Skip to main content

Overview of the Immunology of Food Allergy

  • Chapter
  • First Online:
Food Allergy

Abstract

Food allergies are caused by an abnormal immune response to ingested antigens. They manifest as urticaria, nausea, vomiting, abdominal pain, or anaphylaxis, usually within a short period after consumption of the relevant food, and can be either IgE-dependent or IgE-independent. They affect large numbers of people, particularly children in industrialized countries, and represent an important and increasing public health problem. The pathogenesis of food allergy involves a failure of the mechanisms that normally prevent or control immune reactivity to orally administered antigens. Treatment strategies include avoidance of the offending dietary component, control of symptoms with the appropriate pharmacologic agents, and immunologic approaches directed at restoring nonresponsiveness to the relevant allergen. This chapter will review current concepts in the immunology and treatment of food allergy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bégin P et al (2014) Phase 1 results of safety and tolerability in a rush oral immunotherapy protocol to multiple foods using Omalizumab. Allergy Asthma Clin Immunol 10:1–10

    Article  Google Scholar 

  • Bingemann TA, Sood P, Jã¤Rvinen KM (2018) Food protein-induced enterocolitis syndrome. Immunol Allergy Clin N Am 38:141–152

    Article  Google Scholar 

  • Bird JA et al (2016) Conducting an oral food challenge to peanut in an infant. J Allergy Clin Immunol Pract 5:301–311.e1

    PubMed  Google Scholar 

  • Boyce JA et al (2011) Guidelines for the diagnosis and management of food allergy in the United States: summary of the NIAID-sponsored expert panel report. Nutrition 27:253

    Article  Google Scholar 

  • Burks AW, Sampson HA, Plaut M, Lack G, Akdis CA (2018) Treatment for food allergy. J Allergy Clin Immunol 141:1–9

    Article  Google Scholar 

  • Church MK, Kolkhir P, Metz M, Maurer M (2018) The role and relevance of mast cells in urticaria. Immunol Rev 282:232–247

    Article  CAS  Google Scholar 

  • Commins SP (2017) Outpatient emergencies: anaphylaxis. Med Clin N Am 101:521–536

    Article  Google Scholar 

  • Czarnowicki T, Krueger JG, Guttman-Yassky E (2017) Novel concepts of prevention and treatment of atopic dermatitis through barrier and immune manipulations with implications for the atopic march. J Allergy Clin Immunol 139:1723

    Article  CAS  Google Scholar 

  • Daniel M, Nino K, Agustin E, Momtchilo R, Lafaille JJ, Lafaille MA, Curotto D (2005) Oral tolerance in the absence of naturally occurring Tregs. J Clin Investig 115:1923–1933

    Article  Google Scholar 

  • Devasmitha V et al (2014) Filaggrin loss-of-function mutations are associated with food allergy in childhood and adolescence. J Allergy Clin Immunol 134:876–882.e874

    Google Scholar 

  • Domogalla MP, Rostan PV, Raker VK, Steinbrink K (2017) Tolerance through education: how tolerogenic dendritic cells shape immunity. Front Immunol 8:1764

    Article  Google Scholar 

  • Du Toit G et al (2015) Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med 372:803–813. https://doi.org/10.1056/NEJMoa1414850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du TG et al (2016) Effect of avoidance on peanut allergy after early peanut consumption. N Engl J Med 374:1435

    Article  Google Scholar 

  • Du TG et al (2017) The allergen-specificity of early peanut consumption and the impact on the development of allergic disease in the LEAP Study Cohort. J Allergy Clin Immunol 141:1343–1353

    Google Scholar 

  • Elisa M, Lucia M, Giuseppe P, Maria R (2014) Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1? Macrophages to CD103? Dendritic cells. Immunity 40:248–261

    Article  Google Scholar 

  • Farbman KS, Michelson KA (2016) Anaphylaxis in children. Curr Opin Pediatr 28:294

    Article  CAS  Google Scholar 

  • Fleischer DM et al (2015) Consensus communication on early peanut introduction and the prevention of peanut allergy in high-risk infants. World Allergy Org J 8:1–4

    Article  Google Scholar 

  • Gensollen T, Iyer SS, Kasper DL, Blumberg RS (2016) How colonization by microbiota in early life shapes the immune system. Science 352:539–544

    Article  CAS  Google Scholar 

  • Han H, Roan F, Ziegler SF (2017) The atopic march: current insights into skin barrier dysfunction and epithelial cell-derived cytokines. Immunol Rev 278:116

    Article  CAS  Google Scholar 

  • Hong X et al (2015) Genome-wide association study identifies peanut allergy-specific loci and evidence of epigenetic mediation in US children. Nat Commun 6:6304. https://doi.org/10.1038/ncomms7304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong X et al (2016) Epigenome-wide association study links site-specific DNA methylation changes with cow’s milk allergy. J Allergy Clin Immunol 138:908–911.e909

    Article  Google Scholar 

  • Huang YJ, Marsland BJ, Bunyavanich S, O’Mahony L, Leung DYM, Muraro A, Fleisher TA (2017) The microbiome in allergic disease: current understanding and future opportunities—2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology Retour Au Numéro. J Allergy Clin Immunol 139:1099

    Article  Google Scholar 

  • Jackson KD, Howie LD, Akinbami LJ (2013) Trends in allergic conditions among children: United States, 1997–2011. NCHS Data Brief 121:1–8

