Skip to main content

Biological Control of Some Plant Diseases Using Different Antagonists Including Fungi and Rhizobacteria

  • Chapter
  • First Online:

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 13))

Abstract

Among the different causes of plant diseases, microbes are considered the most important and serious. From which, the fungal pathogens occupy the first place in distribution between numerous plant hosts, including economically important plants. There are a huge number of fungal genera affecting the foliar of the plants including leaves, stems, branches, and flowers while others attacking only roots. Also, wood-decaying fungi are another group affecting trunks of different trees. Many fungal pathogens are opportunistic, where they are invading their hosts through pruning wounds and newly cut surfaces. Beside all the previous fungal pathogens, an important group of fungi responsible for decaying fruits and vegetables after harvest and at storage are recognized.

Fungal pathogens are highly distributed and very specific in their infection process where there are fungal genera able to invade many host plants while other genera are specific only for one host. Throughout history, trials for controlling these aggressive pathogens were increased including several ways such as cultural, physical, chemical, and biological methods. In this chapter, some fungal diseases of various host plants will be introduced with special demonstrations of the biological control of them using several antagonistic microorganisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agrios GN (2005) Plant pathology. Elsevier Academic Press Publication, USA

    Google Scholar 

  • Akilli S, Katircioğlu YZ, Maden S (2011) Biological control of chestnut canker, caused by Cryphonectria parasitica, by antagonistic organisms and hypovirulent isolates. Turk J Agric For 35(5):515–523

    Google Scholar 

  • Aldwinckle H, Jones AL (1990) Compendium of apple and pear diseases. APS Press, St Paul

    Google Scholar 

  • Anagnostakis SL (1982) Biological control of chestnut blight. Science 215(4532):466–471

    Article  CAS  PubMed  Google Scholar 

  • Annesi T, Curcio G, D’amico L, Motta E (2005) Biological control of Heterobasidion annosum on Pinus pinea by Phlebiopsis gigantea. For Pathol 35(2):127–134

    Article  Google Scholar 

  • Arrebola E, Sivakumar D, Bacigalupo R, Korsten L (2010) Combined application of antagonist Bacillus amyloliquefaciens and essential oils for the control of peach postharvest diseases. Crop Protect 29(4):369–377

    Article  CAS  Google Scholar 

  • Asef M, Goltapeh E, Danesh Y (2008) Antagonistic effects of Trichoderma species in biocontrol of Armillaria mellea in fruit trees in Iran. J Plant Prot Res 48(2):213–222

    Article  Google Scholar 

  • Asiegbu F, Adomas A, Stenlid J (2005) Conifer root and butt rot caused by Heterobasidion annosum (Fr.) Bref. sl. Mol Plant Pathol 6(4):395–409

    Article  PubMed  Google Scholar 

  • Bakshi S, Sztejnberg A, Yarden O (2001) Isolation and characterization of a cold-tolerant strain of Fusarium proliferatum, a biocontrol agent of grape downy mildew. Phytopathology 91(11):1062–1068

    Article  CAS  PubMed  Google Scholar 

  • Barakat R, Al-Masri MI (2005) Biological control of gray mold disease (Botrytis cinerea) on tomato and bean plants by using local isolates of Trichoderma harzianum. Dirasat. Agri Sci 32(2):145–156

    Google Scholar 

  • Barkai-Golan R (2001) Postharvest diseases of fruits and vegetables: development and control. Elsevier Science B.V, Amsterdam

    Google Scholar 

  • Batta YA (2007) Control of postharvest diseases of fruit with an invert emulsion formulation of Trichoderma. Postharvest Biol Technol 43(1):143–150

    Article  CAS  Google Scholar 

  • Beckerman J (2009) Diseases of landscape plants. Purdue extension, Purdue University, USA, Vol BP-143-W

    Google Scholar 

  • Belete E, Ayalew A, Ahmed S (2015) Evaluation of local isolates of Trichoderma spp. against black root rot (Fusarium solani) on Faba bean. J Plant Pathol Microbiol 6: 279

    Google Scholar 

  • Blum LEB (2000) Reduction of incidence and severity of Septoria lycopersici leaf spot of tomato with bacteria and yeasts. Cienc Rural 30(5):761–765

