Skip to main content

Tropospheric Ozone and Its Impact on Wheat Productivity

  • Chapter
  • First Online:
Wheat Production in Changing Environments

Abstract

Tropospheric O3 is considered as the most widespread secondary pollutant and one of the components of global climate change. Agriculture plays a very important role in human welfare. O3 has been recognized as a prime threat to agricultural production. The projected levels to which O3 will increase are critically alarming and have become a major cause of concern for global food production. Impact of tropospheric O3 on wheat production has been widely studied. Wheat is identified as sensitive to O3. It enters into the plant through the stomata, affecting directly cell membranes, generating O3-induced ROS, and up- or downregulating ROS signaling molecule-associated genes, genes, proteins, and metabolites which ultimately affects growth and yield of wheat. The objectives of the chapter are to present an overview picture on the effect of O3 on wheat productivity and to summarize the vast number of available reports on the impact of O3 on wheat physiology and morphology, its defense and variation in allocation pattern of photosynthates, and its yield and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adir N, Zer H, Shochat I (2003) Photoinhibition – a historic perspective. Photosynth Res 76:343–370

    Article  CAS  PubMed  Google Scholar 

  • Adrees M, Saleem F, Jabeen F, Rizwan M, Ali S, Khalid S, Ibrahim M, Iqbal N, Abbas F (2016) Effects of ambient gaseous pollutants on photosynthesis, growth, yield and grain quality of selected crops grown at different sites varying in pollution levels. Arch Agron Sci 62(9):34–47

    Google Scholar 

  • Agrawal M (1982) A study of phytotoxicity of ozone and sulphur dioxide pollutants. Ph.D. thesis, Banaras Hindu University, Varanasi, India, pp 93–106

    Google Scholar 

  • Agrawal M (2005) Effects of air pollution on agriculture: an issue of national concern. Natl Acad Sci Lett 28:93–106

    CAS  Google Scholar 

  • Agrawal M, Singh B, Rajput M, Marshall F, Bell JNB (2003) Effect of air pollution on periurban agriculture: a case study. Environ Pollut 126:323–329

    Article  CAS  PubMed  Google Scholar 

  • Agrawal M, Singh B, Agrawal SB, Bell JNB, Marshall F (2006) The effect of air pollution on yield and quality of mung bean grown in peri-urban areas of Varanasi. Water Air Soil Pollut 169:239–254

    Article  CAS  Google Scholar 

  • Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD (2012) The effects of tropospheric ozone on net primary productivity and implications forclimate change. Annu Rev Plant Biol 63:637–661

    Article  CAS  PubMed  Google Scholar 

  • Akhtar N, Yamaguchi M, Inada H, Hoshino D, Kondo T, Izuta T (2010) Effects of ozone on growth, yield and leaf gas exchange rates of two Bangladeshi cultivars of wheat (Triticum aestivum L.). Environ Pollut 158:1763–1767

    Article  CAS  PubMed  Google Scholar 

  • Altimir N, Kolari P, Tuovinen J-P, Vesala T, Back J, Suni T, Kulmala M, Hari P (2006) Foliage surface ozone deposition: a role for surface moisture? Biogeosciences 3:209–228

    Article  CAS  Google Scholar 

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964

    Article  CAS  Google Scholar 

  • Ashmore M, Toet S, Emberson L (2006) Ozone–a significant threat to future world food production? New Phytol 170:201–204

    Article  PubMed  Google Scholar 

  • Avnery S, Mauzerall DL, Liu J, Horowitz LW (2011a) Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmos Environ 45:2284–2296

    Article  CAS  Google Scholar 

  • Avnery S, Mauzerall DL, Liu J, Horowitz LW (2011b) Global crop yield reductions due to surface ozone exposure: 2 year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmos Environ 45:2297–2309

    Article  CAS  Google Scholar 

  • Barnes JD, Velissariou D, Davison AW, Holevas CD (1990) Comparative ozone sensitivity of old and modern Greek cultivars of spring wheat. New Phytol 116:707–719

