Skip to main content

Phytochemicals, Cancer and miRNAs: An in-silico Approach

  • Chapter
  • First Online:
Phytochemistry: An in-silico and in-vitro Update

Abstract

Computer based drug design is an important tool nowadays save time and money in the research. Various online and offline computer based tools are available to predict the disease mitigating potential of phytochemicals as well as the role of miRNAs in various disease through signaling pathways. Cancer, a deadliest disease kills major population of humans. The processes involved in cancer development include metastasis, invasion, angiogenesis, and inflammation. These processes are regulated by microRNAs and different signaling pathways (Wnt/β-catenin, Notch, Sonic hedgehog, COX-2, EGFR, MAPK-ERK, JAK-STAT, Akt/PI3K/mTOR, NF-κB, AP-1, etc.). Phytochemicals such as dietary polyphenols play an efficient role in reducing the pace of cancer metastasis and other hallmarks of cancer as it modulates miRNAs associated with various signaling pathways involved in cancer. Phytochemicals controls epigenetic events (non-coding miRNAs, histone modification, DNA methylation) and indirectly affect multiple signaling pathways. Phytochemicals exert inhibitory effect on each step of metastasis and has anticancer potential by inducing apoptosis and by inhibiting cell growth, migration, invasion and apoptosis. The present chapter highlights the cancer signaling pathways and their mitigation by phytochemicals. Role of miRNAs in various signaling pathways and hall marks of cancer is also discussed. The most interesting part of the chapter include step by step tutorial to study the association of phytochemical modulated miRNAs in various signaling pathways related to cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams LS, Phung S, Yee N, Seeram NP, Li L, Chen S. Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway. Cancer Res. 2010;70:3594–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol. 2006;71(10):1397–421.

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal BB, Ichikawa H, Garodia P, Weerasinghe P, Sethi G, Bhatt ID, Pandey MK, Shishodia S, Nair MG. From traditional Ayurvedic medicine to modern medicine: identification of therapeutic targets for suppression of inflammation and cancer. Expert Opin Ther Targets. 2006;10(1):87–118.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad N, Gupta S, Mukhtar H. Green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor κB in cancer cells versus normal cells. Arch Biochem Biophys. 2000;376(2):338–46.

    Article  CAS  PubMed  Google Scholar 

  • Ahn JI, Jeong KJ, Ko MJ, Shin HJ, Kim HS, Chung HJ, Jeong HS. Changes of miRNA and mRNA expression in HepG2 cells treated by epigallocatechin gallate. Mol Cell Toxicol. 2010;6(2):169–77.

    Article  CAS  Google Scholar 

  • Aithal MG, Rajeswari N. Role of notch signalling pathway in cancer and its association with DNA methylation. J Genet. 2013;92(3):667–75.

    Article  CAS  PubMed  Google Scholar 

  • Alam MN, Almoyad M, Huq F. Polyphenols in colorectal cancer: current state of knowledge including clinical trials and molecular mechanism of action. Biomed Res Int. 2018;2018:4154185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert JM, Wang Z, Philip PA, Sarkar FH. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res. 2010;13:0008–5472.

    Google Scholar 

  • Amoyel M, Anderson AM, Bach EA. JAK/STAT pathway dysregulation in tumors: a drosophila perspective. Semin Cell Dev Biol. 2014;28:96–103. Academic

    Article  CAS  PubMed  Google Scholar 

  • Annabi B, Lachambre MP, Bousquet-Gagnon N, Pagé M, Gingras D, Bëliveau R. Green tea polyphenol (−)-epigallocatechin 3-gallate inhibits MMP-2 secretion and MT1-MMP-driven migration in glioblastoma cells. Biochim Biophys Acta (BBA)-Mol Cell Res. 2002;1542(1–3):209–20.

    Article  CAS  Google Scholar 

  • Azmi AS, Bhat SH, Hadi SM. Resveratrol–Cu (II) induced DNA breakage in human peripheral lymphocytes: implications for anticancer properties. FEBS Lett. 2005;579(14):3131–5.

    Article  CAS  PubMed  Google Scholar 

  • Azmi AS, Bhat SH, Hanif S, Hadi SM. Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties. FEBS Lett. 2006;580(2):533–8.

    Article  CAS  PubMed  Google Scholar 

  • Bachmeier B, Nerlich A, Iancu C, Cilli M, Schleicher E, Vené R, Dell’Eva R, Jochum M, Albini A, Pfeffer U. The chemopreventive polyphenol curcumin prevents hematogenous breast cancer metastases in immunodeficient mice. Cell Physiol Biochem. 2007;19(1–4):137–52.

    Article  CAS  PubMed  Google Scholar 

  • Bagchi D, Sen CK, Bagchi M, Atalay M. Anti-angiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula. Biochemistry (Moscow). 2004;69(1):75–80.

    Article  CAS  Google Scholar 

  • Bai Y, Bai Y, Dong J, Li Q, Jin Y, Chen B, Zhou M. Hedgehog signaling in pancreatic fibrosis and cancer. Medicine. 2016;95(10):e2996.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berletch JB, Liu C, Love WK, Andrews LG, Katiyar SK, Tollefsbol TO. Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG. J Cell Biochem. 2008;103(2):509–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beyer S, Fleming J, Meng W, Singh R, Haque SJ, Chakravarti A. The role of miRNAs in angiogenesis, invasion and metabolism and their therapeutic implications in gliomas. Cancers. 2017;9(7):85.

    Article  PubMed Central  CAS  Google Scholar 

  • Bhat SH, Azmi AS, Hanif S, Hadi SM. Ascorbic acid mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties. Int J Biochem Cell Biol. 2006;38(12):2074–81.

