Skip to main content

Use of Osmolytes in Improving Abiotic Stress Tolerance to Wheat (Triticum aestivum L.)

  • Chapter
  • First Online:
Wheat Production in Changing Environments

Abstract

Wheat is an important food crop that provides vital calories and nutrients essential for human health. However, climate extremities threaten wheat yields and hence food security around the globe. Improving wheat productivity under changing climate scenario is one of the major challenges of agriculturists and plant scientists. Environmental stresses further aggravate the situation. Wheat responds to oxidative stresses through regulation of a series of mechanisms at morphological, physiological, and molecular levels. Accumulation of low molecular weight organic solutes, known as osmolytes, is one of the prime defense strategies to reduce oxidative stress-induced damages in wheat. This chapter would appraise new insights into osmotic adjustment strategies of wheat against various abiotic stresses. In addition, recent studies on the role of exogenously applied osmoprotectants in improving abiotic stress tolerance of wheat are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAO:

Ascorbic acid oxidase

ABA:

Abscisic acid

APX:

Ascorbate peroxidase

Arg:

Arginine

As:

Arsenic

AsA:

Ascorbic acid

CAT:

Catalase

Cd:

Cadmium

Cr:

Chromium

Cu:

Copper

DAO:

Diamine oxidase

GABA:

Gamma-aminobutyric acid

GB:

Glycine betaine

Hg:

Mercury

HMs:

Heavy metals

MDA:

Malondialdehyde

MEL:

Melatonin

MPI:

Mannose-6-phosphate isomerase

MPP:

Mannose-1-phosphate phosphatase

MPR:

Mannose-6-phosphate reductase

Ni:

Nickel

NO:

Nitric oxide

PAL:

Phenylalanine ammonia lyase

PAO:

Polyamine oxidase

PAs:

Polyamines

PPO:

Polyphenol oxidase

Proline:

Proline

Put:

Putrescine

ROS:

Reactive oxygen species

Spd:

Spermidine

Spm:

Spermine

TPP:

Trehalose-6-phosphate phosphatase

TPS:

Trehalose-6-phosphate synthase

References

  • Abdel Kader DZ, Saleh AA, Elmeleigy SA, Dosoky NS (2011) Chilling-induced oxidative stress and polyamines regulatory role in two wheat varieties. J Taibah Univ Sci 5(1):14–24

    Article  Google Scholar 

  • Abid M, Shafaqat A, Qi LK, Rizwan Z, Zhongwei T, Dong J, John LS, Tingbo D (2018) Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Sci Rep 8(1):4615. https://doi.org/10.1038/s41598-018-21441-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adrees M, Ali S, Iqbal M, Bharwana SA, Siddiqi Z, Farid M, Ali Q, Saeed R, Rizwan M (2015) Mannitol alleviates chromium toxicity in wheat plants in relation to growth, yield, stimulation of anti-oxidative enzymes, oxidative stress and Cr uptake in sand and soil media. Ecotoxicol Environ Saf 122:1–8

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal M, Sharma S, Navneet K, Dhirender P, Kalpna B, Neeru K, Ramanpreet K, Kamaljit S, Alok S, Harsh N (2011) Exogenous proline application reduces phytotoxic effects of selenium by minimising oxidative stress and improves growth in bean (Phaseolus vulgaris L.) seedlings. Biol Trace Elem Res 140(3):354–367

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Jaleel CA, Sharma S (2010) Antioxidant defense system, lipid peroxidation, proline-metabolizing enzymes, and biochemical activities in two Morus alba genotypes subjected to NaCl stress. Russ J Plant Physiol 57(4):509–517

    Article  CAS  Google Scholar 

  • Al-Othman ZA, Rahmat A, Al-Othman AM, Jawad A, Mohamed AH (2016) Assessment of toxic metals in wheat crops grown on selected soils, irrigated by different water sources. Arab J Chem 9:1555–1562

    Article  CAS  Google Scholar 

  • Alam MM, Nahar K, Hasanuzzaman M, Fujita M (2014) Trehalose-induced drought stress tolerance: a comparative study among different Brassica species. Plant Omics 7(4):271–283

