Skip to main content

Ecosystem Services of Trees Outside Forest

  • Chapter
  • First Online:
Sustainable Agriculture, Forest and Environmental Management

Abstract

Trees or other woody vegetation growing outside designated forest areas are known as trees outside forest (TOFs). These trees have many ecosystem services and economic benefits like their potential role in agriculture, food supply and income by providing goods and services, conservation of biodiversity and carbon (C) sequestration. They can improve soil fertility through fixing atmospheric nitrogen, retaining soil moisture, regulating water shed, reducing topsoil loss and litter fall and regulating microclimate, thus increasing crop yield. In addition to providing aesthetic beauty especially to urban surroundings, they are pollutant sink, reduce ozone levels, check dust flow, reduce noise pollution and cools air temperature. Most importantly, these trees are useful timber resources and will alleviate pressure on native forests. Forest and TOF are thus considered as two faces of a coin in relation to their capacity for C stock and biodiversity. Substantial amount of trees are going on lands other than forest land used in every country with a potential of sequestering about 38 giga tonnes of C annually. In India, for example, there are about 24–25 thousand million TOFs, out of which trees in agricultural landscape in Indian state of Uttar Pradesh only sequester 20 million tonnes of C. The C sequestration potential of the TOFs is thus enormous to be included in global climate mitigation strategy through reducing emission from deforestation and forest degradation (REDD+) activities. Moreover, as these are additional plantations, so are they complementary with other land uses in mitigating climate change. Unfortunately, due to absence of efficient inventory methods, TOFs are still not accounted fully in the national forest inventories, due to which very less or no information are available for TOFs. Accounting TOF and its services will not only help to understand its importance for national C budget but also its ecological and economic role benefiting human society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDM:

Clean development mechanism

C:

Carbon

CO2 :

Carbon dioxide

FAO:

Food and Agricultural Organization

FSI:

Forest Survey of India

NFI:

National Forest Inventory

NFMA:

National Forest Monitoring and Assessment

TOFs:

Trees outside forest

REDD:

Reducing emission from deforestation and forest degradation

References

  • Acharya KP (2006) Linking trees on farms with biodiversity conservation in subsistence farming systems in Nepal. Biodivers Conserv 15:631–646

    Article  Google Scholar 

  • Ahmed P (2008) Trees outside forests (TOF): a case study of wood production and consumption in Haryana. Int For Rev 10:165–172

    Google Scholar 

  • Ajewole IA (2010) Urban forestry development in Britain and Ireland: lessons for Nigeria. In: Adeyoyoju SK, Bada SO (eds) Readings in sustainable tropical forest management. Zenith Book House. pp 1–22

    Google Scholar 

  • Alexandre DY, Lescure JP, Bied-Charreton M, Fotsing JM (1999) Contribution à l’état des connaissancessur les arbres hors forêt (TOF). IRD-FAO, Orléans

    Google Scholar 

  • Ament R, Begley J (2014) Roadside vegetation and soils on federal lands-evaluated of the potential for increasing carbon capture and storage and decreasing carbon emissions. Federal Highway Administration, Vancouver. 38 p

    Google Scholar 

  • Arnberger A (2012) Urban Densification and recreational quality of public urban green space, a Viennese case study. Sustainability 4:703–720

    Article  Google Scholar 

  • Avasthe RK, Singh KK, Tomar JMS (2011) Langer cardamom (Amomum subulatum Roxb.) based agroforestry systems for production, resources conservation and livelihood security in the Sikkim Himalayas. Indian J Soil Conserv 39:155–160

    Google Scholar 

  • Ayensu CRD, Collins M, Dearing A, Fresco L, Gadgil M, Giday H, Glaser G, Juma C, Krebs J, Lenton R, Lubchenco J, McNeely JA, Mooney HA, Pinstrup-Andersen P, Ramos M, Raven P, Reid WV, Samper C, Sarukhan J, Schei P, Tundisi JG, Watson RT, Guanhua X, Zakri AH (1999) International ecosystem assessment. Science 286:685–686

    Article  CAS  Google Scholar 

  • Baffetta F, Corona P, Fattorini L (2011) Assessing the attributes of scattered trees outside the forest by a multi-phase sampling strategy. Forestry 84:315–325

    Article  Google Scholar 

  • Baral SK, Malla R, Khanal S, Shakya R (2013) Trees on farms: diversity, carbon pool and contribution to rural livelihoods in Kanchanpur District of Nepal. Banko Janakari 23:3–11

    Article  Google Scholar 

  • Barr CJ, Gillespie MK (2000) Estimating hedgerow length and pattern characteristics in Great Britain using Countryside Survey data. J Environ Manage 60:23–32

    Article  Google Scholar 

  • Baudry J, Bunce RGH, Burel F (2000) Hedgerows: an international perspective on their origin, function and management. J Environ Manage 60:7–22

    Article  Google Scholar 

  • Beckett KP, Smith PF, Taylor G (2000) Effective tree species for local air-quality management. J Arboric 26:12–19

    Google Scholar 

  • Bellefontaine R, Petit S, Pain-Orcet, M, Deleporte P, Bertault JG (2001) Les arbres hors forêt: versunemeilleure prise en compte (No. 35). FAO, Rome

    Google Scholar 

  • Bellefontaine R, Petit S, Pain Orcet M, Deleporte P, Bertault J (2002) Trees outside forests: towards a better awareness. FAO, Rome. 218 p