    Article  Google Scholar 

  • Braun U, Cook R, Inman A, Shin H (2002) The taxonomy of the powdery mildew fungi. In: Balanger RR, Bushnell WR, dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. APS Press, St Paul, pp 13–55

    Google Scholar 

  • Castlebury LA, Rossman AY, Hyten AS (2006) Phylogenetic relationships of neonectria/Cylindrocarpon on Fagus in North America. Canad J Bot 84(9):1417–1433

    Article  CAS  Google Scholar 

  • Cha DS, Chinnan MS (2004) Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr 44(4):223–237

    Article  CAS  PubMed  Google Scholar 

  • Chowdappa P, Kumar SM, Lakshmi MJ, Upreti K (2013) Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol Control 65(1):109–117

    Article  Google Scholar 

  • Collins DP, Jacobsen BJ (2003) Optimizing a Bacillus subtilis isolate for biological control of sugar beet Cercospora leaf spot. Biol Control 26(2):153–161

    Article  Google Scholar 

  • Dik A, Verhaar M, Bélanger R (1998) Comparison of three biological control agents against cucumber powdery mildew (Sphaerotheca fuliginea) in semi-commercial-scale glasshouse trials. Eur J Plant Pathol 104(4):413–423

    Article  Google Scholar 

  • Droby S (2005) Improving quality and safety of fresh fruits and vegetables after harvest by the use of biocontrol agents and natural materials. In: International symposium on natural preservatives in food systems 709

    Google Scholar 

  • Droby S, Chalutz E, Wilson C, Wisniewski M (1989) Characterization of the biocontrol activity of Debaryomyces hansenii in the control of Penicillium digitatum on grapefruit. Canadian J Microbiol 35(8):794–800

    Article  Google Scholar 

  • Droby S, Chalutz E, Wilson CL (1991) Antagonistic microorganisms as biological control agents of postharvest diseases of fruits and vegetables. Postharvest News and Information, vol 2 (3). CABI, Wallingford, pp 169–173

    Google Scholar 

  • Eckert JW, Ogawa JM (1988) The chemical control of postharvest diseases: deciduous fruits, berries, vegetables and root/tuber crops. Annu Rev Phytopathol 26(1):433–469

    Article  CAS  Google Scholar 

  • Elad Y (2000) Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protect 19(8/10):709–714

    Article  Google Scholar 

  • El-Badry A, El-Debaiky SA (2018) Evaluation of Antimicrobial Activity of Some Enzymes of Trichoderma harzianum Immobilized on Polyester Cloth Films on The Disease Incidence of Postharvest Black Mold Disease of Tomatoes. Egyptian J Microbiol 53:23–35. https://doi.org/10.21608/ejm.2018.3022.1051

    Article  Google Scholar 

  • El-Debaiky SA (2017) Antagonistic studies and hyphal interactions of the new antagonist Aspergillus piperis against some phytopathogenic fungi in vitro in comparison with Trichoderma harzianum. Microb Pathog 113:135–143

    Article  PubMed  Google Scholar 

  • El-Debaiky SA (2018) Effect of the new antagonist; Aspergillus piperis on germination and growth of tomato plant and Early Blight incidence caused by Alternaria solani. MRJASSS 6(4):041–049

    Google Scholar 

  • El-Fawy MM, El-Sharkawy RM, Abo-Elyousr KA (2018) Evaluation of certain Penicillium frequentans isolates against Cercospora leaf spot disease of sugar beet. Egy J Biol Pest Con 28(1):49

    Article  Google Scholar 

  • Elliott ML (2005) Leaf spots and leaf Blights of Palm1. series of the Plant Pathology Department, UF/IFAS Extension

    Google Scholar 

  • English-Loeb G, Norton AP, Gadoury DM, Seem RC, Wilcox WF (1999) Control of powdery mildew in wild and cultivated grapes by a Tydeid Mite. Biol Contr 2(14):97–103

    Article  Google Scholar 

  • Falk S, Gadoury D, Cortesi P, Pearson R, Seem R (1995) Parasitism of Uncinula necator cleistothecia by the mycoparasite Ampelomyces quisqualis. Phytopathology 85(7):794–800

    Article  Google Scholar 

  • Fan Y, Xu Y, Wang D, Zhang L, Sun J, Sun L, Zhang B (2009) Effect of alginate coating combined with yeast antagonist on strawberry (Fragaria× ananassa) preservation quality. Postharvest Biol Technol 53(1-2):84–90

