Skip to main content

Plant Growth-Promoting Rhizobacteria (PGPRs): Significant Revolutionary Tools for Achieving Long-Term Sustainability and Combating the Biotic Stress Caused by the Attack of Pathogens Affecting Crops in Agriculture

  • Chapter
  • First Online:
Plant Growth Promoting Rhizobacteria for Sustainable Stress Management

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 13))

Abstract

The microbes residing in the soil that are beneficial for the growth of crops in terms of vegetative and reproductive growth are known as plant growth-promoting microbes (PGPMs). These PGPMs may be agriculturally promising bacterial and fungal strains which reside in the rhizosphere region of crops. Today these PGPMs are of areas of interest for research and commercialization. These PGPMs are now broadly categorized as “plant growth-promoting rhizobacteria (PGPR).” These PGPRs play a vital role in maintaining soil fertility and plant health. They can act as biofertilizers and provide immunity to the crops against invasion of pathogens and resist against different biotic and abiotic stress conditions. PGPRs are effective growth modulators for the crop as they secrete novel metabolites and growth molecules that enable the crop to sustain in adverse and stress conditions. These molecules also induce systemic resistance and anti-pathogenic effect against the soil-borne infections. These PGPRs release different metabolites such as phyto-harmones, viz., indoleacetic acid (IAA), auxins, cytokinin and gibberellic acid (GA3) for growth of crops via solubilizing the minerals and other complex compounds. Besides these molecules, these PGPRs secrete allelochemicals and metabolites, including iron-chelating siderophores, antibiotics, biocides, volatile compounds, lytic compounds, and detoxification compounds which are able to kill the soil-borne pathogens. The PGPRs are also involved in biological control of insects and pests as these PGPRs are producing enzymes and metabolites which are able to invade the prey’s immune system and digest the internal organs followed by exoskeleton of insects and pests. Thus plant growth-promoting rhizobacteria are the promising candidates for agriculture in enhancing soil fertility and protecting the crops against soil-borne pathogens, insects, and pests. These PGPRs are therefore regarded as significant revolutionary tools for achieving long-term sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Ba L, Facelli E, Facelli JM (2012) The relationship between the diversity of arbuscular mycorrhizal fungi and a grazing in a meadow steppe. Plant Soil 352:143–156

    Article  CAS  Google Scholar 

  • Bettiol W et al (2011) Bacillus based control of plant diseases. Pesticides in the modern world- pesticides use and management, pp 273–302

    Google Scholar 

  • Castro RO, Cornejo HAC, Rodriguez LM, Bucio JL (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4(8):701–712

    Article  Google Scholar 

  • Cook RJ (2002) Advances in plant health management in the twentieth century. Annu Rev Phytopathol 38:95–116

    Article  Google Scholar 

  • Diedhiou AG, Gueye O, Diabate M, Prin Y, Duponnois R, Dreyfus B, Ba AM (2005) Contrasting responses to ectomycorrhizal inoculation in seedlings of six tropical African tree species. Mycorrhiza 16:11–17

    Article  CAS  Google Scholar 

  • Diedhiou AG, Dupouey JL, Buee M, Dambrine E, Laut L, Garbaye J (2009) Response of ectomycorrhizal communities to past Roman occupation in an oak forest. Soil Biol Biochem 41:2206–2213

    Article  CAS  Google Scholar 

  • Diedhiou AG, Selosse MA, Galiana A, Diabate M, Dreyfus B, Ba AM, de Faria SM, Bena G (2010) Multi-host ectomycorrhizal fungi are predominant in a Guinean tropical rain forest and shared between canopy and tree seedlings. Environ Microbiol 2:2219–2232

    Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759

    Article  CAS  Google Scholar 

  • Gaby JC, Buckley DH (2012) A comprehensive evaluation of PCR primers to amplify the nif H gene of nitrogenase. PLoS One 7:e42149

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Han HS, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136

    Article  CAS  Google Scholar 

  • Hang NTT, Oh SO, Kim GH, Hur JS, Koh YJ (2005) Bacillus subtilis S1-0210 as a biocontrol agent against Botrytis cinerea in strawberries. Plant Pathol J 21:59–63