    Google Scholar 

  • Joeris T, Müllerluda K, Agace WW, Mowat AM (2017) Diversity and functions of intestinal mononuclear phagocytes. Mucosal Immunol 10:845

    Article  CAS  Google Scholar 

  • Kalekar LA, Mueller DL (2017) Relationship between CD4 regulatory T cells and anergy in vivo. J Immunol 198:2527–2533

    Article  CAS  Google Scholar 

  • Kitagawa Y, Sakaguchi S (2017) Molecular control of regulatory T cell development and function. Curr Opin Immunol 49:64

    Article  CAS  Google Scholar 

  • Lebwohl B, Sanders DS, Phr G (2017) Coeliac disease. Lancet 391:70–81

    Article  Google Scholar 

  • Leonard SA, Caubet JC, Kim JS, Groetch M, Nowak-WÄ™grzyn A (2015) Baked milk- and egg-containing diet in the management of milk and egg allergy. J Allergy Clin Immunol Pract 3:13–23

    Article  Google Scholar 

  • Li XM (2018) Complementary and alternative medicine for treatment of food allergy. Immunol Allergy Clin N Am 38:103–124

    Article  CAS  Google Scholar 

  • Lieping C, Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13:227–242

    Article  Google Scholar 

  • Loh W, Tang M (2018) Adjuvant therapies in food immunotherapy. Immunol Allergy Clin N Am 38:89–101

    Article  Google Scholar 

  • Macginnitie AJ et al (2017) Omalizumab facilitates rapid oral desensitization for peanut allergy. J Allergy Clin Immunol 139:873–881

    Article  CAS  Google Scholar 

  • Mcdole JR et al (2012) Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Isr Med Assoc J 483:345–349

    CAS  Google Scholar 

  • Ménard S, Cerf-Bensussan N, Heyman M (2010) Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol 3:247

    Article  Google Scholar 

  • Nadeau KC, Schneider LC, Hoyte L, Borras I, Umetsu DT (2011) Rapid oral desensitization in combination with omalizumab therapy in patients with cow’s milk allergy. J Allergy Clin Immunol 127:1622–1624. https://doi.org/10.1016/j.jaci.2011.04.009

    Article  PubMed  PubMed Central  Google Scholar 

  • Niess JH, Reinecker HC (2005) CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307:254

    Article  CAS  Google Scholar 

  • Nowak-WÄ™grzyn A, Assa’Ad AH, Bahna SL, Bock SA, Sicherer SH, Teuber SS (2009) Work Group report: oral food challenge testing. J Allergy Clin Immunol 123:S365–S383

    Article  Google Scholar 

  • O’Shea KM, Aceves SS, Dellon ES, Gupta SK, Spergel JM, Furuta GT, Rothenberg ME (2018) Pathophysiology of eosinophilic esophagitis. Gastroenterology 2:41

    Google Scholar 

  • Ohno H (2016) Intestinal M cells. J Biochem 159:151

    Article  CAS  Google Scholar 

  • Osborne NJ et al (2011) Prevalence of challenge-proven IgE-mediated food allergy using population-based sampling and predetermined challenge criteria in infants. J Allergy Clin Immunol 127:668–676.e662

    Article  Google Scholar 

  • Reber LL, Hernandez JD, Galli SJ (2017) The pathophysiology of anaphylaxis. J Allergy Clin Immunol 140:335

    Article  CAS  Google Scholar 

  • Rescigno M et al (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2:361

    Article  CAS  Google Scholar 

  • Rock KL, Reits E, Neefjes J (2016) Present yourself! By MHC class I and MHC class II molecules. Trends Immunol 37:724–737

    Article  CAS  Google Scholar 

  • Savage J, Sicherer S, Wood R (2016) The natural history of food allergy. J Allergy Clin Immunol Pract 4:196–203

    Article  Google Scholar 

  • Schneider LC, Rima R, Jennifer L, Emily B, Mudita M, Umetsu DT (2013) A pilot study of omalizumab to facilitate rapid oral desensitization in high-risk peanut-allergic patients. J Allergy Clin Immunol 132:1368–1374

    Article  CAS  Google Scholar 

  • Sicherer SH, Sampson HA (2017) Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention and management. J Allergy Clin Immunol 141:41–58

    Article  Google Scholar 

  • Sicherer SH, Anne MOF, Godbold JH, Sampson HA (2010) US prevalence of self-reported peanut, tree nut, and sesame allergy: 11-year follow-up. J Allergy Clin Immunol 125:1322–1326

    Article  CAS  Google Scholar 

  • Supinda B et al (2014) Peanut allergy prevalence among school-age children in a US cohort not selected for any disease. J Allergy Clin Immunol 134:753–755

    Article  Google Scholar 

  • Tordesillas L, Berin MC (2018) Mechanisms of oral tolerance. Clin Rev Allergy Immunol 55(2):107–117

    Article  CAS  Google Scholar 

  • Torgerson TR et al (2007) Severe food allergy as a variant of IPEX syndrome caused by a deletion in a noncoding region of the FOXP3 gene. Gastroenterology 132:1705–1717

    Article  CAS  Google Scholar 

  • Wambre E et al (2017) A phenotypically and functionally distinct human TH2 cell subpopulation is associated with allergic disorders. Sci Transl Med 9:eaam9171

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fu, L., Cherayil, B.J., Shi, H., Wang, Y., Zhu, Y. (2019). Overview of the Immunology of Food Allergy. In: Food Allergy. Springer, Singapore. https://doi.org/10.1007/978-981-13-6928-5_1

Download citation

Publish with us

Policies and ethics