    Google Scholar 

  • Bélouard T, Coulon F (2002) Trees outside forests: France. In: Bellefontaine R, Petit S, Deleporte P, Bertault J-G (eds) Trees outside forests. Towards better awareness. FAO, Rome, pp 149–156

    Google Scholar 

  • Berkes F, Kislalioglu M, Folke C, Gadgil M (1998) Exploring the basic ecological unit: ecosystem-like concepts in traditional societies. Ecosystems 1:409–415

    Article  Google Scholar 

  • Bhagwat SA, Willis KJ, Birks HJB, Whittaker RJ (2008) Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evol 23:261–267

    Article  PubMed  Google Scholar 

  • Biswas RK (2006) Trees outside forests: opportunities for socio-economic and cultural development. Presented at National Seminar on Trees outside forests: Potential for socio-economic and ecological development. Department of Forests and Wildlife Preservation, Government of Punjab, Chandigarh

    Google Scholar 

  • Boffa JM (2000) West African agroforestry parklands: keys to conservation and sustainable management. Unasylva 51:11–17

    Google Scholar 

  • Boggs GS (2010) Assessment of SPOT 5 and Quick Bird remotely sensed imagery for mapping tree cover in savannas. Int J Appl Earth Observ Geoinf 12:217–224

    Article  Google Scholar 

  • Bowler DE, Buyung-Ali L, Knight TM, Pullin AS (2010) Urban greening to cool towns and cities: a systematic review of the empirical evidence. Land Urban Plan 97:147–155

    Article  Google Scholar 

  • Brändli U-B (2010) Schweizerisches Landesforstinventar. Ergebnisse der dritten Erhebung 2004–2006. WSL, BAFU, Birmensdorf, Bern

    Google Scholar 

  • Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper, 137. FAO, Rome

    Google Scholar 

  • Buchel S, Frantzeskaki N (2015) Citizen voices case study about perceived ecosystem services by urban park users in Rotterdam the Netherlands. Eco Serv 12:169–177

    Article  Google Scholar 

  • Buragohain S, Sharma B, Nath JD, Gogaoi N, Meena RS, Lal R (2017) Impact of ten years of bio-fertilizer use on soil quality and rice yield on an inceptisol in Assam, India. Soil Res. https://doi.org/10.1071/SR17001

    Article  Google Scholar 

  • Canadell JG, Pataki D, Pitelka L (eds.) (2007) Terrestrial ecosystems in a changing world. The IGBP Series. Springer, Berlin/Heidelberg

    Google Scholar 

  • Carlowitz HC (1713) Sylvicultura oeconomica: Anweisungzurwilden Baum-Zucht. Braun, Leipzig

    Google Scholar 

  • Chakravarty S, Puri A, Subba M, Pala NA, Shukla G (2017a) Homegardens: drops to sustainability. In: Dagar JC, Tewari VP (eds) Agroforestry: anecdotal to modern science. Springer Nature, Singapore, pp 517–528. https://doi.org/10.1007/978-981-10-7650-3_20

    Chapter  Google Scholar 

  • Chakravarty S, Subba M, Pala NA, Dey T, Shukla G(2017b) Climate change and home gardens: involving small landholders for mitigation. In: Kumar M, Rajwar GS (eds) Agroforestry: practices and potential services. OMICS Group eBooks, Foster City. Available at www.esciencecentral.org/ebooks

  • Chaudhury P (2006) Valuing recreational benefits of urban forestry – a case study Chandigarh city. Ph.D. Thesis, FRI (Deemed University), Dehra Dun, India

    Google Scholar 

  • Chauhan SK, Chauhan R, Saralch HS (2008) Exotics in Indian forestry. In: Chauhan SK, Gill SS, Sharma SC, Chauhan R (eds) Exotics in Indian forestry. Agrotech Publishing Academy, Udaipur, pp 24–56

    Google Scholar 

  • Chavan BL, Rasal GB (2010) Sequestered standing carbon stock in selective tree species grown in University campus at Aurangabad, Maharashtra, India. Int J Eng Sci Tech 2:3003–3007

    Google Scholar 

  • Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R (2004) Error propagation and scaling for tropical forest biomass estimates. Phil Trans R Soc London 359:409–420

    Article  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Folster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riera B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    Article  CAS  Google Scholar 

  • Chiesura A (2004) The role of urban parks for the sustainable city. Landsc Urban Plan 68:129–138

    Article  Google Scholar 

  • Cotta MK, Jacovine LAG, Valverde S, Pavia HN, Virgens Filho AC, Silva MA (2006) Analiseeconomica does consorcioseringueria-cacauparageracao de certificados de emissoesreduzidas. Revista Arvore 30:969–979

    Article  Google Scholar 

  • Cumming AB, Nowak DJ, Twardus D, Hoehn R, Mielke M, Rideout R (2007) National Forest Health Monitoring Program, Urban Forests of Wisconsin: Pilot Monitoring Project 2002. USDA, Forest Service, Newton Square

    Google Scholar 

  • Cumming AB, Twardus DB, Nowak DJ (2008) Urban forest health monitoring: large scale assessments in the United States. Arboric Urban For 34:341–346

    Google Scholar 

  • Curlevski NJA, Xu Z, Anderson IC, Cairney JWG (2010) Converting Australian tropical rainforest to native Araucariaceae plantations alters soil fungal communities. Soil Biol Biochem 42:14–20

    Article  CAS  Google Scholar 

  • Dadhich RK, Meena RS (2014) Performance of Indian mustard (Brassica juncea L.) in response to foliar spray of thiourea and thioglycollic acid under different irrigation levels. Indian J Ecol 41(2):376–378