    Article  CAS  Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee S (2015) Membrane lipid peroxidation and its conflict of interest: the two faces of oxidative stress. Curr Sci 107(11):1811–1823

    Google Scholar 

  • Biswas DK, Xu H, Li YG, Sun JZ, Wang XZ, Han XG, Jiang GM (2008a) Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years. Glob Chang Biol 14:46–59

    Google Scholar 

  • Biswas DK, Xu H, Li YG, Liu MZ, Chen YH, Sun JZ, Jiang GM (2008b) Assessing the genetic relatedness of higher ozone sensitivity of modern wheat to its wild and cultivated progenitors/relatives. J Exp Bot 59:951–963

    Article  CAS  PubMed  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV et al (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolhar-Nordenkampf HR, Long SP, Baker NR, Oquist G, Schreiber U, Lechner EG (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Funct Ecol 3(4):497

    Article  Google Scholar 

  • Calatayud A, Barreno E (2004) Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid peroxidation. Plant Physiol Biochem 42:549–555

    Article  CAS  PubMed  Google Scholar 

  • Calatayud A, Iglesias D, Talon M, Barreno E (2003) Effects of 2 months ozone exposure in spinach leaves on photosynthesis, antioxidant systems and lipid peroxidation. Plant Physiol Biochem 41:839–845

    Article  CAS  Google Scholar 

  • Caregnato FF, Bortolin RF, Divan Junior AM, Moreira JCF (2013) Exposure to elevated ozone levels differentially affects the antioxidant capacity and the redox homeostasis of two subtropical Phaseolus vulgaris L. varieties. Chemosphere 93(2):320–330

    Article  CAS  PubMed  Google Scholar 

  • Castagna A, Ranieri A (2009) Detoxification and repair process of ozone injury: from O uptake to gene expression adjustment. Environ Pollut 157:1461–1469

    Article  CAS  PubMed  Google Scholar 

  • Chevalier A, Gheusi F, Delmas R, Ordonez C, Sarrat C, Zbinden R, Thouret V, Athie G, Cousin JM (2007) Influence of altitude on ozone levels and variability in the lower troposphere: a ground based study for western Europe over the period 2001–2004. Atmos Chem Phys 7:4311–4326

    Article  CAS  Google Scholar 

  • Cooley DR, Manning WJ (1987) The impact of ozone on assimilate partitioning in plants: a review. Environ Pollut 47:95–113

    Article  CAS  PubMed  Google Scholar 

  • Cooper OR, Parrish DD, Stohl A, Trainer M, Nédélec P, Thouret V, Cammas JP, Oltmans SJ, Johnson BJ, Tarasick D, Leblanc T (2010) Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature 463:344–348

    Article  CAS  PubMed  Google Scholar 

  • Debaje SB, Kakade AD (2008) Surface ozone variability over western Maharashtra, India. J Hazard Mater 161:686–700

    Article  PubMed  CAS  Google Scholar 

  • Dentener F, Kinne S, Bond T, Boucher O, Cofala J, Generoso S, Ginoux P, Gong S, Hoelzemann JJ, Ito A, Marelli L (2006) Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos Chem Phys 6(4):321–4344

    Google Scholar 

  • Derwent RG, Simmonds PG, Manning AJ, Spain TG (2007) Trends over a 20-year period from 1987 to 2007 in surface ozone at the atmospheric research station, Mace head, Ireland. Atmos Environ 41(39):9091–9098

    Article  CAS  Google Scholar 

  • Dey S, Pati C, Gupta S (2014) Measurement and analysis of surface ozone and its precursors at three different sites in an urban region in eastern India. Environ Forensic 2014:112–120

    Google Scholar 

  • Diara C, Castagna A, Baldan B, Mensuali Sodi A, Sahr T, Langebartels C, Sebastiani L, Ranieri A (2005) Differences in the kinetics and scale of signaling molecule production modulate the ozone sensitivity of hybrid poplar clones: the roles of H2O2, ethylene and salicylic acid. New Phytol 168:351–364