    Article  CAS  PubMed  Google Scholar 

  • Bhat SH, Azmi AS, Hadi SM. Prooxidant DNA breakage induced by caffeic acid in human peripheral lymphocytes: involvement of endogenous copper and a putative mechanism for anticancer properties. Toxicol Appl Pharmacol. 2007;218(3):249–55.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya S, Balakathiresan NS, Dalgard C, Gutti U, Armistead D, Jozwik C, Srivastava M, Pollard HB, Biswas R. Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyper-expression of interleukin-8. J Biol Chem. 2011;286:11604–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya S, Sul K, Krukovets I, Nestor C, Li J, Adognravi OS. Novel tissue-specific mechanism of regulation of angiogenesis and cancer growth in response to hyperglycemia. J Am Heart Assoc. 2012;1(6):e005967.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braune EB, Lendahl U. Notch—a goldilocks signaling pathway in disease and cancer therapy. Discov Med. 2016;21(115):189–96.

    PubMed  Google Scholar 

  • Bruning U, Cerone L, Neufeld Z, Fitzpatrick SF, Cheong A, Scholz CC, Simpson DA, Leonard MO, Tambuwala MM, Cummins EP, Taylor CT. MicroRNA-155 promotes resolution of hypoxia-inducible factor-1α activity during prolonged hypoxia. Mol Cell Biol. 2011;31:4087–96. MCB-01276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campagnolo P, Hong X, Di Bernardini E, Smyrnias I, Hu Y, Xu Q. Resveratrol-induced vascular progenitor differentiation towards endothelial lineage via MiR-21/Akt/β-catenin is protective in vessel graft models. PLoS One. 2015;10(5):e0125122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H, Harris AL, Gleadle JM, Ragoussis J. hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res. 2008;14(5):1340–8.

    Article  CAS  PubMed  Google Scholar 

  • Caporali A, Emanueli C. MicroRNA regulation in angiogenesis. Vasc Pharmacol. 2011;55(4):79–86.

    Article  CAS  Google Scholar 

  • Carotenuto F, Albertini MC, Coletti D, Vilmercati A, Campanella L, Darzynkiewicz Z, Teodori L. How diet intervention via modulation of DNA damage response through microRNAs may have an effect on cancer prevention and aging, an in silico study. Int J Mol Sci. 2016;17(5):752.

    Article  PubMed Central  CAS  Google Scholar 

  • Cascio S, D’Andrea A, Ferla R, Surmacz E, Gulotta E, Amodeo V, Bazan V, Gebbia N, Russo A. miR-20b modulates VEGF expression by targeting HIF-1α and STAT3 in MCF-7 breast cancer cells. J Cell Physiol. 2010;224(1):242–9.

    CAS  PubMed  Google Scholar 

  • Cha ST, Chen PS, Johansson G, Chu CY, Wang MY, Jeng YM, Yu SL, Chen JS, Chang KJ, Jee SH, Tan CT. MicroRNA-519c suppresses hypoxia-inducible factor-1α expression and tumor angiogenesis. Cancer Res. 2010;16:0008–5472.

    Google Scholar 

  • Chai ZT, Kong J, Zhu XD, Zhang YY, Lu L, Zhou JM, Wang LR, Zhang KZ, Zhang QB, Ao JY, Wang M. MicroRNA-26a inhibits angiogenesis by down-regulating VEGFA through the PIK3C2α/Akt/HIF-1α pathway in hepatocellular carcinoma. PLoS One. 2013;8(10):e77957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan SY, Loscalzo J. MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle. 2010;9(6):1072–83.

    Article  CAS  PubMed  Google Scholar 

  • Chan YC, Khanna S, Roy S, Sen CK. miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J Biol Chem. 2011;286(3):2047–56.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zaman MS, Deng G, Majid S, Saini S, Liu J, Tanaka Y, Dahiya R. MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev Res. 2011;4(1):76–86.

    Article  CAS  Google Scholar 

  • Cheng HS, Sivachandran N, Lau A, Boudreau E, Zhao JL, Baltimore D, Delgado-Olguin P, Cybulsky MI, Fish JE. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol Med. 2013;5(7):1017–34.

    Article  PubMed  CAS  Google Scholar 

  • Chiang CH, Chu PY, Hou MF, Hung WC. MiR-182 promotes proliferation and invasion and elevates the HIF-1α-VEGF-A axis in breast cancer cells by targeting FBXW7. Am J Cancer Res. 2016;6(8):1785.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu J, Khan ZA, Farhangkhoee H, Chakrabarti S. Curcumin prevents diabetes-associated abnormalities in the kidneys by inhibiting p300 and nuclear factor-κB. Nutrition. 2009;25(9):964–72.

    Article  CAS  PubMed  Google Scholar 

  • Choi KC, Jung MG, Lee YH, Yoon JC, Kwon SH, Kang HB, Kim MJ, Cha JH, Kim YJ, Jun WJ, Lee JM. Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res. 2009;69(2):583–92.

    Article  CAS  PubMed  Google Scholar 

  • Chung MY, Lim TG, Lee KW. Molecular mechanisms of chemopreventive phytochemicals against gastroenterological cancer development. World J Gastroenterol: WJG. 2013;19(7):984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai C, Li B, Zhou Y, Li D, Zhang S, Li H, Xiao X, Tang S. Curcumin attenuates quinocetone induced apoptosis and inflammation via the opposite modulation of Nrf2/HO-1 and NF-kB pathway in human hepatocyte L02 cells. Food Chem Toxicol. 2016;95:52–63.

    Article  CAS  PubMed  Google Scholar 

  • Ermakova S, Choi BY, Choi HS, Kang BS, Bode AM, Dong Z. The intermediate filament protein vimentin is a new target for epigallocatechin gallate. J Biol Chem. 2005;280(17):16882–90.

    Article  CAS  PubMed  Google Scholar 

  • Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci. 2007;104(40):15805–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabian MR, Sonenberg N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol. 2012;19(6):586.

    Article  CAS  PubMed  Google Scholar 

  • Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang CS. Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003;63(22):7563–70.

    CAS  PubMed  Google Scholar 

  • Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang CS. Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2004;63(22):7563–70.

    Google Scholar 

  • Fang M, Chen D, Yang CS. Dietary polyphenols may affect DNA methylation. J Nutr. 2007;137(1):223S–8S.

    Article  CAS  PubMed  Google Scholar 

  • Farazi TA, Spitzer JI, Morozov P, Tuschl T. miRNAs in human cancer. J Pathol. 2011;223(2):102–15.