    Google Scholar 

  • Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017) Enzymatic degradation of lignin in soil: a review. Sustain MDPI 9:1163. https://doi.org/10.3390/su9071163, 1-18

    Article  CAS  Google Scholar 

  • Dawoe E, Asante W, Acheampong E, Bosu P (2016) Shade tree diversity and aboveground carbon stocks in Theobroma cacao agroforestry systems: implications for REDD+ implementation in a West African cacao landscape. Carbon Balance Manage. https://doi.org/10.1186/s1321-016-0061

  • de Foresta H, Somarriba E, Temu A, Boulanger D, Feuilly H, Gauthier M (2013) Towards the assessment of trees outside forests. FAO Resources Assessment Working Paper No. 183. Rome, Italy

    Google Scholar 

  • Dogra AS, Chauhan SK (2016) Trees outside forests in India: socio-economic, environmental and policy issues. In: Parthiban KT, Seenivasan R (eds) Forest technologies- a complete value chain approach, vol 1. Scientific Publishers, pp 84–102

    Google Scholar 

  • Dubal K, Ghorpade P, Dongare M, Patil S (2013) Carbon sequestration in the standing trees at campus of Shivaji University, Kolhapur. Nat Environ Pollut 12:725–726

    Google Scholar 

  • Eysn L, Hollaus M, Schadauer K, Pfeifer N (2012) Forest delineation based on airborne LIDAR Data. Remote Sens 4:762–783

    Article  Google Scholar 

  • FAO (2001a) Global forest resources assessment 2000. Main report. FAO forestry paper 140. FAO, Rome

    Google Scholar 

  • FAO (2001b) Trees outside forests. Conservation Guide No. 35, 210 p

    Google Scholar 

  • FAO (2005) Tree outside forest. FAO, Rome

    Google Scholar 

  • FAO (2006) Global forest resources assessment; FAO Forestry towards sustainable forest management. FAO Forestry Paper 147. FAO, Rome

    Google Scholar 

  • FAO (2010) Global forest resources assessment 2010. FAO forestry paper 163. FAO, Rome

    Google Scholar 

  • FAO (2012) National forest monitoring and assessment – manual for integrated field data collection. Version 3.0 (NFMA Working Paper, 37/E). FAO, Rome

    Google Scholar 

  • Fehrmann L, Seidel D, Krause B, Kleinn C (2014) Sampling for landscape elements-a case study from Lower Saxony, Germany. Environ Monit Assess 186:1421–1430

    Article  PubMed  Google Scholar 

  • Fensham RJ, Fairfax RJ (2003) Assessing woody vegetation cover change in north-west Australian savannah using aerial photography. Int J Wildland Fire 12:359–367

    Article  Google Scholar 

  • Foschi PG, Smith DK (1997) Detecting subpixel woody vegetation in digital imagery using two artificial intelligence approaches. Photogramm Eng Remote Sens 63:493–499

    Google Scholar 

  • Fridman J, Holm S, Nilsson M, Nilsson P, Ringvall A, Ståhl G (2014) Adapting National Forest Inventories to changing requirements – the case of the Swedish National Forest Inventory at the turn of the 20th century. Silva Fennica 48:1–29

    Article  Google Scholar 

  • FSI (2011) India State of Forest Report. Forest Survey of India, Dehra Dun

    Google Scholar 

  • FSI (2013) Growing stock, India. State of Forest Report. Forest Survey of India, Dehra Dun

    Google Scholar 

  • Garforth CJ, Malla YB, Neopane RP, Pandit BH (1999) Socioeconomic factors and agroforestry improvements in the hills of Nepal. Mount Res Dev 19:273–278

    Google Scholar 

  • Gavali RS, Shaikh HMY (2016) Estimation of carbon storage in the tree growth of Sholapur Campus University, India. Int J Sci Res NET 5:2364–2367

    Google Scholar 

  • Gene W, Rey GW, Frederick J, Deneke FJ (1978) Urban forestry. Wiley, New York, 279 p

    Google Scholar 

  • Gibbon D, Schultz M (1989) Agricultural Systems in the Eastern Hills of Nepal: present situations and opportunities for innovative research and extension. PAC Technical Paper 108.Pakhribas Agricultural Center, Dhankuta, Nepal

    Google Scholar 

  • Gilmour DA (1997) Rearranging trees in the land scape in the Middle Hills of Nepal. In: Arnold JEM, Dewees PA (eds) Farms, trees and farmers: responses to agricultural intensification. Earthscan, London, pp 21–42

    Google Scholar 

  • Gilmour DA, Nurse M (1991) Farmers’ initiatives in increasing tree cover in central Nepal. Mount Res Dev 11:329–337

    Article  Google Scholar 

  • Goddard MA, Dougill AJ, Benton TG (2010) Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol Evol 25:90–98

    Article  PubMed  Google Scholar 

  • GoG (1984) Gujarat wood balance study. Government of Gujarat, Ahmadabad

    Google Scholar 

  • Grala RK, Tyndall JC, Mize CW (2010) Impact of field windbreaks on visual appearance of agricultural lands. Agrofor Syst 80:411–422

    Article  Google Scholar 

  • Gregoire TG, Ståhl G, Næsset E, Gobakken T, Nelson R, Holm S (2011) Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County, Norway. Can J For Res 41:83–95

    Article  Google Scholar 

  • Guo ZD, Hu HF, Pan YD, Birdsey RA, Fang JY (2014) Increasing biomass carbon stocks in trees outside forests in China over the last three decades. Biogeoscience 11:4115–4122