    Article  CAS  PubMed  Google Scholar 

  • EANET (2006) Data report on the acid deposition in the East Asian region 2005. http://www.eanet.cc

  • Emberson LD, Buker P, Ashmore MR, Mills G, Jackson LS, Agrawal M, Atikuzzaman MD, Cinderby S, Engardt M, Jamir C, Kobayashi K, Oanh NTK, Quadir QF, Wahid A (2009) A comparison of North American and Asian exposure–response data for ozone effects on crop yields. Atmos Environ 43:1945–1953

    Article  CAS  Google Scholar 

  • Eurostat (2017) Eurostat database. http://ec.europa.eu/eurostat/data/database. Accessed 11 May 2017

  • FAO (2015) The state of food insecurity in the world. Meeting of the 2015 international hunger targets: taking stock of uneven progress. FAO, Rome

    Google Scholar 

  • Fatima A, Singh AA, Mukherjee A, Agrawal M, Agrawal SB (2018) Variability in defence mechanism operating in three wheat cultivars having different levels of sensitivity against elevated ozone. Environ Exp Bot 155:66–78

    Article  CAS  Google Scholar 

  • Feng Z-Z, Yao F-F, Chen Z, Wang X-K, Zheng Q-W, Feng Z-W (2007) Response of gas exchange and yield components of field-grown Triticum aestivum L. to elevated ozone in China. Photosynthetica 45(3):441–446

    Article  CAS  Google Scholar 

  • Feng Z, Kobayashi K, Ainsworth EA (2008) Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Glob Chang Biol 14:2696–2708

    Google Scholar 

  • Feng Z, Wang S, Szantoi Z, Chen S, Wang X (2010) Protection of plants from ambient ozone by applications of ethylenediurea (EDU): a meta-analytic review. Environ Pollut 158:3236–3242

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Hu E, Wang X, Jiang L, Liu X (2015) Ground-level O3 pollution and its impacts on food crops in China: a review. Environ Pollut 199:42–48

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Wang L, Pleijel H, Zhu J, Kobaysahi K (2016) Differential effects of ozone on photosynthesis of winter wheat among cultivars depend on antioxidative enzymes rather than stomatal conductance. Sci Total Environ 572:404–411

    Article  CAS  PubMed  Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN (2000) Chemistry of the upper and lower atmosphere. Academic, San Diego

    Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francini A, Nali C, Picchi V, Lorenzini G (2007) Metabolic changes in white clover clones exposed to ozone. Environ Exp Bot 60:11–19

    Article  CAS  Google Scholar 

  • Fuhrer J, Booker F (2003) Ecological issues related to ozone: agricultural issues. Environ Int 29:141–154

    Article  CAS  PubMed  Google Scholar 

  • Fusco AC, Logan JA (2003) Analysis of 1970-1995 trends in tropospheric ozone at northern hemisphere midlatitudes with the GEOS-CHEM model. J Geophys Res 108:ACH-4-1–ACH-4-25

    Article  CAS  Google Scholar 

  • Ganguly ND (2012) Influence of stratospheric intrusion on the surface ozone levels in India. ISRN Meteorol 1:625318. https://doi.org/10.5402/2012/625318

    Article  Google Scholar 

  • Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosyst 143:8–96

    Article  Google Scholar 

  • Gaur A, Tripathi SN, Kanawade VP, Tare V, Shukla SP (2014) Four-year measurements of trace gases (SO2, NOx, CO, and O3) at an urban location, Kanpur, in northern India. J Atmos Chem 71:283–301

    Article  CAS  Google Scholar 

  • Gerosa G, Fusaro L, Monga R, Finco A, Fares S, Manes F, Marzuoli R (2015) A flux-based assessment of above and below ground biomass of holm oak (Quercus ilex L.) seedlings after one season of exposure to high ozone concentrations. Atmos Environ 113:41–49