    Article  CAS  PubMed  Google Scholar 

  • Favot L, Martin S, Keravis T, Andriantsitohaina R, Lugnier C. Involvement of cyclin-dependent pathway in the inhibitory effect of delphinidin on angiogenesis. Cardiovasc Res. 2003;59(2):479–87.

    Article  CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet. 2005;37(4):391.

    Article  CAS  PubMed  Google Scholar 

  • Fujiki H, Suganuma M, Kurusu M, Okabe S, Imayoshi Y, Taniguchi S, Yoshida T. New TNF-α releasing inhibitors as cancer preventive agents from traditional herbal medicine and combination cancer prevention study with EGCG and sulindac or tamoxifen. Mutat Rese/Fundam Mol Mech Mutagen. 2003;523:119–25.

    Article  CAS  Google Scholar 

  • Gao ZH, Xu Z, Hung MS, Lin YC, Wang T, Gong MI, Zhi X, Jablon DM, You L. Promoter demethylation of WIF-1 by epigallocatechin-3-gallate in lung cancer cells. Anticancer Res. 2009;29(6):2025–30.

    CAS  PubMed  Google Scholar 

  • Gonnissen A, Isebaert S, Haustermans K. Targeting the hedgehog signaling pathway in cancer: beyond smoothened. Oncotarget. 2015;6(16):13899.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorojankina T. Hedgehog signaling pathway: a novel model and molecular mechanisms of signal transduction. Cell Mol Life Sci. 2016;73(7):1317–32.

    Article  CAS  PubMed  Google Scholar 

  • Goropevšek A, Holcar M, Avčin T. The role of STAT signaling pathways in the pathogenesis of systemic lupus erythematosus. Clin Rev Allergy Immunol. 2017;52(2):164–81.

    Article  PubMed  CAS  Google Scholar 

  • Guan B, Wu K, Zeng J, Xu S, Mu L, Gao Y, Wang K, Ma Z, Tian J, Shi Q, Guo P. Tumor-suppressive microRNA-218 inhibits tumor angiogenesis via targeting the mTOR component RICTOR in prostate cancer. Oncotarget. 2017;8(5):8162.

    Article  PubMed  Google Scholar 

  • Gunther S, Ruhe C, Derikito MG, Böse G, Sauer H, Wartenberg M. Polyphenols prevent cell shedding from mouse mammary cancer spheroids and inhibit cancer cell invasion in confrontation cultures derived from embryonic stem cells. Cancer Lett. 2007;250(1):25–35.

    Article  PubMed  CAS  Google Scholar 

  • Hadi SM, Asad SF, Singh S, Ahmad A. Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMB Life. 2000;50(3):167–71.

    Article  CAS  PubMed  Google Scholar 

  • Hadi SM, Bhat SH, Azmi AS, Hanif S, Shamim U, Ullah MF. Oxidative breakage of cellular DNA by plant polyphenols: a putative mechanism for anticancer properties. Semin Cancer Biol. 2007;17(5):370–6. Academic

    Article  CAS  PubMed  Google Scholar 

  • Hori K, Sen A, Artavanis-Tsakonas S. Notch signaling at a glance. J Cell Sci. 2013;126:2135–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Li Y, Wu C, Zhou L, Han X, Wang Q, Xie X, Zhou Y, Du Z. MicroRNA-140-5p inhibits cell proliferation and invasion by regulating VEGFA/MMP2 signaling in glioma. Tumor Biol. 2017;39(4):1010428317697558.

    Google Scholar 

  • Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, Ji Y, Zhao C, Wang J, Yang BB, Zhang Y. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One. 2006;1(1):e116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang YT, Hwang JJ, Lee PP, Ke FC, Huang JH, Huang CJ, Kandaswami C, Middleton E, Lee MT. Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br J Pharmacol. 1999;128(5):999–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung CF, Huang TF, Chiang HS, Wu WB. (−)-Epigallocatechin-3-gallate, a polyphenolic compound from green tea, inhibits fibroblast adhesion and migration through multiple mechanisms. J Cell Biochem. 2005;96(1):183–97.

    Article  CAS  PubMed  Google Scholar 

  • Izzotti A, Calin GA, Steele VE, Cartiglia C, Longobardi M, Croce CM, De Flora S. Chemoprevention of cigarette smoke–induced alterations of microRNA expression in rat lungs. Cancer Prev Res. 2010;3(1):62–72.

    Article  CAS  Google Scholar 

  • Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol. 2012;6(6):590–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia L, Chen J, Xie C, Shao L, Xu Z, Zhang L. microRNA-1228⁎ impairs the pro-angiogenic activity of gastric cancer cells by targeting macrophage migration inhibitory factor. Life Sci. 2017;180:9–16.

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Zhang HW, Lu MH, He XH, Li Y, Gu H, Liu MF, Wang ED. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 2010;30:0008–5472.

    Google Scholar 

  • Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell S, Napper A, Curtis R, Di Stefano PS, Fields S, Bedalov A. Substrate specific activation of sirtuins by resveratrol. J Biol Chem. 2005;280:17038–45.

    Article  CAS  PubMed  Google Scholar 

  • Kang SK, Cha SH, Jeon HG. Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Dev. 2006;15(2):165–74.

    Article  CAS  PubMed  Google Scholar 

  • Kanitz A, Imig J, Dziunycz PJ, Primorac A, Galgano A, Hofbauer GF, Gerber AP, Detmar M. The expression levels of microRNA-361-5p and its target VEGFA are inversely correlated in human cutaneous squamous cell carcinoma. PLoS One. 2012;7(11):e49568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato K, Long NK, Makita H, Toida M, Yamashita T, Hatakeyama D, Hara A, Mori H, Shibata T. Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. Br J Cancer. 2008;99(4):647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim WK, Bang MH, Kim ES, Kang NE, Jung KC, Cho HJ, Park JH. Quercetin decreases the expression of ErbB2 and ErbB3 proteins in HT-29 human colon cancer cells. J Nutr Biochem. 2005;16(3):155–62.

    Article  CAS  PubMed  Google Scholar 

  • Kim JD, Liu L, Guo W, Meydani M. Chemical structure of flavonols in relation to modulation of angiogenesis and immune-endothelial cell adhesion. J Nutr Biochem. 2006;17(3):165–76.