    Article  Google Scholar 

  • Gutzwiller K (ed) (2002) Applying landscape ecology in biological conservation. Springer, New York

    Google Scholar 

  • Halavatau S (1995) Agroforestry in the food production systems in the South Pacific. ACIAR Proc. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Hansen MH (1985) Notes: line intersect sampling of wooded strips. For Sci 31:282–288

    Google Scholar 

  • Harja D, Vincent G, Mulia R, van Noordwijk M (2012) Tree shape plasticity in relation to crown exposure. Trees 26:1275–1285

    Article  Google Scholar 

  • Herzog F (2000) The importance of perennial trees for the balance of northern European agricultural landscapes. Unasylva 51:42–48

    Google Scholar 

  • Houde J (1997) Public property tree preservation. J Arboric 23:83–86

    Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stoker TF, Qin D, Planter GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the Fifth assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge, pp 3–32

    Google Scholar 

  • Janiola MDC, Marin A (2016) Carbon sequestration potential of fruit tree plantations in Southern Philippines. J Biodivers Environ Sci 8:164–174

    Google Scholar 

  • Jayanthi P, Rajendra A (2013) Life-Forms of Madukkarai Hills of Southern Western Ghats, Tamil Nadu India. Life Sci Leaf 9:57–61

    Google Scholar 

  • Jhariya MK (2017) Vegetation ecology and carbon sequestration potential of shrubs in tropics of Chhattisgarh, India. Environ Monit Assess 189(10):518. https://doi.org/10.1007/s10661-017-6246-2

    Article  CAS  PubMed  Google Scholar 

  • Jhariya MK, Yadav DK (2018) Biomass and carbon storage pattern in natural and plantation forest ecosystem of Chhattisgarh, India. J For Environ Sci 34(1):1–11. https://doi.org/10.7747/JFES.2018.34.1.1

    Article  Google Scholar 

  • Jhariya MK, Banerjee A, Yadav DK, Raj A (2018) Leguminous trees an innovative tool for soil sustainability. In: Meena RS, Das A, Yadav GS, Lal R (eds) Legumes for soil health and sustainable management. Springer, ISBN 978-981-13-0253-4 (eBook), ISBN: 978-981-13-0252-7 (Hardcover). https://doi.org/10.1007/978-981-13-0253-4_10

    Chapter  Google Scholar 

  • Jim CY, Chen WY (2009) Ecosystem services and valuation of urban forests in China. Cities 26:187–194

    Article  Google Scholar 

  • Kanowski P, McDermott C, Cashore B (2011) Post-Copenhagen strategies for the implementation of REDD+. In: Richardson K, Steffen W, Liverman D (eds) Climate change: global risks, challenges and decisions. Cambridge University Press, New York, pp 429–430

    Google Scholar 

  • Kerckhoffs LHJ, Reid JB (1997) Carbon sequestration in the standing biomass of orchard crops in New Zealand. New Zealand Institute for Crop and Food Research Ltd, Hasting

    Google Scholar 

  • Kharal DK, Oli BN (2008) An estimation of tree species diversity in rural farmland of Nepal. Banko Janakari 18:3–10

    Article  Google Scholar 

  • Kleinn C (1999) Compilation of information on trees outside the forest. A contribution to the Forest Resources Assessment 2000 of FAO. Regional Special Study for Latin America. CATIE, Costa Rica

    Google Scholar 

  • Kleinn C (2000) On large-area inventory and assessment of trees outside forests. Unasylva 51:3–10

    Google Scholar 

  • Konijnendijk CC (2003) A decade of urban forestry in Europe. Forest Policy Econ 5:173–186

    Article  Google Scholar 

  • Kotwal PC, Bhattacharya P (2000) Extent and status of trees outside forests. Concept paper presented in the workshop on “Extent and status of trees outside forests” held at IIFM Bhopal

    Google Scholar 

  • Kuchelmeister G, Braatz S (1993) Urban forestry revisited. Unasylva 44:3–12

    Google Scholar 

  • Kumar O (2006) Valuation and evaluation of trees outside forest (TOF) in India. Forest Survey of India, Dehradun

    Google Scholar 

  • Kumar BM, Nair PKR (2011) Carbon sequestration potential of agroforestry systems: opportunity and challenges. Springer, Dordrecht/Heidelberg/London. 307 p

    Book  Google Scholar 

  • Kumar A, Singh K, Lal B, Singh R (2008) Mapping of apple orchards using remote sensing techniques in cold desert of Himachal Pradesh, India. J Ind Soc Remote Sens 36:387–392

    Article  Google Scholar 

  • Kumar S, Meena RS, Yadav GS, Pandey A (2017) Response of sesame (Sesamum indicum L.) to sulphur and lime application under soil acidity. Int J Plant Soil Sci 14(4):1–9

    Article  Google Scholar 

  • Kuyah S, Dietz J, Muthuri C, Jamnadass R, Mwangi P, Coe R, Neufeldt H (2012) Allometric equations for estimating biomass in agricultural landscapes: I. Aboveground biomass. Agric Ecosyst Environ 158:216–224

    Article  Google Scholar 

  • Lam TY, Kleinn C, Coenradie B (2011) Double sampling for stratification for the monitoring of sparse tree populations: the example of Populus euphratica Oliv. forests at the lower reaches of Tarim River, Southern Xinjiang, China. Environ Monit Assess 175:45–61