    Article  CAS  Google Scholar 

  • Ghude SD, Jena C, Chate DM, Beig G, Pfister GG, Kumar R, Ramanathan V (2014) Reductions in India’s crop yield due to ozone. Geophys Res Lett 41(15):5685–5691

    Article  Google Scholar 

  • Glick RE, Schlagnhaufer CD, Arteca RN, Pell EJ (1995) Ozone-induced ethylene emission accelerates the loss of Ribulose-1,5-bisphosphate carboxylase/oxygenase and nuclear-encoded mRNAs in senescing potato leaves. Plant Physiol 109(3):891–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godde D, Buchhold J (1992) Effect of long term fumigation with ozone on the turnover of the D-1 reaction center polypetide of photosystem II in spruce (Picea abies). Physiol Plant 86(4):568–574

    Article  CAS  Google Scholar 

  • Grantz DA, Yang S (2000) Ozone impacts on allometry and root hydraulic conductance are not mediated by source limitation nor developmental age. J Exp Bot 51(346):919–927

    Article  CAS  PubMed  Google Scholar 

  • Guderian R, Tingey DT, Rabe R (1985) Effects of photochemical oxidants on plants. In: Guderian R (ed) Air pollution by photochemical oxidants:formation, transport, control and effects on plants. Springer, Berlin, pp 129–295

    Chapter  Google Scholar 

  • Guidi L, Degl’Innocenti E (2008) Ozone effects on high light-induced photoinhibition in Phaseolus vulgaris. Plant Sci 174(6):590–596

    Article  CAS  Google Scholar 

  • Hayes F, Mills G, Harmens H, Norris D (2007) Evidence of widespread ozone damage to vegetation in Europe (1990–2006). ICP Vegetation Programme Coordination Centre, CEH, Bangor

    Google Scholar 

  • Heath RL (2008) Modification of the biochemical pathways of plants induced by ozone: what are the varied route to changes? Environ Pollut 155:453–463

    Article  CAS  PubMed  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2013) Working Group I contribution to the IPCC fifth assessment report “Climate change 2013: the physical science basis”, Final Draft Underlying Scientific-Technical Assessment. Available at http://www.ipcc.ch

  • IPCC, Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Vuuren D (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Huixiang W, Kiang CS, Xiaoyan T, Xiuji Z, Chameides WL (2005) Surface ozone: a likely threat to crops in Yangtze delta of China. Atmos Environ 39(21):3843–3850

    Article  CAS  Google Scholar 

  • Jaffe D, Ray J (2007) Increase in surface ozone at rural sites in the western US. Atmos Environ 41:5452–5463

    Article  CAS  Google Scholar 

  • Jenkin ME (2008) Trends in ozone concentration distributions in the UK since 1990: local, regional and global influences. Atmos Environ 42:5434–5445

    Article  CAS  Google Scholar 

  • Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochimica et Biophysica Acta (BBA) - Bioenergetics 376(1):105–115

    Article  CAS  Google Scholar 

  • Koch JR, Scherzer AJ, Eshita SM, Davis KR (1998) Ozone sensitivity in hybrid poplar is correlated with a lack of defense-gene activation. Plant Physiol 118(4):1243–1252

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Krupa SV, Manning WJ (1988) Atmospheric ozone: formation and effects on vegetation. Environ Pollut 50:101–137

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer-Verlag, New York, p 640

    Book  Google Scholar 

  • Li C, Meng J, Guo L, Jiang G (2016) Effects of ozone pollution on yield and quality of winter wheat under flixweed competition. Environ Exp Bot 129:77–84

    Article  CAS  Google Scholar 

  • Liu X, Sui L, Huang Y, Geng C, Yin B (2015) Physiological and visible injury responses in different growth stages of winter wheat to ozone stress and the protection of spermidine. Atmos Pollut Res 6:596–604

    Article  CAS  Google Scholar 

  • Mauzerall DL, Wang X (2001) Protecting agricultural crops from the effects of tropospheric ozone exposure: reconciling science and standard setting in the United States, Europe and Asia. Annu Rev Energy Environ 26:237–268