    Article  CAS  PubMed  Google Scholar 

  • Kong W, He L, Richards EJ, Challa S, Xu CX, Permuth-Wey J, Lancaster JM, Coppola D, Sellers TA, Djeu JY, Cheng JQ. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene. 2014;33(6):679.

    Article  CAS  PubMed  Google Scholar 

  • Kong R, Ma Y, Feng J, Li S, Zhang W, Jiang J, Zhang J, Qiao Z, Yang X, Zhou B. The crucial role of miR-126 on suppressing progression of esophageal cancer by targeting VEGF-A. Cell Mol Biol Lett. 2016;21(1):3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kovall RA, Blacklow SC. Mechanistic insights into Notch receptor signaling from structural and biochemical studies. Curr Top Dev Biol. 2010;92:31–71. Academic Press

    Article  CAS  PubMed  Google Scholar 

  • Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res. 2007;101(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Rimando AM, Levenson AS. Resveratrol and pterostilbene as a microRNA-mediated chemopreventive and therapeutic strategy in prostate cancer. Ann N Y Acad Sci. 2017;1403(1):15–26.

    Article  CAS  PubMed  Google Scholar 

  • Kumazaki M, Noguchi S, Yasui Y, Iwasaki J, Shinohara H, Yamada N, Akao Y. Anti-cancer effects of naturally occurring compounds through modulation of signal transduction and miRNA expression in human colon cancer cells. J Nutr Biochem. 2013;24(11):1849–58.

    Article  CAS  PubMed  Google Scholar 

  • Labrecque L, Lamy S, Chapus A, Mihoubi S, Durocher Y, Cass B, Bojanowski MW, Gingras D, Béliveau R. Combined inhibition of PDGF and VEGF receptors by ellagic acid, a dietary-derived phenolic compound. Carcinogenesis. 2005;26(4):821–6.

    Article  CAS  PubMed  Google Scholar 

  • Lançon A, Michaille JJ, Latruffe N. Effects of dietary phytophenols on the expression of microRNAs involved in mammalian cell homeostasis. J Sci Food Agric. 2013;93(13):3155–64.

    Article  PubMed  CAS  Google Scholar 

  • Le Marchand L, Murphy SP, Hankin JH, Wilkens LR, Kolonel LN. Intake of flavonoids and lung cancer. J Natl Cancer Inst. 2000;92(2):154–60.

    Article  PubMed  Google Scholar 

  • Lee LT, Huang YT, Hwang JJ, Lee AY, Ke FC, Huang CJ, Kandaswami C, Lee PP, Lee MT. Transinactivation of the epidermal growth factor receptor tyrosine kinase and focal adhesion kinase phosphorylation by dietary flavonoids: effect on invasive potential of human carcinoma cells. Biochem Pharmacol. 2004;67(11):2103–14.

    Article  CAS  PubMed  Google Scholar 

  • Lee DY, Deng Z, Wang CH, Yang BB. MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci U S A. 2007;104(51):20350–5.

    Article  CAS  Google Scholar 

  • Lee ST, Chu K, Jung KH, Yoon HJ, Jeon D, Kang KM, Park KH, Bae EK, Kim M, Lee SK, Roh JK. MicroRNAs induced during ischemic preconditioning. Stroke. 2010;41(8):1646–51.

    Article  PubMed  CAS  Google Scholar 

  • Lee WJ, Zhu BT. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis. 2006;27(2):269–77.

    Article  PubMed  CAS  Google Scholar 

  • Lei Z, Li BO, Yang Z, Fang H, Zhang GM, Feng ZH, Huang B. Regulation of HIF-1α and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration. PLoS One. 2009;4(10):e7629.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, VandenBoom TG, Kong D, Wang Z, Ali S, Philip PA, Sarkar FH. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 2009;69(16):6704–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, VandenBoom TG, Wang Z, Kong D, Ali S, Philip PA, Sarkar FH. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 2010;70:1486–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Liang X, Chen Y, Li S, Liu J. Role of microRNA-93 in regulation of angiogenesis. Tumour Biol. 2014;35(11):10609–13.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Cai B, Shen L, Dong Y, Lu Q, Sun S, Liu S, Ma S, Ma PX, Chen J. MiRNA-29b suppresses tumor growth through simultaneously inhibiting angiogenesis and tumorigenesis by targeting Akt3. Cancer Lett. 2017a;397:111–9.

    Article  CAS  PubMed  Google Scholar 

  • Li B, Xu WW, Han L, Chan KT, Tsao SW, Lee NP, Law S, Xu LY, Li EM, Chan KW, Qin YR. MicroRNA-377 suppresses initiation and progression of esophageal cancer by inhibiting CD133 and VEGF. Oncogene. 2017b;36(28):3986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Tang P, Li S, Qin X, Yang H, Wu C, Liu Y. Notch signaling pathway networks in cancer metastasis: a new target for cancer therapy. Med Oncol. 2017c;34(10):180.

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Bian X, Shim H. Downregulation of microRNA-206 promotes invasion and angiogenesis of triple negative breast cancer. Biochem Biophys Res Commun. 2016;477(3):461–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SC, Wang CC, Wu MH, Yang SH, Li YH, Tsai SJ. Hypoxia-induced microRNA-20a expression increases ERK phosphorylation and angiogenic gene expression in endometriotic stromal cells. J Clin Endocrinol Metabol. 2012;97(8):E1515–23.

    Article  CAS  Google Scholar 

  • Lin HY, Yang SH, Tang HY, Cheng GY, Davis PJ, Grasso P. Biologically active leptin-related synthetic peptides activate STAT3 via phosphorylation of ERK1/2 and PI-3K. Peptides. 2014;57:95–100.

    Article  CAS  PubMed  Google Scholar 

  • Linder MC. The relationship of copper to DNA damage and damage prevention in humans. Mutat Res-Fund Mol M. 2012;733(1–2):83–91.

    Article  CAS  PubMed  Google Scholar 

  • Liu LZ, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y, Kung HF, Lai L, Jiang BH. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS One. 2011;6(4):e19139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Ouyang W, Huang C. Inflammation, a key event in cancer development. Mol Cancer Res. 2006;4(4):221–33.