    Article  PubMed  Google Scholar 

  • Lasco RD, Lales JS, Arnuevo MT, Guillermo IQ, de Jesus AC, Medrao R, Bajar OF, Menddoza CV (2002) Carbon dioxide (CO2) storage and sequestration of land cover in the Leyte Geothermal Reservation. Renew Energy 25:307–315

    Article  CAS  Google Scholar 

  • Leah L, Bremer, Kathleen AF (2010) Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodivers Conserv 10:1–23

    Google Scholar 

  • Lee S, Lathrop RG (2005) Sub-pixel estimation of urban land cover components with linear mixture model analysis and Landsat Thematic Mapper imagery. Int J Remote Sens 26:4885–4905

    Article  Google Scholar 

  • Lefsky M, McHale MR (2008) Volume estimates of trees with complex architecture from terrestrial laser scanning. J Appl Remote Sens 2:023521

    Article  Google Scholar 

  • Lewis SL, Lopez-Gonzalez G, Sonke B, Affum-Baffum-Baffoe K, Baker TR (2009) Increasing carbon storage in intact African tropical forest. Nature 457:1003–1006

    Article  CAS  PubMed  Google Scholar 

  • Liknes GC, Perry CH, Meneguzzo DM (2010) Assessing tree cover in agricultural landscapes using high-resolution aerial imagery. J Terrest Observ 2:38–55

    Google Scholar 

  • Lister AJ, Scott CT, Rasmussen S (2012) Inventory methods for trees in nonforest areas in the Great Plains States. Environ Monit Assess 184:2465–2474

    Article  PubMed  Google Scholar 

  • Lumsden LF, Bennett AF (2005) Scattered trees in rural landscapes: foraging habitat for insectivorous bats in southeastern Australia. Biol Conserv 122:205–222

    Article  Google Scholar 

  • Lund HG (2002) When is a forest not a forest? J For 100:21–28

    Google Scholar 

  • Mandal G, Joshi SP (2014) Biomass accumulation and carbon sequestration potential of Shorea robusta and Lantana camara from the dry deciduous forests of Doon Valley, western Himalaya, India. Int J Environ Biol 14:157–169

    Google Scholar 

  • Manning AD, Gibbons P, Lindenmayer DB (2009) Scattered trees: a complementary strategy for facilitating adaptive responses to climate change in modified landscapes? J Appl Ecol 146:915–919

    Article  Google Scholar 

  • McCullough RB (1999) Four common myths about plantation forestry. New For 17:111–118

    Article  Google Scholar 

  • McDonnell MJ, Hahs AK, Breuste JH (2009) Ecology of cities and towns: a comparative approach. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • McHale MR, Burke IC, Lefsky MA, Peper PJ, McPherson EG (2009) Urban forest biomass estimates: is it important to use allometric relationships developed specifically for urban trees? Urban Ecosyst 12:95–113

    Article  Google Scholar 

  • McPherson EG (1994) Energy-saving potential of trees in Chicago. In: McPherson EG, Nowak DJ, Rowntree RA (eds) Chicago’s urban forest ecosystem: results of the Chicago urban forest climate project, General Technical Report NE-186. USDA Forest Service, North eastern Forest Experiment Station, Radnor, pp 95–113

    Google Scholar 

  • McPherson EG, Luttinger N (1998) From nature to nature: the history of Sacramento’s urban forest. J Arboric 24:72–88

    Google Scholar 

  • Meena RS, Yadav RS (2014) Phonological performance of groundnut varieties under sowing environments in hyper arid zone of Rajasthan, India. J Appl Nat Sci 6(2):344–348

    Article  CAS  Google Scholar 

  • Meena RS, Gogaoi N, Kumar S (2017) Alarming issues on agricultural crop production and environmental stresses. J Clean Prod 142:3357–3359

    Article  Google Scholar 

  • Meena H, Meena RS, Lal R, Singh GS, Mitran T, Layek J, Patil SB, Kumar S, Verma T (2018) Response of sowing dates and bio regulators on yield of clusterbean under current climate in alley cropping system in eastern U.P. Indian Legum Res 41(4):563–571

    Google Scholar 

  • Mitchell R, Popham F (2008) Affect of exposure to natural environment on health inequalities an observational population study. Lancet 372:1655–1660

    Article  PubMed  Google Scholar 

  • Myeong S, Nowak DJ, Duggin MJ (2006) A temporal analysis of urban forest carbon storage using remote sensing. Remote Sens Environ 101:277–282

    Article  Google Scholar 

  • Nair PKR (2012) Carbon sequestration studies in agroforestry systems: a reality-check. Agrofor Syst 86:243–253

    Article  Google Scholar 

  • Negreros-Castillo P, Mize CW (2002) Enrichment planting and the sustainable harvest of mahogany (Swietenia macrophylla K) in Quintana Roo, Mexico. In: Figueroa J, Lugo A (eds) Big-leaf mahogany: genetics, ecology and management. Springer, New York/London

    Google Scholar 

  • Nilsson S (2008) The Indian forestry system at a crossroads: an outsider’s view. Int For Rev 10:414–421

    Google Scholar 

  • Norgrove L, Hauser S (2013) Carbon stocks in shaded Theobroma cacao farms and adjacent secondary forests of similar age in Cameroon. Trop Ecol 54:15–22

    Google Scholar 

  • Nowak DJ (2002) Carbon storage and sequestration by urban trees in the USA. Environ Pollut 116:381–389

    Article  CAS  PubMed  Google Scholar 

  • Nowak DJ, Crane DE, Stevens JC, Hoehn RE, Walton JT, Bond J (2008) A ground-based method of assessing urban forest structure and ecosystem services. Arbori Urban For 34:347–358