    Article  Google Scholar 

  • Matyssek R, Sandermann H, Wieser G, Booker F, Cieslik S, Musselman R, Ernst D (2008) The challenge of making ozone risk assessment for forest trees more mechanistic. Environ Pollut 156(3):567–582

    Article  CAS  PubMed  Google Scholar 

  • McAinsh MR, Evans NH, Montgomery LT, North KA (2002) Calcium signalling in stomatal responses to pollutants. New Phytol 153(3):441–447

    Article  CAS  PubMed  Google Scholar 

  • McGrath JM, Betzelberger AM, Wang S, Shook E, Zhu X-G, Long SP, Ainsworth EA (2015) An analysis of ozone damage to historical maize and soybean yields in the United States. Proc Natl Acad Sci 112(46):14390–14395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Miller HL, Tignor M (eds) Climate change 2007: the physical basis contribution of working group I to fourth assessment report of IPCC on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Middleton JT (1956) Response of plants to air pollution. J Air Pollut Control Assoc 6(1):7–50

    Article  Google Scholar 

  • Mills G, Pleijel H, Braun S, Büker P, Bermejo V, Calvo E, Danielsson H, Emberson L, Fernandez IG, Grünhage L, Harmens H, Hayes F, Karlsson PE, Simpson D (2011) New stomatal flux-based critical levels for ozone effects on vegetation. Atmos Environ 45(28):5064–5068

    Article  CAS  Google Scholar 

  • Mills G, Sharps K, Simpson D, Pleijel H, Broberg M, Uddling J, Jaramillo F, Davies WJ, Dentener F, Berg VM, Agrawal M, Agrawal SB, Ainsworth EA, Buker P, Emberson L, Feng Z, Harmens H, Hayes F, Kobayashi K, Paoletti E, van Dingenen R (2018) Ozone pollution will comprise efforts to increase global wheat production. Glob Chang Biol 24:3560–3574

    Article  PubMed  Google Scholar 

  • Mishra AK, Agrawal SB (2015) Biochemical and physiological characteristics of tropical mung bean (Vigna radiata L.) cultivars against chronic ozone stress: an insight to cultivar specific response. Protoplasma 252:797–811

    Article  CAS  PubMed  Google Scholar 

  • Mishra AK, Rai R, Agrawal SB (2013) Individual and interactive effects of elevated carbon dioxide and ozone on tropical wheat (Triticum aestivum L.) cultivars with special emphasis on ROS generation and activation of antioxidant defense system. Indian J Biochem Biophys 50:139–149

    CAS  PubMed  Google Scholar 

  • Mittal ML, Hess PG, Jain SL, Arya BC, Sharma C (2007) Surface ozone in the Indian region. Atmos Environ 41:6572–6584

    Article  CAS  Google Scholar 

  • Monks PS (2005) Gas phase chemistry in the troposphere. Chem Soc Rev 34:376–395

    Article  CAS  PubMed  Google Scholar 

  • Morgan PB, Ainsworth EA, Long SP (2003) How does elevated ozone impact soybean? A meta analysis of photosynthesis, growth and yield. Plant Cell Environ 26:1317–1328

    Article  CAS  Google Scholar 

  • Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64(13):3983–3998

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49(1):249–279

    Article  CAS  PubMed  Google Scholar 

  • Pandey AK, Ghosh A, Madhoolika A, Agrawal SB (2018) Effect of elevated ozone and varying levels of soil nitrogen in two wheat (Triticum aestivum L.) cultivars: growth, gas-exchange, antioxidant status, grain yield and quality. Ecotoxicol Environ Saf 158:59–68

    Article  CAS  PubMed  Google Scholar 

  • Pang J, Kobayashi K, Zhu J (2009) Yield and photosynthetic characteristics of flag leaves in Chinese rice (Oryza sativa L.) varieties subjected to free air release of ozone. Agric Ecosyst Environ 132:203–211