    Article  CAS  Google Scholar 

  • Flaishman MA, Eyal Z, Zilberstein A, Voisard C, Haas D (1996) Suppression of Septoria tritici blotch and leaf rust of wheat by recombinant cyanide-producing strains of Pseudomonas putida. MPMI 9(7):642–645

    Article  CAS  Google Scholar 

  • Fry WE (2012) Principles of plant disease management. Academic, New York/London

    Google Scholar 

  • Gafni A, Calderon CE, Harris R, Buxdorf K, Dafa-Berger A, Zeilinger-Reichert E, Levy M (2015) Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action. Front Plant Sci 6:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Gauthier NW, Fountain W, Missun T (2015) Tree wounds-invitations to wood decay fungi. Plant pathology fact sheet, Collage of Agriculture, Food and Environment, University of Kentucky

    Google Scholar 

  • El Ghaouth A, Wilson C, Wisniewski M (2004) Biologically-based alternatives to synthetic fungicides for the control of postharvest diseases of fruit and vegetables. In: Naqvi SAMH (ed) Diseases of fruits and vegetables: Volume II. , Kluwer Academic Publishers, Dordrecht, pp 511-535

    Google Scholar 

  • Girgi M, Breese WA, Lörz H, Oldach KH (2006) Rust and downy mildew resistance in pearl millet (Pennisetum glaucum) mediated by heterologous expression of the afp gene from Aspergillus giganteus. Transgenic Res 15(3):313–324

    Article  CAS  PubMed  Google Scholar 

  • Gleason M (1995) Disease warning system. Plant Dis 79(2):113

    Article  Google Scholar 

  • Gubler W, Rolshausen P, Trouillas F, Úrbez-Torres J, Voegel T, Leavitt G, Weber E (2005) Grapevine trunk diseases in California. PWV:6–25

    Google Scholar 

  • Halleen F, Fourie P, Lombard P (2010) Protection of grapevine pruning wounds against Eutypa lata by biological and chemical methods. SAJEV 31(2):125–132

    CAS  Google Scholar 

  • Hansen MA (2009) Septoria leaf spot of tomato. Virginia pest management guide for home grounds and animals (VCE Publication 456-018), for details on the proper use of pesticides., Vol publication 450-711. Virginia Cooperative Extension

    Google Scholar 

  • Heffer V, Johnson K, Powelson M, Shishkoff N (2006) Identification of powdery mildew fungi anno 2006. Plant Health Instructor. https://doi.org/10.1094/PHI-I-2006-0706-01

  • Horst RK (1950) Westcott’s plant disease handbook, 7th edn. Springer, Dordrecht

    Google Scholar 

  • Ippolito A, Nigro F (2000) Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables. Crop Protect 19(8–10):715–723

    Article  Google Scholar 

  • Ippolito A, Nigro F, Schena L (2004) Control of postharvest diseases of fresh fruits and vegetables by preharvest application of antagonistic microorganisms. In: Crop management and postharvest handling of horticultural products, vol 4. WFL Publisher Ltd, Helsinki, pp 1–30

    Google Scholar 

  • Irtwange S (2006) Application of biological control agents in pre-and postharvest operations. CIGR J VIII(3)

    Google Scholar 

  • Janisiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruits. Annu Rev Phytopathol 40(1):411–441

    Article  CAS  PubMed  Google Scholar 

  • Kildea S, Ransbotyn V, Khan MR, Fagan B, Leonard G, Mullins E, Doohan FM (2008) Bacillus megaterium shows potential for the biocontrol of Septoria tritici blotch of wheat. Biol Control 47(1):37–45

    Article  Google Scholar 

  • Kim JJ, Goettel MS, Gillespie DR (2008) Evaluation of Lecanicillium longisporum, Vertalec® for simultaneous suppression of cotton aphid, Aphis gossypii, and cucumber powdery mildew, Sphaerotheca fuliginea, on potted cucumbers. Biol Control 45(3):404–409

    Article  Google Scholar 

  • Kiss L (2003) A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Manage Sci 59(4):475–483

    Article  CAS  Google Scholar 

  • Kiss L, Russell J, Szentiványi O, Xu X, Jeffries P (2004) Biology and biocontrol potential of Ampelomyces mycoparasites, natural antagonists of powdery mildew fungi. Biocont Sci Technol 14(7):635–651