    Google Scholar 

  • Nowak DJ, Hirabayashib S, Doylec M, McGovernc M, Pasher J (2018) Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban For Urban Green 29:40–48

    Article  Google Scholar 

  • Oke D, Olatiilu A (2011) Carbon storage in agro ecosystems: a case study of the cocoa based agro forestry in Ogbese forest reserve, Ekiti State, Nigeria. J Environ Prot 2:1069–1075

    Article  Google Scholar 

  • Oleyar MD, Greve AI, Withey JC, Bjorn AM (2008) An integrated approach to evaluating urban forest functionality. Urban Econ 11:289–308

    Google Scholar 

  • Ouma YO, Tateishi R (2008) Urban-trees extraction from Quick bird imagery using multiscale espectex-filtering and non-parametric classification. ISPRS J Photo Remot Sens 63:333–351

    Article  Google Scholar 

  • Padalia H, Chauhan N, Porwal MC, Roy PS (2014) Phytosociological observations on tree species diversity of Andaman Islands, India. Curr Sci 87:799–806

    Google Scholar 

  • Painkra GP, Bhagat PK, Jhariya MK, Yadav DK (2016) Beekeeping for poverty alleviation and livelihood security in Chhattisgarh, India. In: Narain S, Rawat SK (eds) Innovative technology for sustainable agriculture development. Biotech Books, New Delhi, pp 429–453. ISBN: 978-81-7622-375-1

    Google Scholar 

  • Pain-Orcet M, Bellefontaine R (2004) Trees outside the forest: a new perspective on the management of forest resources in the tropics. In: Babin D (ed) Beyond tropical deforestation. UNESCO/CIRAD, Paris, pp 423–430

    Google Scholar 

  • Paletto A, Chincarini M (2012) Heterogeneity of linear forest formations: differing potential for biodiversity conservation. A case study in Italy. Agrofor Syst 86:83–93

    Article  Google Scholar 

  • Pandey DN (2007) Multifunctional agroforestry systems in India. Curr Sci 92:455–461

    Google Scholar 

  • Pandey D (2008) Trees outside the forest (TOF) resources in India. Int For Rev 10:125–133

    Google Scholar 

  • Pandey SS, Cockfield G, Maraseni TN (2014) Carbon stock dynamics in different vegetation dominated community forests under REDD+: a case from Nepal. For Ecol Manage 32:40–47

    Article  Google Scholar 

  • Pandit BH, Shrestha KK, Bhattarai SS (2014) Sustainable local livelihoods through enhancing agroforestry systems in Nepal. J For Livelihood 12:47–63

    Google Scholar 

  • Perry CH, Woodall CW, Liknes GC, Schoeneberger MM (2009) Filling the gap: improving estimates of working tree resources in agricultural landscapes. Agrofor Syst 75:91–101

    Article  Google Scholar 

  • Plieninger T (2011) Capitalizing on the carbon sequestration potential of agroforestry in Germany’s agricultural landscapes: realigning the climate change mitigation and landscape conservation agendas. Land Res 36:435–454

    Article  Google Scholar 

  • Plieninger T, Pulido FJ, Schaich H (2004) Effects of land-use and landscape structure on holm oak recruitment and regeneration at farm level in Quercus ilex L. dehesas. J Arid Environ 57:345–364

    Article  Google Scholar 

  • Prasad R, Kotwal PC, Pandey DN (2000) Trees outside forests in India: a national assessment (Mimeographed). IIFM Bhopal

    Google Scholar 

  • Pujar GS, Reddy PM, Reddy CS, Jha CS, Dadhwal VK (2014) Estimation of trees outside forests using IRS high resolution data by object based image analysis. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-8.ISPRS Technical Commission VIII Symposium, 9–12 December, Hyderabad, India

    Google Scholar 

  • Pushpangadan P, Ravi K, Santosh V (1997) Conservation and economic evaluation of biodiversity. Vols. I–II. IBH Publishing Co. Pvt. Ltd., Oxford/New Delhi

    Google Scholar 

  • Rahman MM, Kabiir EM, Jahir Uddin Akon ASM, Ando K (2015) High carbon stocks in roadside plantations under participatory management in Bangladesh. Glob Ecol Conserv 3:412–423

    Article  Google Scholar 

  • Raj A, Jhariya MK, Harne SS (2018a) Threats to biodiversity and conservation strategies. In: Sood KK, Mahajan V (eds) Forests, climate change and biodiversity. Kalyani Publisher, New Delhi, pp 304–320. Pp. 381

    Google Scholar 

  • Raj A, Jhariya MK, Bargali SS (2018b) Climate smart agriculture and carbon sequestration. In: Pandey CB, Gaur MK, Goyal RK (eds) Climate change and agroforestry: adaptation mitigation and livelihood security. New India Publishing Agency (NIPA), New Delhi, pp 1–19. ISBN: 9789-386546067

    Google Scholar 

  • Rajendra A, Aravindhan V, Sarvalingam A (2014) Biodiversity of the Bharathiar university campus, India, India: A floristic approach. Int J Biodivers Conserv 6:308–319

    Article  Google Scholar 

  • Ranasinghe CS, Silva LRS (2007) Photosynthetic assimilation carbohydrates in vegetative organs and carbon removal in nut-producing and sap-producing coconut palms. COCOS 18:45–57

