Skip to main content

In-silico Targets in Neurodegenerative Disorders

  • Chapter
  • First Online:
Phytochemistry: An in-silico and in-vitro Update
  • 682 Accesses

Abstract

Parkinson’s disease (PD), Alzheimer’s disease (AD) are very frequent human neurodegenerative diseases. Their pharmacological treatment has not been solved; therefore, there is a need to investigate and discover new drug candidates and new targets. Modification of endogenous chemicals can offer new candidates with improved therapeutic outcomes. Computational chemistry can support the discovery of such candidates and can further improve the execution speed, decrease cost and the usage of test animals. These methods for example can include cheminformatics, docking and molecular dynamics. Computational biology offers a way for discovery of novel pharmacological targets and can pinpoint the genetic background of such diseases. In this chapter, we would like to discuss the possible targets of the two most common neurological diseases, AD and PD. The known and the possible new targets are shown and their therapeutic importance is also detailed. In addition, the methods of their discovery is highlighted demonstrating the importance of the in silico discovery of new targets in neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agatonovic-Kustrin S, Kettle C, Morton DW. A molecular approach in drug development for Alzheimer’s disease. Biomed Pharmacother. 2018;106:553–65.

    Article  CAS  Google Scholar 

  • Almasi F, Mohammadipanah F, Adhami HR, Hamedi J. Introduction of marine-derived Streptomyces sp. UTMC 1334 as a source of pyrrole derivatives with anti-acetylcholinesterase activity. J Appl Microbiol. 2018;5:1370–82.

    Article  Google Scholar 

  • Alzheimer’s association. FDA approved treatments for Alzheimer’s 800.272.3900 alz.org ®. 2017.

  • Azarakhsh Y, Mohammadipanah F, Nassiri SM, Siavashi V, Hamedi J. Isolation and screening of proangiogenic and antiangiogenic metabolites producing rare actinobacteria from soil. J Appl Microbiol. 2017;122:1595–602.

    Article  CAS  Google Scholar 

  • Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet (London, UK). 2006;368:387–403.

    Article  CAS  Google Scholar 

  • Cell Signaling Technology, Inc. (www.cellsignal.com).

    Google Scholar 

  • Chandra KA, Bharadwaj S, Kumar S, Wei DQ. Nano-particle mediated inhibition of Parkinson’s disease using computational biology approach. PMC Sci Rep. 2018;8:9169.

    Article  Google Scholar 

  • Combarros O, Rodríguez-Rodríguez E, Mateo I, Vázquez-Higuera JL, Infante J, Berciano J, Sánchez-Juan P. APOE dependent-association of PPAR- genetic variants with Alzheimer’s disease risk. Neurobiol Aging. 2011;(3):547.e1–6.

    Article  Google Scholar 

  • Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: a review. JAMA. 2014;311:1670–83.

    Article  Google Scholar 

  • Dauer W, Przedborski S. Parkinson’s disease, mechanisms and models. Neuron. 2003;39:889–909.

    Article  CAS  Google Scholar 

  • Deora GS, Kantham S, Chan S, Dighe SN, Veliyath SK, McColl G, Parat MO, McGeary RP, Ross BP. Multifunctional analogs of kynurenic acid for the treatment of Alzheimer’s disease: synthesis, pharmacology and molecular modeling studies. ACS Chem Neurosci. 2017;8(12):2667–75.

    Article  CAS  Google Scholar 

  • Dias Viegas FP, de Freitas Silva M, Divino da Rocha M, Castelli MR, Riquiel MM, Machado RP, et al. Design, synthesis and pharmacological evaluation of N-benzyl-piperidinyl-aryl-acylhydrazonederivatives as donepezil hybrids: discovery of novel multi-target anti-alzheimer prototype drug candidates. Eur J Med Chem. 2018;147:48–65.

    Article  Google Scholar 

  • Epperly T, Dunay MA, Boice JL. Alzheimer disease: pharmacologic and nonpharmacologic therapies for cognitive and functional symptoms. Am Fam Physician. 2017;95:771–8.

    PubMed  Google Scholar 

  • Fernández-Suárez D, Celorrio M, Riezu-Boj JI, Ugarte A, Pacheco R, González H, Oyarzabal J, Hillard CJ, Franco R, Aymerich MS. The monoacylglycerol lipase inhibitor JZL184 is neuroprotective and alters glial cell phenotype in the chronic MPTP mouse model. Neurobiol Aging. 2014;35:2603–16.

    Article  Google Scholar 

  • Ferreira JJ, Lees A, Rocha JF, Poewe W, Rascol O, Soares-da-Silva P, Bi-Park 1 Investigators. Opicapone as an adjunct to levodopa in patients with Parkinson’s disease and end-of-dose motor fluctuations: a randomised, doubleblind, controlled trial. Lancet Neurol. 2016;15:154–65.

    Article  CAS  Google Scholar 

  • Flynn JM, Melov S. SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radic Biol Med. 2013;62:4–12.