    Article  Google Scholar 

  • Kolmer J, Ordonez M, Groth J (2009) The Rust Fungi. Wiley Online Library

    Book  Google Scholar 

  • Korsten L (2006) Advances in control of postharvest diseases in tropical fresh produce. IJPTI 1(1):48–61

    Article  Google Scholar 

  • Kotze C, Van Niekerk J, Mostert L, Halleen F, Fourie P (2011) Evaluation of biocontrol agents for grapevine pruning wound protection against trunk pathogen infection. Phytopathol Mediterr 50:S247–S263

    Google Scholar 

  • Leinhos G, Buchenauer H (1992) Hyperparasitism of selected fungi on rust fungi of cereal. J Plant Dis Prot 99:482–498

    Google Scholar 

  • Leonberger K, Jackson K, Smith R, Ward GN (2016) Plant diseases In: Kentucky master gardener manual. Agriculture and Natural Resources Publications, University of Kentucky UKnowledge, Kentucky, USA

    Google Scholar 

  • Liyanage KK, Khan S, Brooks S, Mortimer PE, Karunarathna SC, Xu J, Hyde KD (2018) Morpho-molecular characterization of two Ampelomyces spp.(Pleosporales) strains mycoparasites of powdery mildew of Hevea brasiliensis. Front Microbiol 9:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucas GB, Campbell CL, Lucas LT (1992) Introduction to plant diseases: identification and management, 2nd edn. Kluwer Academic Publishers, USA and Netherlands. https://doi.org/10.1007/978-1-4615-7294-7

    Book  Google Scholar 

  • Mari M, Neri F, Bertolini P (2007) Novel approaches to prevent and control postharvest diseases of fruits. Stewart Postharvest Rev 3(6):1–7

    Article  Google Scholar 

  • Mercure P (1998) Early blight and late blight of potato. University of Connecticut. Integrated Pest Management Available on www hort uconn edu/IPM/VEG/HTMS/BLTPOT HTML

    Google Scholar 

  • Michereff SJ, da Silveira NSS, Reis A, de LR Mariano R (1995) Greenhouse screening of Trichoderma isolates for control of Curvularia leaf spot of yam. Mycopathologia 130(2):103–108

    Article  Google Scholar 

  • Milgroom MG, Cortesi P (2004) Biological control of chestnut blight with hypovirulence: a critical analysis. Annu Rev Phytopathol 42:311–338

    Article  CAS  PubMed  Google Scholar 

  • Mohanan C (2010) Rust fungi of Kerala. Kerala Forest Research Institute, Peechi

    Google Scholar 

  • Moore D, Robson GD, Trinci A (2011) 21st century guidebook to fungi. Cambridge University Press, Cambridge

    Google Scholar 

  • Morrison DJ (1981) Armillaria root disease: a guide to disease diagnosis, development and management in British Columbia. Information Report BC-X-203. Canadian Forestry Service, Pacific Forest Research Centre, Victoria, British Columbia, Canada

    Google Scholar 

  • Munkvold G, Duthie J, Marois J (1994) Reductions in yield and vegetative growth of grapevines due to Eutypa dieback. Phytopathology 84(2):186–192

    Article  Google Scholar 

  • Musetti R, Vecchione A, Stringher L, Borselli S, Zulini L, Marzani C, D’Ambrosio M, Pertot I (2006) Inhibition of Sporulation and Ultrastructural Alterations of Grapevine Downy Mildew by the Endophytic Fungus Alternaria alternata. Phytopathology 96(7):689–698

    Article  CAS  PubMed  Google Scholar 

  • Nutter FF (2007) The role of plant disease epidemiology in developing successful integrated disease management programs. In: General concepts in integrated pest and disease management. Springer, Dordrecht, pp 45–79

    Google Scholar 

  • Nutter F Jr, Guan J (2001) Disease losses. Encyclopedia of plant pathology. Wiley, New York, pp 340–351

    Google Scholar 

  • Nutter F Jr, Teng P, Shokes F (1991) Disease assessment terms and concepts. Plant Dis 75:1187–1188