    Article  CAS  Google Scholar 

  • Pellegrini E, Francini A, Lorenzini G, Nali C (2011) PSII photochemistry and carboxylation efficiency in Liriodendron tulipifera under ozone exposure. Environ Exp Bot 70:217–226

    Article  CAS  Google Scholar 

  • Picchi V, Monga R, Marzuoli R, Gerosa G, Faoro F (2017) The ozone-like syndrome in durum wheat (Triticum durum Desf.): mechanisms underlying the different symptomatic responses of two sensitive cultivars. Plant Physiol Biochem 112:261–269

    Article  CAS  PubMed  Google Scholar 

  • Pleijel H, Mortensen L, Fuhrer J, Ojanperä K, Danielsson H (1998) Grain protein accumulation in relation to grain yield of spring wheat (Triticum aestivum L.) grown in open-top chambers with different concentrations of ozone, carbon dioxide and water availability. Agric Ecosyst Environ 72:265–270

    Article  Google Scholar 

  • Pleijel H, Eriksen AB, Danielsson H, Bondesson N, Sellden G (2006) Differential ozone sensitivity in an old and a modern Swedish wheat cultivar grain yield and quality, leaf chlorophyll and stomatal conductance. Environ Exp Bot 56:63–71

    Article  CAS  Google Scholar 

  • Pudasainee D, Sapkota B, Shrestha ML, Kaga A, Kondo A, Inoue Y (2006) Ground level ozone concentrations and its association with NOx and meteorological parameters in Kathmandu valley, Nepal. Atmos Environ 40(40):8081–8087

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M (2008) Evaluation of physiological and biochemical responses of two rice (Oryza sativa L.) cultivars to ambient air pollution using open top chambers at rural site in India. Sci Total Environ 407:679–691

    Article  CAS  PubMed  Google Scholar 

  • Rai R, Agrawal M (2012) Impacts of tropospheric ozone on crop plants. Proc Natl Acad Sci India Sec B Biol Sci 82:241–257

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M (2014) Assessment of competitive ability of two Indian wheat cultivars under ambient O3 at different developmental stages. Environ Sci Pollut Res 21:1039–1053

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M, Agrawal SB (2007) Assessment of yield losses in tropical wheat using open top chambers. Atmos Environ 41:9543–9554

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M, Agrawal SB (2011) Effects of ambient O on wheat during reproductive development: gas exchange, photosynthetic pigments, chlorophyll fluorescence and carbohydrates. Photosynthetica 49:285–294

    Article  CAS  Google Scholar 

  • Rai R, Singh AA, Agrawal M, Agrawal SB (2016) Tropospheric O3: a cause of concern for terrestrial plants. In: Kulshrestha U, Saxena P (eds) Plant responses to air pollution. Springer-Verlag, Germany, pp 165–195. isbn:978-981-10-1199-3

    Chapter  Google Scholar 

  • Rainieri A, Giuntini D, Ferraro F, Nali B, Baldan G, Lorenzini G, Soldatini GF (2001) Chronic ozone fumigation induces alterations in thylakoid functionality and composition in two poplar clones. Plant Physiol Biochem 39:999–1008

    Article  Google Scholar 

  • Ranieri A, D’llrso G, Nali C, Lorenzini G, Soldatini GF (1996) Ozone stimulates apoplastic antioxidant systems in pumpkin leaves. Physiol Plant 97:381–387

    Article  CAS  Google Scholar 

  • Rouhier N, Gelhaye E, Jacquot J-P (2004) Plant glutaredoxins: still mysterious reducing systems. Cell Mol Life Sci 61(11):1266–1277

    Article  CAS  PubMed  Google Scholar 

  • Roy SD, Beig G, Ghude SD (2009) Exposure-plant response of ambient ozone over the tropical Indian region. Atmos Chem Phys 9:5253–5260