    Article  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  Google Scholar 

  • Helbig J (2001) Biological control of Botrytis cinerea Pers. Ex Fr. in strawberry by Paenibacillus polymyxa (isolate 18191). J Phytopathol 149:265–273

    Article  Google Scholar 

  • Hijri M (2016) Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza 26:209–214

    Article  Google Scholar 

  • Joshi P, Bhatt AB (2011) Diversity and function of plant growth promoting rhizobacteria associated with wheat rhizosphere in North Himalayan region. Int J Environ Sci 1(6):1135–1143

    Google Scholar 

  • Kamensky M, Ovadis M, Chet I, Chernin L (2003) Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem 35:323–331

    Article  CAS  Google Scholar 

  • Kaymak HC (2011) Potential of PGPR in agricultural innovations. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, Microbiol monographs, vol 18. Springer, Berlin, pp 45–79

    Chapter  Google Scholar 

  • Kiewnick S (2013) Identification of the tropical rootknot nematode species Meloidogyne incognita, M. javanica and M. arenaria using a multiplex PCR assay. Nematology 15:891–894

    Article  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria. Gilbert-Clarey, Tours, pp 879–882

    Google Scholar 

  • Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez D, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40

    Article  CAS  Google Scholar 

  • Kumar P, Dubey RC (2012) Plant growth promoting rhizobacteria for biocontrol of phytopathogens and yield enhancement of Phaseolus vulgaris. J Curr Pers Appl Microbiol 1(6):38

    Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421

    Article  CAS  Google Scholar 

  • Mpiga P, Belanger RR, Paulitz TC, andBenhamou N (1997) Increased resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomato plants treated with the endophytic bacterium Pseudomonas fluorescens strain 63-28. Physiol Mol Plant Pathol 50:301–320

    Article  Google Scholar 

  • Naim AME, Ibrahim E (2014) In vitro screening of Bacillus isolates for biological control of early blight disease of tomato in Shambat soil. World J Agric Res 2:47–50

    Article  Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3:25–31

    Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst 42:489–512

    Article  Google Scholar 

  • Roger PA, Grant IF, Reddy PM (1985) Blue-green algae in India: a trip report. International Rice Research Institute, Manila

    Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer plus 2:587

    Article  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99

    Article  CAS  Google Scholar 

  • Srividya S, Sasirekha B (2016) Siderophore production by Pseudomonas aeruginosa, FP6 a biocontrol strain for rhizoctonia solani and colletotrichum gloeosporoides causing diseases in chilli. Agric Nat Res 50:25–256

    Google Scholar 

  • Vargas WA, Mandawe JC, Kenerley CM (2009) Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151:792–808

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Viterbo A, Horwitz BA (2010) Mycoparasitism. In: Borkovich KA, Ebbole DJ (eds) Cellular and molecular biology of filamentous fungi, vol 42. American Society for Microbiology, Washington, DC, pp 676–693

    Chapter  Google Scholar 

  • Vizcaıno JA, Cardoza RE, Hauser M, Hermosa R, Rey M, Llobell A, Becker JM, Gutie’rrez S, Monte E (2006) ThPTR2, a di/tri-peptide transporter gene from Trichoderma harzianum. Fungal Genet Biol 43:234–246

    Article  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  Google Scholar 

  • Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91:143–153

    Article  CAS  Google Scholar 

  • Zimmerman G (1993) The entomopathogenic fungus Metarhizium anisopliae and its potential as a biological agent. Pestic Sci 37(4):375–379

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mathur, A., Koul, A., Hattewar, J. (2019). Plant Growth-Promoting Rhizobacteria (PGPRs): Significant Revolutionary Tools for Achieving Long-Term Sustainability and Combating the Biotic Stress Caused by the Attack of Pathogens Affecting Crops in Agriculture. In: Sayyed, R. (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management . Microorganisms for Sustainability, vol 13. Springer, Singapore. https://doi.org/10.1007/978-981-13-6986-5_15

Download citation

Publish with us

Policies and ethics