    Google Scholar 

  • Ranasinghe CS, Thimothias KSH (2012) Estimation on carbon sequestration potential in coconut plantations under different agro-ecological and land suitability classes. J Nat Sci Found 40:77–93

    Google Scholar 

  • Ranjan A, Khawas SK, Mishra PK (2016) Carbon sequestration efficacy of trees of Vinoba Bhave University Campus, Hazaribah. J Multidiscip Eng Sci Technol 3:4688–4692

    Google Scholar 

  • Rawat JK, Dasgupta SS, Kumar RS (2004) Assessment of tree outside forest based on remote sensing satellite data. Forest Survey of India, Dehra Dun

    Google Scholar 

  • Regmi BN (1998) Program dynamics of the Nepal Agroforestry Foundation in Majhitar of Dhading District, Nepal. Unpublished M.Sc. Thesis. Graduate School, Department of Social Forestry, University of the Philippines Los Baños, Philippines

    Google Scholar 

  • Regmi BN, Garforth C (2010) Trees outside forests and rural livelihoods: a study of Chitwan District, Nepal. Agrofor Syst 79:393–407

    Article  Google Scholar 

  • Riemann R (2003) Pilot inventory of FIA plots traditionally called “Nonforest”. USDA, Forest Service, Newton Square

    Book  Google Scholar 

  • Roshetko JM, Lasco RD, Angeles MD (2007) Small holder agroforestry systems for carbon storage. Mitig Adapt Strat Glob Chang 12:219–242

    Article  Google Scholar 

  • Rowntree RA, Nowak DJ (1991) Quantifying the role of urban forest in removing atmospheric carbon dioxide. J Arboric 17:269–275

    Google Scholar 

  • Rutzinger M, Höfle B, Hollaus M, Pfeifer N (2008) Object-based point cloud analysis of full-waveform airborne laser scanning data for urban vegetation classification. Sensors 8:4505–4528

    Article  PubMed  Google Scholar 

  • Rydberg D, Falck J (2000) Urban forestry in Sweden from a silvicultural perspective: a review. Land Urban Plan 47:1–18

    Article  Google Scholar 

  • Sayer J, Sunderland T, Ghazou IJ, Pfund J, Sheil D, Meijaard E, Venter M, Boedhihartono A, Day M, Garcia C, Oosten C, Buck LE (2013) Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. PNAS 110:8349–8356

    Article  CAS  PubMed  Google Scholar 

  • SCBD (2005) Handbook of the convention on biological diversity including its Cartagena Protocol on biosafety, 3rd edn. CBD, UNEP, Montreal

    Google Scholar 

  • Schnell S (2015) Integrating trees outside forests into national forest inventories. Doctoral thesis. Swedish University of Agricultural Sciences, Umeå. SLU Service/Repro, Uppsala. 74 p

    Google Scholar 

  • Schnell S, Altrell D, Ståhl G, Kleinn C (2015) The contribution of trees outside forests to national tree biomass and carbon stocks-a comparative study across three continents. Environ Monit Assess 187:4197

    Article  CAS  PubMed  Google Scholar 

  • Schoeneberger MM (2009) Agroforestry: working trees for sequestering carbon on agricultural lands. Agrofor Syst 75:27–37

    Article  Google Scholar 

  • Schroeder P (1994) Carbon storage benefits of agroforestry system. Agrofor Syst 27:89–97

    Article  Google Scholar 

  • Schumacher J, Nord-Larsen T (2014) Wall-to-wall tree type classification using airborne lidar data and CIR images. Int J Remote Sens 35:3057–3073

    Article  Google Scholar 

  • Sekikawa S, Koizumi H, Kibe T (2002) Diurnal and seasonal changes in soil respiration in a Japanese grape vine orchard and their dependence on temperature and rainfall. J Jpn Agric Syst Soc 18:44–54

    Google Scholar 

  • Sharma R, Ekka A (2016) Diversity of medicinal plants in Pt. Ravishankar Shukla University campus, Raipur, Chhattisgarh, India. Eur J Pharma Medic Res 3:383–397

    Google Scholar 

  • Sheeren D, Bastin N, Ouin A, Ladet S, Balent G, Lacombe J-P (2009) Discriminating small wooded elements in rural landscape from aerial photography: a hybrid pixel/object-based analysis approach. Int J Remote Sens 30:4979–4990

    Article  Google Scholar 

  • Shwartz A, Turbe A, Julliard R, Simon L, Prevot TC (2014) Outstanding challenges for urban conservation research and action. Glob Environ Chang 28:39–49

    Article  Google Scholar 

  • Sihag SK, Singh MK, Meena RS, Naga S, Bahadur SR, Gaurav YRS (2015) Influences of spacing on growth and yield potential of dry direct seeded rice (Oryza sativa L.) cultivars. Ecoscan 9(1-2):517–519

    Google Scholar 

  • Singh K, Chand P (2012) Above-ground tree outside forest (TOF) phytomass and carbon estimation in the semi-arid region of southern Haryana: a synthesis approach of remote sensing and field data. J Earth Syst Sci 121:1469–1482

    Article  Google Scholar 

  • Singh P, Lodhiyal LS (2009) Biomass and carbon allocation in 8-year-old poplar (Populus deltoids Marsh) plantation in Terai agroforestry system of Central Himalaya, India. N Y Sci J 2:49–53

    Google Scholar 

  • Singh K, Singh G (2015) Roadside vegetation diversity of Jodhpur district and its role in carbon sequestration and climate change mitigation. Adv For Sci 2:23–33