    Google Scholar 

  • Aldesuquy H, Ghanem H (2015) Exogenous salicylic acid and trehalose ameliorate short term drought stress in wheat cultivars by up-regulating membrane characteristics and antioxidant defense system. J Hortic 2(2):139. https://doi.org/10.4172/2376-0354.1000139

    Article  Google Scholar 

  • Aldesuquy HS, Mohamed AA, Samy A, Abo-Hamed AHE, Saeed SA (2012) Glycine betaine and salicylic acid induced modification in productivity of two different cultivars of wheat grown under water stress. J Stress Physiol Biochem 8(2):72–89

    Google Scholar 

  • Aldesuquy H, Haroun S, Abo-Hamed S, El-Saied AW (2014) Involvement of spermine and spermidine in the control of productivity and biochemical aspects of yielded grains of wheat plants irrigated with waste water. Egypt J Basic Appl Sci 1(1):16–28

    Article  Google Scholar 

  • Alet AI, Sanchez DH, Cuevas JC, del Valle S, Altabella T, Tiburcio AF, Marco F, Ferrando A, Espasandín FD, González ME, Ruiz OA (2011) Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. Plant Signal Behav 6(2):278–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alet AI, Diego HS, Juan CC, María M, Pedro C, Teresa A, Antonio FT, Oscar AR (2012) New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress. Plant Sci 182:94–100

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Asthir B, Koundal A, Bains NS (2012) Putrescine modulates antioxidant defense response in wheat under high temperature stress. Biol Plant 56(4):757–761

    Article  CAS  Google Scholar 

  • Ben Hassine A, Michel EG, Bouzid S, Stanley L (2009) Abscisic acid has contrasting effects on salt excretion and polyamine concentrations of an inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus. Ann Bot 104(5):925–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatti KH, Sehrish A, Khalid N, Khalid H, Siddiqi EH, Sharif RU, Talat A, Khalid A (2013) Effect of exogenous application of glycinebetaine on wheat (Triticum aestivum L.) under heavy metal stress. Middle-East J Sci Res 14:130–137

    CAS  Google Scholar 

  • Braun HJ, Atlin G, Payne T (2010) Multi-location testing as a tool to identify plant response to global climate change. In: Reynolds MP (ed) Climate change and crop production, CABI climate change series. CABI Publishers, Wallingford, pp 115–138

    Chapter  Google Scholar 

  • Brunetti G, Karam F, Soler-Rovira P, Ferrara M, Nigro F, Senesi N (2012) Heavy metals accumulation and distribution in durum wheat and barley grown in contaminated soils under Mediterranean field conditions. J Plant Interact 7(2):160–174

    Article  CAS  Google Scholar 

  • Çakmak T, Atici Ö (2009) Effects of putrescine and low temperature on the apoplastic antioxidant enzymes in the leaves of two wheat cultivars. Plant Soil Environ 55(8):320–326

    Article  Google Scholar 

  • Carter C, Sharoni S, Yehonatan L, Reid GP, Robert T (2006) A novel role for proline in plant floral nectars. Naturwissenschaften 93(2):72–79

    Article  CAS  PubMed  Google Scholar 

  • Cha-Um S, Kirdmanee C (2010) Effect of glycinebetaine on proline, water use, and photosynthetic efficiencies, and growth of rice seedlings under salt stress. Turk J Agric For 34(6):517–527

    CAS  Google Scholar 

  • Chaitante C, Iorio DA, Maiuro L, Scippa SG (1999) Effect of water stress on root meristems in woody and herbaceous plants during the first stage of development. Plant Soil 217(1–2):159–172

    Article  Google Scholar 

  • Chaves MS, Martinelli JA, Wesp-Guterres C, Graichen FAS, Brammer S, Scagliusi SM, Da Silva PR, Wiethölter P, Torres GAM, Lau EY et al (2013) The importance for food security of maintaining rust resistance in wheat. Food Secur 5:157–176

    Article  Google Scholar 

  • Chen H, Jiang JG (2010) Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environ Rev 18:309–319

    Article  CAS  Google Scholar 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalir N, Khoshgoftarmanesh AH (2014) Symplastic and apoplastic uptake and root to shoot translocation of nickel in wheat as affected by exogenous amino acids. J Plant Physiol 171(7):531–536