    Article  CAS  Google Scholar 

  • Gao L, Fang JS, Bai XY, Zhou D, Wang YT, Liu AL, Du GH. In silico target fishing for the potential targets and molecular mechanisms of baicalein as an antiparkinsonian agent: discovery of the protective effects on NMDA receptor-mediated neurotoxicity. Chem Biol Drug Des. 2013;81:675–87.

    Article  CAS  Google Scholar 

  • Haghighijoo Z, Firuzi O, Hemmateenejad B, Emami S, Edraki N, Miri R. Synthesis and biological evaluation of quinazolinone-based hydrazones with potential use in Alzheimer’s disease. Bioorg Chem. 2017;74:126–33.

    Article  CAS  Google Scholar 

  • Herrup K. The case for rejecting the amyloid cascade hypothesis. Nat Neurosci. 2015;18:794–9.

    Article  CAS  Google Scholar 

  • Houghton D, Hurtig H, Metz S, Giroux M, Petzinger G, Fisher B, Hawthorne L, Jakowec M. Parkinson’s disease medications. National Parkinson Foundation. 2018. www.parkinson.org.

  • Imada C. Enzyme inhibitors and other bioactive compounds from marine actinomycetes. Antonie Van Leeuwenhoek. 2005;87:59–63.

    Article  CAS  Google Scholar 

  • Jalili-Baleh L, Forootanfar H, Küçükkılınç TT, Nadri H, Abdolahi Z, Ameri A, Jafari M, Ayazgok B, Baeeri M, Rahimifard M, Abbas Bukhari SN, Abdollahi M, Ganjali MR, Emami S, Khoobi M, Foroumadi A. Design, synthesis and evaluation of novel multi-target-directed ligands for treatment of Alzheimer’s disease based on coumarin and lipoic acid scaffolds. Eur J Med Chem. 2018;152:600–14.

    Article  CAS  Google Scholar 

  • Kalash L, Val C, Azuaje J, Loza MI, Svensson F, Zoufir A, Mervin L, Ladds G, Brea J, Glen R, Sotelo E, Bender A. Computer-aided design of multi-target ligands at A1R, A2AR and PDE10A, key proteins in neurodegenerative diseases. J Cheminform. 2017;30:67.

    Article  Google Scholar 

  • Kalia LV, Brotchie JM, Fox SH. Novel nondopaminergic targets for motor features of Parkinson’s disease: review of recent trials. Mov Disord. 2013;28:131–44.

    Article  CAS  Google Scholar 

  • Katzman R. The prevalence and malignancy of Alzheimer disease: a major killer. Arch Neurol. 1976;33:217–8.

    Article  CAS  Google Scholar 

  • Koldamova RP, Lefterov IM, Staufenbiel M, Wolfe D, Huang S, Glorioso JC, et al. The liver X receptor ligand T0901317 decreases amyloid β production in vitro and in a mouse model of Alzheimer’s disease. J Biol Chem. 2005;280:4079–88.

    Article  CAS  Google Scholar 

  • Kumar A, Nisha CM, Silakari C, Sharma I, Anusha K, Gupta N, Nair P, Tripathi T, Kumar A. Current and novel therapeutic molecules and targets in Alzheimer’s disease. J Formos Med Assoc. 2016;115:3–10.

    Article  CAS  Google Scholar 

  • Lin MK, Farrer MJ. Genetics and genomics of Parkinson’s disease. Genome Med. 2014;6:48.

    Article  Google Scholar 

  • Mandrekar-Colucci S, Landreth GE. Nuclear receptors as therapeutic targets for Alzheimer’s disease. Expert Opin Ther Targets. 2011;15:1085–97.

    Article  CAS  Google Scholar 

  • Masoumi J, Abbasloui M, Parvan R, Mohammadnejad D, Pavon-Djavid G, Barzegari A, Abdolalizadeh J. Apelin, a promising target for Alzheimer disease prevention and treatment. Neuropeptides. 2018;70:76–86.

    Article  CAS  Google Scholar 

  • Mohammadipanah F, Matasyoh J, Hamedi J, Klenk HP, Laatsch H. Persipeptides A and B, two cyclic peptides from Streptomyces sp. UTMC 1154. Bioorg Med Chem. 2012;20:335–9.

    Article  CAS  Google Scholar 

  • Nastase AF, Boyd DB. Simple structure-based approach for predicting the activity of inhibitors of beta-secretase (BACE1) associated with Alzheimer’s disease. J Chem Inf Model. 2012;52:3302–7.

    Article  CAS  Google Scholar 

  • Pandey S, Singh B, Yadav SK, Mahdi AA. Novel biomarker for neurodegenerative diseases- motor neuron disease (MND), cerebellar ataxia (CA) and Parkinson’s disease (PD). Clin Chim Acta. 2018;485:258–61.

    Article  CAS  Google Scholar 

  • Parkinson J. An essay on the shaking palsy. 1817. J Neuropsychiatr Clin Neurosci. 2002;14:223–36.

