JD, Xu JP et al (1992) The bottom boundary layer of the bay stem plains environment of lower Chesapeake Bay. Estuar Coast Shelf Sci 35(1):17–36

    Article  Google Scholar 

  • Widdows J, Brinsley MD, Salkeld PN et al (1998) Use of annular flumes to determine the influence of current velocity and bivalves on material flux at the sediment-water interface. Estuaries Coasts 21(4):552–559

    Article  Google Scholar 

  • Wang HJ, Yang ZS, Li YH et al (2007) Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth. Cont Shelf Res 27:854–871

    Article  Google Scholar 

  • Xu G, Sun Y, Wang X et al (2009) Wave-induced shallow slides and their features on the subaqueous Yellow River delta. Can Geotech J 46(12):1406–1417

    Article  Google Scholar 

  • Yamada F, Tsujimoto G, Long B (2011) Internal sediment density structures around bars due to beach deformation using X-ray CT. J Coastal Res 64:716–720

    Google Scholar 

  • Zen K, Yamazaki H (1990) Mechanism of wave-induced liquefaction and densification in seabed. Soils Found 30(4):90–104

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Jia .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Shanghai Jiao Tong University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jia, Y., Liu, X., Zhang, S., Shan, H., Zheng, J. (2020). Physical Mechanisms of Wave-Induced Sediment Resuspension. In: Wave-Forced Sediment Erosion and Resuspension in the Yellow River Delta. Springer Oceanography. Springer, Singapore. https://doi.org/10.1007/978-981-13-7032-8_7

Download citation

Publish with us

Policies and ethics