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Pan JS, Jin LX, Wu J, Ren YD, Chen P, Xiao C, Han J. MicroRNA-17~ 92 inhibits colorectal cancer progression by targeting angiogenesis. Cancer Lett. 2016;376(2):293–302.

    Article  CAS  PubMed  Google Scholar 

  • Madanecki P, Kapoor N, Bebok Z, Ochocka R, Collawn JF, Bartoszewski R. Regulation of angiogenesis by hypoxia: the role of microRNA. Cell Mol Biol Lett. 2013;18(1):47.

    Article  CAS  PubMed  Google Scholar 

  • Majid S, Kikuno N, Nelles J, Noonan E, Tanaka Y, Kawamoto K, Hirata H, Li LC, Zhao H, Okino ST, Place RF. Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification. Cancer Res. 2008;68(8):2736–44.

    Article  CAS  PubMed  Google Scholar 

  • Majid S, Dar AA, Ahmad AE, Hirata H, Kawakami K, Shahryari V, Saini S, Tanaka Y, Dahiya AV, Khatri G, Dahiya R. BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis. 2009;30(4):662–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manson MM. Cancer prevention–the potential for diet to modulate molecular signalling. Trends Mol Med. 2003;9(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  • Mao G, Liu Y, Fang X, Liu Y, Fang L, Lin L, Liu X, Wang N. Tumor-derived microRNA-494 promotes angiogenesis in non-small cell lung cancer. Angiogenesis. 2015;18(3):373–82.

    Article  CAS  PubMed  Google Scholar 

  • Marí-Alexandre J, García-Oms J, Barceló-Molina M, Gilabert-Aguilar J, Estellés A, Braza-Boíls A, Gilabert-Estellés J. MicroRNAs and angiogenesis in endometriosis. Thromb Res. 2015;135:S38–40.

    Article  PubMed  CAS  Google Scholar 

  • Maroof H, Salajegheh A, Smith RA, Lam AK. Role of microRNA-34 family in cancer with particular reference to cancer angiogenesis. Exp Mol Pathol. 2014;97(2):298–304.

    Article  CAS  PubMed  Google Scholar 

  • Mathew LK, Skuli N, Mucaj V, Lee SS, Zinn PO, Sathyan P, Imtiyaz HZ, Zhang Z, Davuluri RV, Rao S, Venneti S. miR-218 opposes a critical RTK-HIF pathway in mesenchymal glioblastoma. Proc Natl Acad Sci. 2014;111(1):291–6.

    Article  CAS  PubMed  Google Scholar 

  • Meeran SM, Patel SN, Tollefsbol TO. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One. 2010a;5(7):e11457.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meeran SM, Ahmed A, Tollefsbol TO. Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin Epigenetics. 2010b;1(3):101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. Wiley Interdiscip Rev Syst Biol Med. 2016;8(3):227–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mudduluru G, George-William JN, Muppala S, Asangani IA, Kumarswamy R, Nelson LD, Allgayer H. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci Rep. 2011;31(3):185–97.

    Article  CAS  PubMed  Google Scholar 

  • Myzak MC, Karplus PA, Chung FL, Dashwood RH. A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res. 2004;64(16):5767–74.

    Article  CAS  PubMed  Google Scholar 

  • Nakachi K, Suemasu K, Suga K, Takeo T, Imai K, Higashi Y. Influence of drinking green tea on breast cancer malignancy among Japanese patients. Jpn J Cancer Res. 1998;89(3):254–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazeem S, Azmi AS, Hanif S, Ahmad A, Mohammad RM, Hadi SM, Kumar KS. Plumbagin induces cell death through a copper-redox cycle mechanism in human cancer cells. Mutagenesis. 2009;24(5):413–8.

    Article  CAS  PubMed  Google Scholar 

  • Neergheen VS, Bahorun T, Taylor EW, Jen LS, Aruoma OI. Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention. Toxicology. 2014;278(2):229–41.

    Article  CAS  Google Scholar 

  • Nihal M, Roelke CT, Wood GS. Anti-melanoma effects of vorinostat in combination with polyphenolic antioxidant (−)-epigallocatechin-3-gallate (EGCG). Pharm Res. 2010;27(6):1103–14.

    Article  CAS  PubMed  Google Scholar 

  • Nikaki A, Piperi C, Papavassiliou AG. Role of microRNAs in gliomagenesis: targeting miRNAs in glioblastoma multiforme therapy. Expert Opin Investig Drugs. 2012;21(10):1475–88.

    Article  CAS  PubMed  Google Scholar 

  • Nwaeburu CC, Bauer N, Zhao Z, Abukiwan A, Gladkich J, Benner A, Herr I. Up-regulation of microRNA Let-7c by quercetin inhibits pancreatic cancer progression by activation of Numbl. Oncotarget. 2016;7(36):58367.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohlsson Teague EM, Print CG, Hull ML. The role of microRNAs in endometriosis and associated reproductive conditions. Hum Reprod Update. 2010;16(2):142–65.

    Article  CAS  Google Scholar 

  • Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi-Mohammadi M, Ataei F, Dana N, Javan M. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol. 2017;40(5):457–70.

    Article  CAS  Google Scholar 

  • Pandey M, Shukla S, Gupta S. Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells. Int J Cancer. 2010;126(11):2520–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papoutsis AJ, Lamore SD, Wondrak GT, Selmin OI, Romagnolo DF. Resveratrol prevents epigenetic silencing of BRCA-1 by the aromatic hydrocarbon receptor in human breast cancer cells. J Nutr. 2010;140(9):1607–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parasramka MA, Ho E, Williams DE, Dashwood RH. MicroRNAs, diet, and cancer: new mechanistic insights on the epigenetic actions of phytochemicals. Mol Carcinog. 2012;51(3):213–30.

    Article  CAS  PubMed  Google Scholar 

  • Park HK, Han DW, Park YH, Park JC. Differential biological responses of green tea polyphenol in normal cells vs. cancer cells. Curr Appl Phys. 2005;5(5):449–52.