    Article  CAS  PubMed  Google Scholar 

  • Ding F, Wang M, Liu B, Zhang S (2017) Exogenous melatonin mitigates photoinhibition by accelerating non-photochemical quenching in tomato seedlings exposed to moderate light during chilling. Front Plant Sci 8:244. https://doi.org/10.3389/fpls.2017.00244

    Article  PubMed  PubMed Central  Google Scholar 

  • Duhazé C, David G, Laurent L, François RL, Alain B (2003) Uracil as one of the multiple sources of β-alanine in Limonium latifolium, a halotolerant β-alanine betaine accumulating Plumbaginaceae. Plant Physiol Biochem 41(11–12):993–998

    Article  CAS  Google Scholar 

  • Ebeed HT, Nemat MH, Alshafei MA (2017) Exogenous applications of polyamines modulate drought responses in wheat through osmolytes accumulation, increasing free polyamine levels and regulation of polyamine biosynthetic genes. Plant Physiol Biochem 118:438–448

    Article  CAS  PubMed  Google Scholar 

  • Efeoglu B, Terzioglu S (2009) Photosynthetic responses of two wheat varieties to high temperature. Eur Asia J Biosci 3:97–106

    Article  CAS  Google Scholar 

  • FAO (2015) Food and Agriculture Organization of the United Nations Statistics (2014–15). http://faostat3.fao.org/browse/T/*/E

  • Farooq M, Irfan M, Aziz T, Ahmad I, Cheema SA (2013) Seed priming with ascorbic acid improves drought resistance of wheat. J Agron Crop Sci 199(1):12–22

    Article  CAS  Google Scholar 

  • Farooq M, Nawaz A, Chaudhry MAM, Indrasti R, Rehman A (2017) Improving resistance against terminal drought in bread wheat by exogenous application of proline and gamma-aminobutyric acid. J Agron Crop Sci 203(6):464–472

    Article  CAS  Google Scholar 

  • Fitzgerald TL, Daniel LEW, Robert JH (2009) Betaine aldehyde dehydrogenase in plants. Plant Biol 11(2):119–130

    Article  CAS  PubMed  Google Scholar 

  • Goyal M, Asthir B (2010) Polyamine catabolism influences antioxidative defense mechanism in shoots and roots of five wheat genotypes under high temperature stress. Plant Growth Regul 60:13–25

    Article  CAS  Google Scholar 

  • Gupta N, Thind SK (2015) Improving photosynthetic performance of bread wheat under field drought stress by foliar applied glycine betaine. J Agric Sci Technol 17:75–86

    Google Scholar 

  • Gupta K, Abhijit D, Bhaskar G (2013) Plant polyamines in abiotic stress responses. Acta Physiol Plant 35(7):2015–2036

    Article  CAS  Google Scholar 

  • Gupta N, Sanjeev KT, Navtej SB (2014) Glycine betaine application modifies biochemical attributes of osmotic adjustment in drought stressed wheat. Plant Growth Regul 72(3):221–228

    Article  CAS  Google Scholar 

  • Hameed A, Iqbal N (2014) Chemo-priming with mannose, mannitol and H2O2 mitigate drought stress in wheat. Cereal Res Commun 42:450–462

    Article  CAS  Google Scholar 

  • Hamilton EW, Heckathorn SA (2001) Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol 126(3):1266–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson AD, Bala R, Jean R, Michael B, Michael OD, Douglas AG (1994) Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance. Proc Natl Acad Sci 91(1):306–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Kamrun N, Masayuki F (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz M, Prasad M (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87

    Chapter  Google Scholar 

  • Hassanein RA, El-Khawas SA, Ibrahim SK, El-Bassiouny HM, Mostafa HA, Abdel-Monem AA (2013) Improving the thermo tolerance of wheat plant by foliar application of arginine or putrescine. Pak J Bot 45(1):111–118

    CAS  Google Scholar 

  • Hatami M, Javad H, Mansour G (2017) Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. J Hazard Mater 324:306–320

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Qaiser H, Alyemeni MN, Arif SW, John P, Aqil A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hildebrandt TM, Adriano NN, Wagner LA, Hans-Peter B (2015) Amino acid catabolism in plants. Mol Plant 8(11):1563–1579

    Article  CAS  PubMed  Google Scholar 

  • Hoque MA, Banu MNA, Yoshimasa N, Yasuaki S, Yoshiyuki M (2008) Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. J Plant Physiol 65(8):813–824