    Google Scholar 

  • Ou SH (1985) Rice diseases, 2nd edn. Commonwealth Mycological Institute, Kew

    Google Scholar 

  • Palmieri MC, Perazzolli M, Matafora V, Moretto M, Bachi A, Pertot I (2012) Proteomic analysis of grapevine resistance induced by Trichoderma harzianum T39 reveals specific defence pathways activated against downy mildew. J Exp Bot 63(17):6237–6251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulitz TC, Bélanger RR (2001) Biological control in greenhouse systems. Annu Rev Phytopathol 39(1):103–133

    Article  CAS  PubMed  Google Scholar 

  • Perelló AE, Moreno MV, Mónaco C, Simón MR, Cordo C (2009) Biological control of Septoria tritici blotch on wheat by Trichoderma spp. under field conditions in Argentina. BioControl 54(1):113–122

    Article  CAS  Google Scholar 

  • Ponomarenko A, Goodwin SB, Kema GH (2011) Septoria tritici blotch (STB) of wheat. Plant Health Instructor. https://doi.org/10.1094/PHI-I-2011-0407-01

  • Raziq F, Fox R (2005) Combinations of fungal antagonists for biological control of Armillaria root rot of strawberry plants. Biol Agric Hortic 23(1):45–57

    Article  Google Scholar 

  • Romero D, Pérez-García A, Rivera M, Cazorla F, De Vicente A (2004) Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca. Appl Microbiol Biotechnol 64(2):263–269

    Article  CAS  PubMed  Google Scholar 

  • Romero D, De Vicente A, Zeriouh H, Cazorla F, Fernández-Ortuño D, Torés J, Pérez-García A (2007) Evaluation of biological control agents for managing cucurbit powdery mildew on greenhouse-grown melon. Plant Pathol 56(6):976–986

    Article  Google Scholar 

  • Rytter J, Lukezic F, Craig R, Moorman G (1989) Biological control of geranium rust by Bacillus subtilis. Phytopathology 79(3):367–370

    Article  Google Scholar 

  • Saccardo P (1876) Fungi veneti novi vel critici. Ser. V, no. 91. Nuovo Giorn Bot Ital 8:161–211

    Google Scholar 

  • Sain SK, Pandey AK (2016) Biological spectrum of Trichoderma harzianum Rifai isolates to control fungal diseases of tomato (Solanum lycopersicon L.). Arch Phytopathol Plant Protect 49(19–20):507–521

    Article  Google Scholar 

  • Schilder A, Gillett J, Sysak R, Wise J (2002) Evaluation of environmentally friendly products for control of fungal diseases of grapes. 10th international conference on cultivation technique and phytopathological problems in organic fruit-growing and viticulture. Proceedings to the conference from 4th to 7th February 2002 at Weinsberg/Germany

    Google Scholar 

  • Shane W, Teng P (1992) Impact of Cercospora leaf spot on root weight, sugar yield, and purity of Beta vulgaris. Plant Dis 76(8):812–820

    Article  CAS  Google Scholar 

  • Shanthiyaa V, Saravanakumar D, Rajendran L, Karthikeyan G, Prabakar K, Raguchander T (2013) Use of Chaetomium globosum for biocontrol of potato late blight disease. Crop Protect 52:33–38

    Article  Google Scholar 

  • Sharma R, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50(3):205–221

    Article  Google Scholar 

  • Shimizu K (1994) Biological control of Septoria leaf spot on hybrid poplars using Streptomyces spp. MS thesis, University of Minnesota, St. Paul

    Google Scholar 

  • Sinclair WA, Lyon HH (2005) Diseases of trees and shrubs, ed 2. Comstock Publishing Associates

    Google Scholar 

  • Singh D, Sharma R (2018) Postharvest diseases of fruits and vegetables and their management. In: Postharvest disinfection of fruits and vegetables. Elsevier, UK and USA, pp 1–52

    Google Scholar 

  • Slusarenko AJ, Schlaich NL (2003) Downy mildew of Arabidopsis thaliana caused by Hyaloperonospora parasitica (formerly Peronospora parasitica). Mol Plant Pathol 4(3):159–170

    Article  PubMed  Google Scholar 

  • Stevens C, Khan V, Lu J, Wilson C, Pusey P, Igwegbe E, Kabwe K, Mafolo Y, Liu J, Chalutz E (1997) Integration of ultraviolet (UV-C) light with yeast treatment for control of postharvest storage rots of fruits and vegetables. Biol Control 10(2):98–103