    Article  Google Scholar 

  • Peng G, Dixon DA, Muga SJ, Smith TJ, Wargovich MJ. Green tea polyphenol (−)-epigallocatechin-3-gallate inhibits cyclooxygenase-2 expression in colon carcinogenesis. Mol Carcinog. 2006;45(5):309–19.

    Article  CAS  PubMed  Google Scholar 

  • Petric RC, Braicu C, Raduly L, Zanoaga O, Dragos N, Monroig P, Dumitrascu D, Berindan-Neagoe I. Phytochemicals modulate carcinogenic signaling pathways in breast and hormone-related cancers. Onco Targets Ther. 2015;8:2053.

    Article  CAS  Google Scholar 

  • Petricci E, Manetti F. Targeting the hedgehog signaling pathway with small molecules from natural sources. Curr Med Chem. 2015;22(35):4058–90.

    Article  CAS  PubMed  Google Scholar 

  • Pollack BP, Sapkota B, Boss JM. Ultraviolet radiation-induced transcription is associated with gene-specific histone acetylation. Photochem Photobiol. 2009;85(3):652–62.

    Article  CAS  PubMed  Google Scholar 

  • Raffoul JJ, Wang Y, Kucuk O, Forman JD, Sarkar FH, Hillman GG. Genistein inhibits radiation-induced activation of NF-κB in prostate cancer cells promoting apoptosis and G 2/M cell cycle arrest. BMC Cancer. 2006;6(1):107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramon LA, Braza-Boïls A, Gilabert-Estellés J, Gilabert J, España F, Chirivella M, Estellés A. microRNAs expression in endometriosis and their relation to angiogenic factors. Hum Reprod. 2011;26(5):1082–90.

    Article  CAS  PubMed  Google Scholar 

  • Ramón LA, Braza-Boïls A, Gilabert J, Chirivella M, Espana F, Estellés A, Gilabert-Estelles J. microRNAs related to angiogenesis are dysregulated in endometrioid endometrial cancer. Hum Reprod. 2012;27(10):3036–45.

    Article  PubMed  CAS  Google Scholar 

  • Ramos S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem. 2007;18(7):427–42.

    Article  CAS  PubMed  Google Scholar 

  • Ramos S. Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways. Mol Nutr Food Res. 2008;52(5):507–26.

    Article  CAS  PubMed  Google Scholar 

  • Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J, Vatner DE, Vatner SF, Abdellatif M. Downregulation of miR-199a derepresses hypoxia-inducible factor-1α and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res. 2009;104(7):879–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren J, Singh BN, Huang Q, Li Z, Gao Y, Mishra P, Hwa YL, Li J, Dowdy SC, Jiang SW. DNA hypermethylation as a chemotherapy target. Cell Signal. 2011;23(7):1082–93.

    Article  CAS  PubMed  Google Scholar 

  • Ribas J, Lupold E. The transcriptional regulation of miR-21, its multiple transcripts and their implication in prostate cancer. Cell Cycle. 2010;9(5):923–9.

    Article  CAS  PubMed  Google Scholar 

  • Sabatel C, Malvaux L, Bovy N, Deroanne C, Lambert V, Gonzalez ML, Colige A, Rakic JM, Noël A, Martial JA, Struman I. MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells. PLoS One. 2011;6(2):e16979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito K, Kondo E, Matsushita M. MicroRNA 130 family regulates the hypoxia response signal through the P-body protein DDX6. Nucleic Acids Res. 2011;39(14):6086–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saj A, Lai EC. Control of microRNA biogenesis and transcription by cell signaling pathways. Curr Opin Genet Dev. 2011;21(4):504–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar FH. Nutraceuticals and cancer. Preface. Cancer Metastasis Rev. 2010;29(3):381–2.

    Article  PubMed  Google Scholar 

  • Sarkar FH, Li Y, Wang Z, Kong D. Cellular signaling perturbation by natural products. Cell Signal. 2009;21(11):1541–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasahira T, Kurihara M, Bhawal UK, Ueda N, Shimomoto T, Yamamoto K, Kirita T, Kuniyasu H. Downregulation of miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF-A in oral cancer. Br J Cancer. 2012;107(4):700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt MF. Drug target miRNAs: chances and challenges. Trends Biotechnol. 2014;32(11):578–85.

    Article  CAS  PubMed  Google Scholar 

  • Seok JK, Lee SH, Kim MJ, Lee YM. MicroRNA-382 induced by HIF-1α is an angiogenic miR targeting the tumor suppressor phosphatase and tensin homolog. Nucleic Acids Res. 2014;42(12):8062–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sethi S, Kong D, Land S, Dyson G, Sakr WA, Sarkar FH. Comprehensive molecular oncogenomic profiling and miRNA analysis of prostate cancer. Am J Transl Res. 2013;5(2):200.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Zhang S, Wu H, Zhang L, Dai X, Hu J, Xue J, Liu T, Liang Y, Wu G. MiR-200c increases the radiosensitivity of non-small-cell lung cancer cell line A549 by targeting VEGF-VEGFR2 pathway. PLoS One. 2013;8(10):e78344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu L, Khor TO, Lee JH, Boyanapalli SS, Huang Y, Wu TY, Saw CL, Cheung KL, Kong AN. Epigenetic CpG demethylation of the promoter and reactivation of the expression of Neurog1 by curcumin in prostate LNCaP cells. AAPS J. 2011;13(4):606–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui IA, Asim M, Hafeez BB, Adhami VM, Tarapore RS, Mukhtar H. Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer. FASEB J. 2011;25(4):1198–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh BN, Singh HB, Singh A, Naqvi AH, Singh BR. Dietary phytochemicals alter epigenetic events and signaling pathways for inhibition of metastasis cascade. Cancer Metastasis Rev. 2014;33(1):41–85.

    Article  CAS  PubMed  Google Scholar 

  • Sinha M, Ghatak S, Roy S, Sen CK. microRNA–200b as a switch for inducible adult angiogenesis. Antioxid Redox Signal. 2015;22(14):1257–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Struhl G, Greenwald I. Presenilin is required for activity and nuclear access of notch in drosophila. Nature. 1999;398(6727):522.