    Article  CAS  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Kadambot HMS (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29(3):300–311

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim HA, Abdellatif YMR (2016) Effect of maltose and trehalose on growth, yield and some biochemical components of wheat plant under water stress. Ann Agric Sci 61(2):267–274

    Article  Google Scholar 

  • Iordachescu M, Imai R (2008) Trehalose biosynthesis in response to abiotic stresses. J Integr Plant Biol 50(10):1223–1229

    Article  CAS  PubMed  Google Scholar 

  • Janská A, Maršík P, Zelenková S, Ovesná J (2010) Cold stress and acclimation: what is important for metabolic adjustment? Plant Biol 12:395–405

    Article  PubMed  CAS  Google Scholar 

  • Kamran M, Shahbaz M, Ashraf M, Akram NA (2009) Alleviation of drought-induced adverse effects in spring wheat (Triticum aestivum L.) using proline as a pre-sowing seed treatment. Pak J Bot 41(2):621–632

    Google Scholar 

  • Kaplan F, Guy CL (2004) β-Amylase induction and the protective role of maltose during temperature shock. Plant Physiol 135(3):1674–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karim S, Henrik A, Henrik E, Minna P, Barbara L, Björn W, Einar M, Tapio Palva E, Dijck PV, Kjell-Ove H (2007) Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol Biol 64(4):371–386

    Article  CAS  PubMed  Google Scholar 

  • Keunen ELS, Darin P, Jaco V, Van Den Ende WIM, Cuypers ANN (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ 36(7):1242–1255

    Article  CAS  PubMed  Google Scholar 

  • Khalil SI, El-Bassiouny HMS, Hassanein RA, Mostafa HA, El-Khawas SA, El-Monem AA (2009) Antioxidant defense system in heat shocked wheat plants previously treated with arginine or putrescine. Aust J Basic Appl Sci 3(3):1517–1526

    CAS  Google Scholar 

  • Khan MS, Shah SJ, Ullah M (2006) Assessment of salinity stress and the protective effects of glycine betaine on local wheat varieties. ARPN J Agric Biol Sci 9(11):360–365

    Google Scholar 

  • Khan A, Sardar K, Khan MA, Zahir Q, Waqas M (2015) The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ Sci Pollut Res 22(18):13772–13799

    Article  CAS  Google Scholar 

  • Khare N, Goyary D, Singh NK, Shah P, Rathore M, Anandhan S, Sharma D, Arif M, Ahmed Z (2010) Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell Tissue Organ Cult 103(2):267–277

    Article  CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  PubMed  Google Scholar 

  • Kusvuran S (2012) Effects of drought and salt stresses on growth, stomatal conductance, leaf water and osmotic potentials of melon genotypes (Cucumis melo L.). Afr J Agric Res 7(5):775–781

    Google Scholar 

  • Legocka J, Sobieszczuk-Nowicka E (2012) Sorbitol and NaCl stresses affect free, microsome associated and thylakoid-associated polyamine content in Zea mays and Phaseolus vulgaris. Acta Physiol Plant 34:1145–1151

    Article  CAS  Google Scholar 

  • Li MF, Guo SJ, Yang XH, Meng QW, Wei XJ (2016) Exogenous gamma-aminobutyric acid increases salt tolerance of wheat by improving photosynthesis and enhancing activities of antioxidant enzymes. Biol Plant 60(1):123–131

    Article  CAS  Google Scholar 

  • Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19:998–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Yu B-J, Liu Y-L (2006) Effects of spermidine and spermine levels on salt tolerance associated with tonoplast H+-ATPase and H+-PPase activities in barley roots. Plant Growth Regul 49:119–126

    Article  CAS  Google Scholar 

  • Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126

    Article  CAS  Google Scholar 

  • Liu Y, Liang H, Lv X, Liu D, Wen X, Liao Y (2016) Effect of polyamines on the grain filling of wheat under drought stress. Plant Physiol Biochem 100:113–129

    Article  CAS  PubMed  Google Scholar 

  • Loescher WH, Tyson RH, John DE, Robert JR, Roderick LB (1992) Mannitol synthesis in higher plants: evidence for the role and characterization of a NADPH-dependent mannose 6-phosphate reductase. Plant Physiol 98(4):1396–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Y, Gao YM, Wang W, Zou CJ (2014) Application of trehalose ameliorates heat stress and promotes recovery of winter wheat seedlings. Biol Plant 58(2):395–398