    Article  Google Scholar 

  • Stirling M, Stirling G (1997) Disease management: biological control. In: Brown JF, Ogle HJ (eds) Plant pathogens and plant diseases. Rockvale Publications, Armidale, pp 427–439

    Google Scholar 

  • Stockwell V, Johnson K, Loper J (1998) Establishment of bacterial antagonists of Erwinia amylovora on pear and apple blossoms as influenced by inoculum preparation. Phytopathology 88(6):506–513

    Article  CAS  PubMed  Google Scholar 

  • Szentiványi O, Kiss L (2003) Overwintering of Ampelomyces mycoparasites on apple trees and other plants infected with powdery mildews. Plant Pathol 52(6):737–746

    Article  Google Scholar 

  • Sztejnberg A, Paz Z, Boekhout T, Gafni A, Gerson U (2004) A new fungus with dual biocontrol capabilities: reducing the numbers of phytophagous mites and powdery mildew disease damage. Crop Protect 23(11):1125–1129

    Article  Google Scholar 

  • Tann H, Soytong K (2016) Biological control of brown leaf spot disease caused by Curvularia lunata and field application method on rice variety IR66 in Cambodia. AGRIVITA. J Agric Sci 39(1):111–117

    Google Scholar 

  • Tewari L, Bhanu C (2003) Screening of various substrates for sporulation and mass multiplication of bio-control agent Trichoderma harzianum through solid state fermentation. Indian Phytopathol 56(4):476–478

    Google Scholar 

  • Urquhart E, Menzies J, Punja Z (1994) Growth and biological control activity of Tilletiopsis species against powdery mildew (Sphaerotheca fuliginea) on greenhouse cucumber. Phytopathology 84(4):341–351

    Article  Google Scholar 

  • Verhaar M, Hijwegen T, Zadoks J (1999) Improvement of the efficacy of Verticillium lecanii used in biocontrol of Sphaerotheca fuliginea by addition of oil formulations. BioControl 44(1):73–87

    Article  CAS  Google Scholar 

  • Wargo PM, Shaw CG III (1985) Armillaria root rot: the puzzle is being solved. Plant Dis 69(10):826–832

    Article  Google Scholar 

  • Weiland J, Koch G (2004) Sugarbeet leaf spot disease (Cercospora beticola Sacc.). Mol Plant Pathol 5(3):157–166

    Article  PubMed  Google Scholar 

  • Whipps J (1993) A review of white rust (Puccinia horiana Henn.) disease on Chrysanthemum and the potential for its biological control with Verticillium lecanii (Zimm.) Viegas. Ann Appl Biol 122(1):173–187

    Article  Google Scholar 

  • Wilson CL, Wisniewski ME (1989) Biological control of postharvest diseases of fruits and vegetables: an emerging technology. Annu Rev Phytopathol 27(1):425–441

    Article  Google Scholar 

  • Wilson CL, Wisniewski ME, Biles CL, McLaughlin R, Chalutz E, Droby S (1991) Biological control of post-harvest diseases of fruits and vegetables: alternatives to synthetic fungicides. Crop Protect 10(3):172–177

    Article  Google Scholar 

  • Wisniewski ME, Wilson CL (1992) Biological control of postharvest diseases of fruits and vegetables: recent advances. Hort Science 27(2):94–98

    Article  Google Scholar 

  • Yang D, Bernier L, Dessureault M (1994) Biological control of Septoria leaf spot of poplar by Phaeotheca dimorphospora. Plant Dis 78(8):821–825

    Article  Google Scholar 

  • Yuen G, Steadman J, Lindgren D, Schaff D, Jochum C (2001) Bean rust biological control using bacterial agents. Crop Protect 20(5):395–402

    Article  Google Scholar 

  • Zadoks J (1985) On the conceptual basis of crop loss assessment: the threshold theory. Annu Rev Phytopathol 23(1):455–473

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samah Abd El-Kader El-Debaiky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Debaiky, S.A.EK. (2019). Biological Control of Some Plant Diseases Using Different Antagonists Including Fungi and Rhizobacteria. In: Sayyed, R. (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management . Microorganisms for Sustainability, vol 13. Springer, Singapore. https://doi.org/10.1007/978-981-13-6986-5_3

Download citation

Publish with us

Policies and ethics