    Article  Google Scholar 

  • PD Med Collaborative Group, Gray R, Ives N, Rick C, Patel S, Gray A, Jenkinson C, McIntosh E, Wheatley K, Williams A, Clarke CE. Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): a large, open-label, pragmatic randomised trial. Lancet. 2014;384:1196–205.

    Article  Google Scholar 

  • Poewe W. Non-motor symptoms in Parkinson’s disease. Eur J Neurol Suppl. 2008;1:14–20.

    Article  Google Scholar 

  • Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE. Parkinson disease. Nat Rev Dis Prim. 2017;3:17013.

    Article  Google Scholar 

  • Qian S, He L, Wang Q, Wong YC, Mak M, Ho CY, Han Y, Zuo Z. Intranasal delivery of a novel acetylcholinesterase inhibitor HLS-3 for treatment of Alzheimer’s disease. Life Sci. 2018;207:428–35.

    Article  CAS  Google Scholar 

  • Sang Z, Wang K, Wang H, Wang H, Ma Q, Han X, Ye M, Yu L, Liu W. Design, synthesis and biological evaluation of 2-acetyl-5-O-(aminoalkyl) phenol derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett. 2017;27:5046–52.

    Article  CAS  Google Scholar 

  • Schapira AH. Monoamine oxidase B inhibitors for the treatment of Parkinson’s disease: a review of symptomatic and potential disease-modifying effects. CNS Drugs. 2011;25:1061–71.

    Article  CAS  Google Scholar 

  • Seppi K, Weintraub D, Coelho M, Perez-Lloret S, Fox SH, Katzenschlager R, Hametner EM, Poewe W, Rascol O, Goetz CG, Sampaio C. The Movement Disorder Society evidence-based medicine review update: treatments for the non-motor symptoms of Parkinson’s disease. Mov Disord. 2011;26:S42–80.

    Article  Google Scholar 

  • Silva GS, Figueiró M, Tormena CF, Coelho F, Almeida WP. Effects of novel acylhydrazones derived from 4-quinolone on the acetylcholinesterase activity and Aβ 42 peptide fibrils formation. J Enzyme Inhib Med Chem. 2016;6366:1–7.

    Google Scholar 

  • Sun Y, Zhu R, Ye H, Tang K, Zhao J, Chen Y, Liu Q, Cao Z. Towards a bioinformatics analysis of anti-Alzheimer’s herbal medicines from a target network perspective. Brief Bioinform. 2013;14:327–43.

    Article  CAS  Google Scholar 

  • Tarozzi A, Bartolini M, Piazzi L, Valgimigli L, Amorati R, Bolondi C, et al. From the dual function lead AP2238 to AP2469, a multi-target-directed ligand for the treatment of Alzheimer’s disease. Pharmacol Res Perspect. 2014;2:e00023.

    Article  Google Scholar 

  • Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, Kawamata Y, Fukusumi S, Hinuma S, Kitada C. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun. 1998;251:471–6.

    Article  CAS  Google Scholar 

  • Thai NQ, Nguyen HL, Linh HQ, Li MS. Protocol for fast screening of multi-target drug candidates: application to Alzheimer’s disease. J Mol Graph Model. 2017;77:121–9.

    Article  Google Scholar 

  • Turnaturi R, Oliveri V, Vecchio G. Biotin-8-hydroxyquinoline conjugates and their metal complexes: exploring the chemical properties and the antioxidant activity. Polyhedron. 2016;110:254–60.

    Article  CAS  Google Scholar 

  • Wenzel TJ, Klegeris A. Novel multi-target directed ligand based strategies for reducing neuroinflammation in Alzheimer’s disease. Life Sci. 2018;207:314–22.

    Article  CAS  Google Scholar 

  • Wu L, Chen L, Li L. Apelin/APJ system: a novel promising therapy target for pathological angiogenesis. Clin Chim Acta. 2017;466:78–84.

    Article  CAS  Google Scholar 

  • Yang GX, Ge SL, Wu Y, Huang J, Li SL, Wang R, Ma L. Design, synthesis and biological evaluation of 3-piperazinecarboxylate sarsasapogenin derivatives as potential multifunctional anti-Alzheimer agents. Eur J Med Chem. 2018;156:206–15.

    Article  CAS  Google Scholar 

  • Zanforlin E, Zagotto G, Ribaudo G. The medicinal chemistry of natural and semisynthetic compounds against Parkinson’s and Huntington’s diseases. ACS Chem Neurosci. 2017;11:2356–68.

    Article  Google Scholar 

  • Zimmerman G, Lehar J, Keith C. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today. 2007;12:34–42.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagy, A., Polgar, T. (2019). In-silico Targets in Neurodegenerative Disorders. In: Kumar, S., Egbuna, C. (eds) Phytochemistry: An in-silico and in-vitro Update. Springer, Singapore. https://doi.org/10.1007/978-981-13-6920-9_22

Download citation

Publish with us

Policies and ethics