    Article  CAS  Google Scholar 

  • Mahalingam R (2015) Consideration of combined stress: a crucial paradigm for improving multiple stress tolerance in plants. In: Mahalingam R (ed) Combined stresses in plants. Springer, Cham, pp 1–25

    Google Scholar 

  • Mahboob W, Khan MA, Shirazi MU (2016) Induction of salt tolerance in wheat (Triticum aestivum L.) seedlings through exogenous application of proline. Pak J Bot 48(3):861–867

    CAS  Google Scholar 

  • Maleki A, Jalal S, Farid S (2010) Inheritance of proline content in bread wheat (Triticum aestivum L.) under rainfed conditions. J Food Agric Environ 8:155–157

    CAS  Google Scholar 

  • Malekzadeh P, Khara J, Heidari R (2012) Effect of exogenous Gama-aminobutyric acid on physiological tolerance of wheat seedling exposed to chilling stress. Iran J Plant Physiol 3(1):611–617

    Google Scholar 

  • Mansour MMF, Salama KHA, Al-Mutawa MM, Abou Hadid AF (2002) Effect of NaCl and polyamines on plasma membrane lipids of wheat roots. Biol Plant 45:235–239

    Article  CAS  Google Scholar 

  • Minocha R, Majumdar R, Minocha SC (2014) Polyamines and abiotic stress in plants: a complex relationship 1. Front Plant Sci 5:175. https://doi.org/10.3389/fpls.2014.00175

    Article  PubMed  PubMed Central  Google Scholar 

  • Miranda JA, Nelson A, Ramón S, Johan MT, Patrick VD, Gabriel I (2007) A bifunctional TPS–TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta 226(6):1411–1421

    Article  CAS  PubMed  Google Scholar 

  • Mitoi EN, Holobiuc I, Blindu R (2009) The effect of mannitol on antioxidative enzymes in vitro long term cultures of Dianthus tenuifolius and Dianthus spiculifolius. Rom J Biol Plant Biol 54:25–30

    Google Scholar 

  • Modarresi V, Zali A, Mardi M (2010) Response of wheat yield and yield related traits to high temperature. Cereal Res Commun 38:23–31

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Mwadzingeni L, Hussein S, Tsilo TJ (2017) Variance components and heritability of yield and yield components of wheat under drought-stressed and non-stressed conditions. Aust J Crop Sci 11:1425–1430

    Article  Google Scholar 

  • Nahar K, Hasanuzzaman M, Rahman A, Alam M, Mahmud JA, Suzuki T, Fujita M (2016a) Polyamines confer salt tolerance in mung bean (Vigna radiata L.) by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense, and methylglyoxal detoxification systems. Front Plant Sci 7:1104. https://doi.org/10.3389/fpls.2016.01104

    Article  PubMed  PubMed Central  Google Scholar 

  • Nahar K, Hasanuzzaman M, Fujita M (2016b) Roles of osmolytes in plant adaptation to drought and salinity. In: Iqbal N, Nazar R, Khan NA (eds) Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, New Delhi, pp 37–68

    Chapter  Google Scholar 

  • Nazarli H, Faraji F (2011) Response of proline, soluble sugars and antioxidant enzymes in wheat (Triticum aestivum L.) to different irrigation regimes in greenhouse condition. Cercet Agron Moldov 44:27–33

    Google Scholar 

  • Ni J, Wang Q, Shah FA, Liu W, Wang D, Huang S, Fu S, Wu L (2018) Exogenous melatonin confers cadmium tolerance by counterbalancing the hydrogen peroxide homeostasis in wheat seedlings. Molecules 23:799. https://doi.org/10.3390/molecules23040799

    Article  CAS  PubMed Central  Google Scholar 

  • Noreen S, Akhter MS, Yaamin T, Arfan M (2018) The ameliorative effects of exogenously applied proline on physiological and biochemical parameters of wheat (Triticum aestivum L.) crop under copper stress condition. J Plant Interact 13:221–230