    Article  CAS  Google Scholar 

  • Saitanis CJ, Panagopoulous G, Dasopoulou V, Agathokleous E, Papatheohari Y (2015) Integrated assessment of ambient ozone phytotoxicity in Greece’s Tripolis Plateau. J Agric Meteorol 71:55–64

    Article  Google Scholar 

  • Sarkar A, Agrawal SB (2010) Elevated ozone and two modern wheat cultivars: an assessment of dose dependent sensitivity with respect to growth, reproductive and yield parameter. Environ Exp Bot 69:328–337

    Article  CAS  Google Scholar 

  • Sarkar A, Rakwal R, Agrawal SB, Shibato J, Ogawa Y, Yoshida Y, Agrawal GK, Agrawal M (2010) Investigating the impact of elevated levels of ozone on tropical wheat using integrated phenotypical, physiological, biochemical, and proteomics approaches. J Proteome Res 9(9):4565–4584

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Singh AA, Agrawal SB, Ahmed A, Rai SP (2015) Cultivar specific variations in antioxidative defense system, genome and proteome of two tropical rice cultivars against ambient and elevated ozone. Ecotoxiocol Environ Saf 115:101–111

    Article  CAS  Google Scholar 

  • Sicard P, De Marco A, Troussier F, Renou C, Vas N, Paoletti E (2013) Decrease in surface ozone concentrations at Mediterranean remote sites and increase in the cities. Atmos Environ 79:705–715

    Article  CAS  Google Scholar 

  • Simmonds PG, Derwent RG, Manning AL, Spain G (2004) Significant growth in surface ozone at Mace head, Ireland, 1987–2003. Atmos Environ 38:4769–4778

    Article  CAS  Google Scholar 

  • Singh S, Agrawal SB (2009) Use of ethylenediurea (EDU) in assessing the impact of ozone on growth and productivity of five cultivars of Indian wheat (Triticum aestivum L.). Environ Monit Assess 159:125–141

    Article  CAS  PubMed  Google Scholar 

  • Singh E, Tiwari S, Agrawal M (2010) Variability in antioxidant and metabolite levels, growth and yield of two soybean varieties: an assessment of anticipated yield losses under projected elevation of ozone. Agric Ecosyst Environ 135:168–177

    Article  CAS  Google Scholar 

  • Singh AA, Agrawal SB, Shahi JP, Agrawal M (2014) Assessment of growth and yield losses in two Zea mays L. cultivars (quality protein maize and nonquality protein maize) under projected levels of ozone. Environ Sci Pollut Res 21:2628–2641

    Article  CAS  Google Scholar 

  • Singh P, Agrawal M, Agrawal SB, Singh S, Singh A (2015) Genotypic differences in utilization of nutrients in wheat under ambient ozone concentrations: growth, biomass and yield. Agric Ecosyst Environ 199:26–33

    Article  CAS  Google Scholar 

  • Stevenson D (2001). Global influences on future European tropospheric ozone. In: Proceeding from the eighth European symposium on the physico-chemical behavior of atmospheric pollutants, 17–20 September 2001, Torino, Italy

    Google Scholar 

  • Tang Q, Hess PG, Brown-Steiner B, Kinnison DE (2013) Tropospheric ozone decrease due to the mount Pinatubo eruption: reduced stratospheric influx. Geophys Res Lett 40(20):5553–5558

    Article  CAS  Google Scholar 

  • The Royal Society (2008) Ground-level Ozone in the 21st century: future trends, impacts and policy implications. Royal Society policy document 15/08, RS1276

    Google Scholar 

  • Tienhoven AM, Zunckel M, Emberson L, Koosailee A, Otter L (2006) Preliminary assessment of risk of ozone impacts to maize (Zea mays) in southern Africa. Environ Pollut 140:220–230

    Article  PubMed  CAS  Google Scholar 

  • Tiwari S, Rai R, Agrawal M (2008) Annual and seasonal variations in tropospheric ozone concentrations around Varanasi. Int J Remote Sens 9(15):4499–4514