    Article  CAS  PubMed  Google Scholar 

  • Subbaramaiah K, Dannenberg AJ. Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol Sci. 2003;24(2):96–102.

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Estrov Z, Ji Y, Coombes KR, Harris DH, Kurzrock R. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther. 2008;7(3):464–73.

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Cong R, Yan H, Gu H, Zeng Y, Liu N, Chen J, Wang B. Genistein inhibits growth of human uveal melanoma cells and affects microRNA-27a and target gene expression. Oncol Rep. 2009;22(3):563–7.

    CAS  PubMed  Google Scholar 

  • Sun X, Icli B, Wara AK, Belkin N, He S, Kobzik L, Hunninghake GM, Vera MP, Blackwell TS, Baron RM, Feinberg MW. MicroRNA-181b regulates NF-κB–mediated vascular inflammation. J Clin Invest. 2012;122(6):1973–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sundaram P, Hultine S, Smith LM, Dews M, Fox JL, Biyashev D, Schelter JM, Huang Q, Cleary MA, Volpert OV, Thomas-Tikhonenko A. p53-responsive miR-194 inhibits thrombospondin-1 and promotes angiogenesis in colon cancers. Cancer Res. 2011;71:7490–501. canres-1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;3(10):768.

    Article  CAS  PubMed  Google Scholar 

  • Szade A, Grochot-Przeczek A, Florczyk U, Jozkowicz A, Dulak J. Cellular and molecular mechanisms of inflammation-induced angiogenesis. IUBMB Life. 2015;67(3):145–59.

    Article  CAS  PubMed  Google Scholar 

  • Tanimura S, Kadomoto R, Tanaka T, Zhang YJ, Kouno I, Kohno M. Suppression of tumor cell invasiveness by hydrolyzable tannins (plant polyphenols) via the inhibition of matrix metalloproteinase-2/-9 activity. Biochem Biophys Res Commun. 2005;330(4):1306–13.

    Article  CAS  PubMed  Google Scholar 

  • Tili E, Michaille JJ, Alder H, Volinia S, Delmas D, Latruffe N, Croce CM. Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells. Biochem Pharmacol. 2010a;80(12):2057–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tili E, Michaille JJ, Adair B, Alder H, Limagne E, Taccioli C, Ferracin M, Delmas D, Latruffe N, Croce CM. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis. 2010b;31(9):1561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsang WP, Kwok TT. Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J Nutr Biochem. 2010;21(2):140–6.

    Article  CAS  PubMed  Google Scholar 

  • Tu Y, Liu L, Zhao D, Liu Y, Ma X, Fan Y, Wan L, Huang T, Cheng Z, Shen B. Overexpression of miRNA-497 inhibits tumor angiogenesis by targeting VEGFR2. Sci Rep. 2015;5:13827.

    Article  PubMed  PubMed Central  Google Scholar 

  • Uddin Q, Malik A, Azam S, Hadi N, Azmi AS, Parveen N, et al. The biflavonoid, amentoflavone degrades DNA in the presence of copper ions. Toxicol In Vitro. 2004;18(4):435–40.

    Article  CAS  PubMed  Google Scholar 

  • Ueda R, Kohanbash G, Sasaki K, Fujita M, Zhu X, Kastenhuber ER, McDonald HA, Potter DM, Hamilton RL, Lotze MT, Khan SA. Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci. 2009;106(26):10746–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah MF, Khan HY, Zubair H, Shamim U, Hadi SM. The antioxidant ascorbic acid mobilizes nuclear copper leading to a prooxidant breakage of cellular DNA: implications for chemotherapeutic action against cancer. Cancer Chemother Pharmacol. 2011;67(1):103–10.

    Article  PubMed  CAS  Google Scholar 

  • Umeda D, Tachibana H, Yamada K. Epigallocatechin-3O-gallate disrupts stress fibers and the contractile ring by reducing myosin regulatory light chain phosphorylation mediated through the target molecule 67 k Da laminin receptor. Biochem Biophys Res Comm. 2005;333:628–35.

    Article  CAS  PubMed  Google Scholar 

  • Urbich C, Kaluza D, Frömel T, Knau A, Bennewitz K, Boon RA, Bonauer A, Doebele C, Boeckel JN, Hergenreider E, Zeiher AM. MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood. 2012;119(6):1607–16.

    Article  PubMed  CAS  Google Scholar 

  • Vijayababu MR, Arunkumar A, Kanagaraj P, Venkataraman P, Krishnamoorthy G, Arunakaran J. Quercetin downregulates matrix metalloproteinases 2 and 9 proteins expression in prostate cancer cells (PC-3). Mol Cell Biochem. 2006;287(1–2):109–16.

    Article  CAS  PubMed  Google Scholar 

  • Villarino AV, Kanno Y, Ferdinand JR, O’Shea JJ. Mechanisms of Jak/STAT signaling in immunity and disease. J Immunol. 2015;194(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  • Wagner MA, Siddiqui MA. The JAK-STAT pathway in hypertrophic stress signaling and genomic stress response. Jak-Stat. 2012;1(2):131–41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15(2):261–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang LX, Wang YP, Chen Z, Liu XY, Liu XH, Liu L, Chen WJ, Liu LB. Exendin-4 protects murine pancreatic β-cells from dexamethasone-induced apoptosis through PKA and PI-3K signaling. Diabetes Res Clin Pract. 2010;90(3):297–304.

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Ren F, Wu Q, Jiang D, Li H, Shi H. MicroRNA-497 suppresses angiogenesis by targeting vascular endothelial growth factor A through the PI3K/AKT and MAPK/ERK pathways in ovarian cancer. Oncol Rep. 2014;32(5):2127–33.

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zhang E, Lin C. MicroRNAs in tumor angiogenesis. Life Sci. 2015a;136:28–35.

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Dai F, Yu K, Jia Z, Zhang A, Huang Q, Kang C, Jiang H, Pu P. Resveratrol inhibits glioma cell growth via targeting oncogenic microRNAs and multiple signaling pathways. Int J Oncol. 2015b;46(4):1739–47.