    Article  CAS  Google Scholar 

  • Nowack B, Schulin R, Robinson BH (2006) Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40:5225–5232

    Article  CAS  PubMed  Google Scholar 

  • Oyiga BC, Sharma RC, Shen J, Baum M, Ogbonnaya FC, Leon J, Ballvora A (2016) Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach. J Agron Crop Sci 202:472–485

    Article  CAS  Google Scholar 

  • Panda SK, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17:95–102

    Article  CAS  Google Scholar 

  • Pandey P, Ramegowda V, Senthil-Kumar M (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci 6:723. https://doi.org/10.3389/fpls.2015.00723

    Article  PubMed  PubMed Central  Google Scholar 

  • Rady MM, Hemida KA (2015) Modulation of cadmium toxicity and enhancing cadmium-tolerance in wheat seedlings by exogenous application of polyamines. Ecotoxicol Environ Saf 119:178–185

    Article  CAS  PubMed  Google Scholar 

  • Rady MM, El-Yazal MAS, Taie HA, Ahmed SM (2016) Response of wheat growth and productivity to exogenous polyamines under lead stress. J Crop Sci Biotechnol 19:363–371

    Article  Google Scholar 

  • Rahaie M, Xue GP, Schenk PM (2013) The role of transcription factors in wheat under different abiotic stresses. In: Vahdati K, Leslie C (eds) Abiotic stress – plant responses and applications in agriculture. InTech, Rijeka, pp 367–385

    Google Scholar 

  • Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54. https://doi.org/10.1016/j.jplph.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  • Rasheed R, Ashraf MA, Hussain I, Haider MZ, Kanwal U, Iqbal M (2014) Exogenous proline and glycinebetaine mitigate cadmium stress in two genetically different spring wheat (Triticum aestivum L.) cultivars. Braz J Bot 37:399–406

    Article  Google Scholar 

  • Raza SH, Athar HUR, Ashraf M (2006) Influence of exogenously applied glycinebetaine on the photosynthetic capacity of two differently adapted wheat cultivars under salt stress. Pak J Bot 38:341–351

    Google Scholar 

  • Raza SH, Athar HR, Ashraf M, Hameed A (2007) Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environ Exp Bot 60:368–376

    Article  CAS  Google Scholar 

  • Raza S, Aown M, Saleem MF, Khan IH (2015) Combined application of glycinebetaine and potassium on the nutrient uptake performance of wheat under drought stress. Pak J Agric Sci 52:19–26

    Google Scholar 

  • Reza H, Moghadam T (2016) Roles of super absorbent polymer and ascorbic acid in mitigating deleterious effects of cadmium in wheat. Environ Sci 12:137–142

    CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Biol 44:357–384

    Article  CAS  Google Scholar 

  • Rosa M, Hilal M, Juan AG, Fernando EP (2009) Low-temperature effect on enzyme activities involved in sucrose–starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings. Plant Physiol Biochem 47:300–307

    Article  CAS  PubMed  Google Scholar 

  • Sadak MS, Orabi SA (2015) Improving thermo tolerance of wheat plant by foliar application of citric acid or oxalic acid. Int J ChemTech Res 8:333–345

    CAS  Google Scholar 

  • Saeedipour S (2013) Relationship of grain yield, ABA and proline accumulation in tolerant and sensitive wheat cultivars as affected by water stress. Proc Natl Acad Sci India Section B Biol Sci 83:311–315

    Article  CAS  Google Scholar 

  • Sakr MT, El-Metwally MA (2009) Alleviation of the harmful effects of soil salt stress on growth, yield and endogenous antioxidant content of wheat plant by application of antioxidants. Pak J Biol Sci 12:624–630

    Article  CAS  PubMed  Google Scholar 

  • Salama KH, Mansour MMF (2015) Choline priming-induced plasma membrane lipid alterations contributed to improved wheat salt tolerance. Acta Physiol Plant 37:170. https://doi.org/10.1007/s11738-015-1934-4

    Article  CAS  Google Scholar 

  • Salama KH, Mansour MM, Hassan NS (2011) Choline priming improves salt tolerance in wheat (Triticum aestivum L.). Aust J Basic Appl Sci 5:126–132

    CAS  Google Scholar 

  • Salama KH, Mansour MM, Al-Malawi HA (2015) Glycinebetaine priming improves salt tolerance of wheat. Biologia 70:1334–1339