    Article  Google Scholar 

  • Tottman DR, Broad H (1987) The decimal code for the growth stages of cereals, with illustrations. Ann Appl Bot 110:441–454

    Article  Google Scholar 

  • Tripathi R, Agrawal SB (2012) Effects of ambient and elevated level of ozone on Brassica campestrisL. With special reference to yield and oil quality parameters. Ecotoxicol Environ Saf 85:1–12

    Article  CAS  PubMed  Google Scholar 

  • UNECE (2004) Revised manual on methodologies and criteria for mapping critical levels/loads and geographical areas where they are exceeded. www.icpmapping.org (February 12, 2006)

  • Vainonen JP, Kangasjarvi J (2014) Plant signalling in acute ozone exposure. Plant Cell Environ 38:240–252

    Article  PubMed  CAS  Google Scholar 

  • Wahid A (2006) Influence of atmospheric pollutants on agriculture in developing countries: a case study with three new wheat varieties in Pakistan. Sci Total Environ 371:304–313

    Article  CAS  PubMed  Google Scholar 

  • Wan H, Zhang X, Zwiers F, Emori S, Shiogama H (2013) Effect of data coverage on the estimation of mean and variability of precipitation at global and regional scales. J Geophys Res 118:534–546

    Article  Google Scholar 

  • Wang T, Wei XL, Ding AJ, Poon CN, Lam KS et al (2009) Increasing surface ozone concentrations in the background atmosphere of southern China, 1994–2007. Atmos Chem Phys 9:6217–6227

    Article  CAS  Google Scholar 

  • Wilkinson S, Mills G, Illidge R, Davies WJ (2012) How is ozone pollution reducing our food supply? J Exp Bot 63(2):527–536

    Article  CAS  PubMed  Google Scholar 

  • WHO (2006) WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: summary of risk assessment. World Health Organization, Geneva, pp 5–18

    Google Scholar 

  • Xu X, Lin W, Wang T, Yan P, Tang J, Meng Z, Wang Y (2008) Long term trend of surface ozone at a regional background station in eastern China 1991–2006: enhanced variability. Atmos Chem Phys 8:215–243

    Article  Google Scholar 

  • Yadav DS, Rai R, Mishra AK, Chaudhary N, Arideep M, Agrawal SB, Agrawal M (2019) ROS production and its detoxification in early and late sown cultivars of wheat under future O3 concentration. Sci Total Environ 659:200–210

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto HY, Akasada T (1995) Degradation of antenna chlorophyll binding protein CP43 during photoinhibition of PS II. Biochemistry 28:9038–9045

    Article  Google Scholar 

  • Yan K, Chen W, He X, Zhang G, Xu S, Wang L (2010) Responses of photosynthesis, lipid peroxidation and antioxidant system in leaves of Quercus mongolica to elevated O. Environ Exp Bot 69:198–204

    Article  CAS  Google Scholar 

  • Zeng G, Pyle JA, Young PJ (2008) Impact of climate change on tropospheric ozone and its global budgets. Atmos Chem Phys 8(2):369–387

    Article  CAS  Google Scholar 

  • Zhao Y, Zhang J, Nielsen CP (2009) The effects of recent control policies on trends in emissions of anthropogenic atmospheric pollutants and CO2 in China. Atmos Chem Phys 13:487–508

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author is thankful to the Principal Rev. Dr. Fr. Roger Augustine of St. Joseph’s College for Women, Gorakhpur, Prof. Madhoolika Agrawal and Prof. S.B Agrawal, Department of Botany, Banaras Hindu University, Varanasi for lab and research facility and SERB, New Delhi, for providing the research grant.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, R. (2019). Tropospheric Ozone and Its Impact on Wheat Productivity. In: Hasanuzzaman, M., Nahar, K., Hossain, M. (eds) Wheat Production in Changing Environments. Springer, Singapore. https://doi.org/10.1007/978-981-13-6883-7_9

Download citation

Publish with us

Policies and ethics