    Article  CAS  PubMed  Google Scholar 

  • Wen XY, Wu SY, Li ZQ, Liu ZQ, Zhang JJ, Wang GF, Jiang ZH, Wu SG. Ellagitannin (BJA3121), an anti-proliferative natural polyphenol compound, can regulate the expression of MiRNAs in HepG2 cancer cells. Phytother Res: Int J Devoted Pharmacol Toxicol Eval Nat Prod Deriv. 2009;23(6):778–84.

    Article  CAS  Google Scholar 

  • Wenzel U, Kuntz S, Brendel MD, Daniel H. Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells. Cancer Res. 2000;60(14):3823–31.

    CAS  PubMed  Google Scholar 

  • Woodhouse EC, Chuaqui RF, Liotta LA. General mechanisms of metastasis. Cancer: Interdiscip Int J Am Cancer Soc. 1997;80(S8):1529–37.

    Article  CAS  Google Scholar 

  • Wu M, Huang C, Huang X, Liang R, Feng Y, Luo X. MicroRNA-144-3p suppresses tumor growth and angiogenesis by targeting SGK3 in hepatocellular carcinoma. Oncol Rep. 2017;38(4):2173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurdinger T, Tannous BA, Saydam O, Skog J, Grau S, Soutschek J, Weissleder R, Breakefield XO, Krichevsky AM. miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell. 2008;14(5):382–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Q, Liu LZ, Qian X, Chen Q, Jiang Y, Li D, Lai L, Jiang BH. MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis. Nucleic Acids Res. 2011;40(2):761–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamakawa S, Asai T, Uchida T, Matsukawa M, Akizawa T, Oku N. (−)-Epigallocatechin gallate inhibits membrane-type 1 matrix metalloproteinase, MT1-MMP, and tumor angiogenesis. Cancer Lett. 2004;210(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  • Yamakuchi M, Lotterman CD, Bao C, Hruban RH, Karim B, Mendell JT, Huso D, Lowenstein CJ. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci. 2010;107(14):6334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto S, Schulze KL, Bellen HJ. Introduction to Notch signaling. In: Notch signaling. New York: Humana Press; 2014. p. 1–14.

    Google Scholar 

  • Yang J, Cao Y, Sun J, Zhang Y. Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med Oncol. 2010;27(4):1114–8.

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhang J, Xia T, Li G, Tian T, Wang M, Wang R, Zhao L, Yang Y, Lan K, Zhou W. MicroRNA-210 promotes cancer angiogenesis by targeting fibroblast growth factor receptor-like 1 in hepatocellular carcinoma. Oncol Rep. 2016;36(5):2553–62.

    Article  CAS  PubMed  Google Scholar 

  • Ye F, Wu J, Dunn T, Yi J, Tong X, Zhang D. Inhibition of cyclooxygenase-2 activity in head and neck cancer cells by genistein. Cancer Lett. 2004;211(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  • Yin KJ, Hamblin M, Eugene Chen Y. Angiogenesis-regulating microRNAs and ischemic stroke. Curr Vasc Pharmacol. 2015;13(3):352–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhang T, Ti X, Shi J, Wu C, Ren X, Yin H. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway. Biochem Biophys Res Commun. 2010a;399(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Du Y, Wu C, Ren X, Ti X, Shi J, Zhao F, Yin H. Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway. Oncol Rep. 2010b;24(5):1217–23.

    CAS  PubMed  Google Scholar 

  • Zhang X, Ng WL, Wang P, Tian L, Werner E, Wang H, Doetsch P, Wang Y. MicroRNA-21 modulates the levels of reactive oxygen species by targeting SOD3 and TNFα. Cancer Res. 2012;72:4707–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Lv Z, Xu J, Chen C, Ge Q, Li P, Wei D, Wu Z, Sun X. Micro RNA-134 inhibits osteosarcoma angiogenesis and proliferation by targeting the VEGFA/VEGFR 1 pathway. FEBS J. 2018;285(7):1359–71.

    Article  CAS  PubMed  Google Scholar 

  • Zhen MC, Huang XH, Wang Q, Sun K, Liu YJ, Li W, Zhang LJ, Cao LQ, Chen XL. Green tea polyphenol epigallocatechin-3-gallate suppresses rat hepatic stellate cell invasion by inhibition of MMP-2 expression and its activation. Acta Pharmacol Sin. 2006;27(12):1600.

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Li S, Ding Y, Wang Q, Luo H, Shi Q, Hao Z, Xiao G, Tong S. The role of miR-18a in gastric cancer angiogenesis. Hepato-Gastroenterology. 2013;60(127):1809–13.

    CAS  PubMed  Google Scholar 

  • Zhou B, Ma R, Si W, Li S, Xu Y, Tu X, Wang Q. MicroRNA-503 targets FGF2 and VEGFA and inhibits tumor angiogenesis and growth. Cancer Lett. 2013;333(2):159–69.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Li S, Li J, Wang D, Li Q. Effect of microRNA-135a on cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer. Cell Physiol Biochem. 2017;42(4):1431–46.

    Article  CAS  PubMed  Google Scholar 

  • Zhu K, Pan Q, Zhang X, Kong LQ, Fan J, Dai Z, Wang L, Yang XR, Hu J, Wan JL, Zhao YM. MiR-146a enhances angiogenic activity of endothelial cells in hepatocellular carcinoma by promoting PDGFRA expression. Carcinogenesis. 2013;34(9):2071–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

NK acknowledges Central University of Punjab for providing infrastructure facility. PPK and AKS acknowledge financial support from University Grants Commission, India in the form of CSIR-UGC Senior/Junior Research fellowship. SK acknowledges Department of Science and Technology, India, for providing financial support in the form of DST-SERB Grant [EEQ/2016/000350].

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kashyap, N., Kushwaha, P.P., Singh, A.K., Maurya, S., Sahoo, A.K., Kumar, S. (2019). Phytochemicals, Cancer and miRNAs: An in-silico Approach. In: Kumar, S., Egbuna, C. (eds) Phytochemistry: An in-silico and in-vitro Update. Springer, Singapore. https://doi.org/10.1007/978-981-13-6920-9_23

Download citation

Publish with us

Policies and ethics