    Article  CAS  Google Scholar 

  • Seckin B, Sekmen AH, Türkan I (2009) An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. J Plant Growth Regul 28:12. https://doi.org/10.1007/s00344-008-9068-1

    Article  CAS  Google Scholar 

  • Shabbir RN, Waraich EA, Ali H, Nawaz F, Ashraf MY, Ahmad R, Awan MI, Ahmad S, Irfan M, Hussain S, Ahmad Z (2016) Supplemental exogenous NPK application alters biochemical processes to improve yield and drought tolerance in wheat (Triticum aestivum L.). Environ Sci Pollut Res 23:2651–2662

    Article  CAS  Google Scholar 

  • Shelp BJ, Gale GB, Christopher PT, Adel Z, Kristen LD, Carolyne JB (2012) Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Sci 193:130–135

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Chan Z (2014) Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J Int Plant Biol 56:114–121

    Article  CAS  Google Scholar 

  • Shima S, Matsui H, Tahara S, Imai R (2007) Biochemical characterization of rice trehalose-6-phosphate phosphatases supports distinctive functions of these plant enzymes. FEBS J 274:1192–1201

    Article  CAS  PubMed  Google Scholar 

  • Simova S, Demirevska LK, Petrova T, Tsenov N, Feller U (2008) Antioxidative protection in wheat varieties under severe recoverable drought at seedling stage. Plant Soil Environ 54:529–536

    Article  Google Scholar 

  • Singh M, Kumar J, Singh S, Singh VP, Prasad SM (2015) Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Biotechnol 14:407–426

    Article  CAS  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143. https://doi.org/10.3389/fpls.2015.01143

    Article  PubMed  PubMed Central  Google Scholar 

  • Song M, Xu W, Peng X, Kong F (2013) Effects of exogenous proline on the growth of wheat seedlings under cadmium stress. Yingyong Shengtai Xuebao 24:129–113

    CAS  PubMed  Google Scholar 

  • Sureshan KM, Murakami T, Watanabe Y (2009) Total syntheses of cyclitol based natural products from myo-inositol: brahol and pinpollitol. Tetrahedron 65:3998–4006

    Article  CAS  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Talat A, Nawaz K, Hussian K, Bhatti KH, Siddiqi EH, Khalid A, Anwer S, Sharif MU (2013) Foliar application of proline for salt tolerance of two wheat (Triticum aestivum L.) cultivars. World Appl Sci J 22:547–554

    CAS  Google Scholar 

  • Teixeira RSS, da Silva ASA, Ferreira-Leitão VS, da Silva Bon EP (2012) Amino acids interference on the quantification of reducing sugars by the 3, 5-dinitrosalicylic acid assay mislead carbohydrase activity measurements. Carbohydr Res 363:33–37

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang X, Shi G, Xu Q, Hu J (2007) Exogenous polyamines enhance copper tolerance of Nymphoides peltatum. J Plant Physiol 164:1062–1070

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Li Q, Wu W, Guo J, Yang Y (2017) Cadmium stress tolerance in wheat seedlings induced by ascorbic acid was mediated by NO signaling pathways. Ecotoxicol Environ Saf 135:75–81

    Article  CAS  PubMed  Google Scholar 

  • Witte C-P (2011) Urea metabolism in plants. Plant Sci 180:431–438

    Article  CAS  PubMed  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  CAS  PubMed  Google Scholar 

  • Yong B, Xie H, Li Z, Li YP, Zhang Y, Nie G, Zhang XQ, Ma X, Huang LK, Yan YH, Peng Y (2017) Exogenous application of GABA improves PEG-induced drought tolerance positively associated with GABA-shunt, polyamines, and proline metabolism in white clover. Front Physiol 8:1107. https://doi.org/10.3389/fphys.2017.01107

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahim Nawaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nawaz, F. et al. (2019). Use of Osmolytes in Improving Abiotic Stress Tolerance to Wheat (Triticum aestivum L.). In: Hasanuzzaman, M., Nahar, K., Hossain, M. (eds) Wheat Production in Changing Environments. Springer, Singapore. https://doi.org/10.1007/978-981-13-6883-7_20

Download citation

Publish with us

Policies and ethics