    Google Scholar 

  • Singh SP, Sah PP, Tyagi V, Jina BS (2005) Species diversity contributes to productivity– Evidence from natural grassland communities of the Himalaya. Curr Sci 89:548–552

    Google Scholar 

  • Singh A, Balodi KN, Naithani S, Srivastava A, Singh A, Kwon-Ndung E (2017) Vascular plant diversity with special reference to invasion of alien species on the Doon University Campus, Dehradun, India. Int J Biodivers Conserv 9:56–76

    Article  Google Scholar 

  • Small C, Lu JWT (2006) Estimation and vicarious validation of urban vegetation abundance by spectral mixture analysis. Remote Sens Environ 100:441–456

    Article  Google Scholar 

  • Sofo A, Nuzzo V, Palese AM, Xiloyannis C, Celano G (2005) Net CO2 storage in Mediterranean olive and peach orchards. Sci Hortic 107:17–24

    Article  Google Scholar 

  • Sonwa DJ, Weise SF, Nkongmeneck BA, Tchatat M, Janssens MJJ (2009) Carbon stock in smallholder chocolate forest in Southern Cameroon and potential role in climate change mitigation. IOP Conf Ser Earth Environ Sci 6:252–308

    Article  Google Scholar 

  • Srinidhi HV, Datta SK, Chauhan R, Gill MK (2007) Dendroremediation: use of trees to cleanup environment in different land use systems. Environ Ecol 25:245–254

    Google Scholar 

  • Srivastav A, Pandey AK, Dubey R (2012) Assessment of important tree outside forests (TOF) in Gorakhpur district of Uttar Pradesh. Indian Forester 138:252–256

    Google Scholar 

  • Ståhl G, Holm S, Gregoire TG, Gobakken T, Naesset E, Nelson R (2011) Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County, Norway. Can J For Res 41:96–107

    Article  Google Scholar 

  • Straub C, Weinacker H, Koch B (2008) A fully automated procedure for delineation and classification of forest and non-forest vegetation based on full waveform laser scanner data. In: Chen J, Jiang J, Peled A (eds) ISPRS Archives – Volume XXXVII Part B8. ISPRS, Beijing, pp 1013–1020

    Google Scholar 

  • Suryawanshi MN, Patel AR, Kale TS, Patil PR (2014) Carbon sequestration potential of tree species in the environment of North Maharashtra University Campus, Jalgaon (MS) India. Biosci Discov 5:175–179

    Google Scholar 

  • Tamang B (2018) Diversity and biomass of woody perennials in Pundibari Campus of Uttar Banga Krishi Viswavidyalaya, Cooch Behar (W.B.). M.Sc. Thesis. Unpublished

    Google Scholar 

  • Tansey K, Chambers I, Anstee A, Denniss A, Lamb A (2009) Object-oriented classification of very high resolution airborne imagery for the extraction of hedgerows and field margin cover in agricultural areas. Appl Geogr 29:145–157

    Article  Google Scholar 

  • Taubenbock H, Esch T, Wurm M, Roth A, Dech S (2010) Object-based feature extraction using high spatial resolution satellite data of urban areas. J Spat Sci 55:117–132

    Article  Google Scholar 

  • ter Steege H, Pitman NC, Sabatier D, Baraloto C, Salomão RP, Guevara JE, Monteagudo A (2013) Hyperdominance in the Amazonian tree flora. Science 342:1243–1292

    Article  CAS  Google Scholar 

  • Tewari VP, Sukumar R, Kumar R, Gadow K (2014) Forest observational studies in India: past developments and considerations for the future. For Ecol Manage 316:32–46

    Article  Google Scholar 

  • Thangata PH, Hildebrand PE (2012) Carbon stock and sequestration potential of agroforestry systems in smallholder agro ecosystems of sub-Saharan Africa: Mechanisms for reducing emissions from deforestation and forest degradation (REDD+). Agric Ecosyst Environ 158:172–183

    Article  Google Scholar 

  • Thankappan SSB, James EJ, Solomon J (2015) Vascular Plants Scott Christian College, Nagercoil, Tamil Nadu, India. Sci Res Rep 5:36–66

    Google Scholar 

  • Thompson I, Mackey B, McNulty S, Mosseler A (2009) Forest resilience, biodiversity, and climate change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Secretariat of the Convention on Biological Diversity, Montreal. Technical Series 43, pp 67–68

    Google Scholar 

  • Thornton MW, Atkinson PM, Holland DA (2006) Sub-pixel mapping of rural land cover objects from fine spatial resolution satellite sensor imagery using super-resolution pixel-swapping. Int J Remote Sens 27:473–491

    Article  Google Scholar 

  • Thornton MW, Atkinson PM, Holland DA (2007) A linearised pixel-swapping method for mapping rural linear land cover features from fine spatial resolution remotely sensed imagery. Comput Geosci 33:1261–1272

    Article  Google Scholar 

  • Tiwari P, Soni I, Patel S (2014) Study of vegetation in Pt. Ravishankar Shukla University campus management, Raipur Chhattisgarh with special reference to statistics. Indian J Sci Res 4:121–126

    Google Scholar 

  • Tyrvainen L, Pauleit S, Seeland K, de Vries S (2005) Benefits and uses of urban forests and trees. In: Konijnendijk CC, Nilsson K, Randrup TB (eds) Urban forests and trees: a reference book. Springer, Berlin, pp 81–114

    Chapter  Google Scholar 

  • UNCCD (1994) United Nations convention to combat desertification. UN, New York

    Google Scholar 

  • UNFCCC (2008) Kyoto protocol reference manual. UNFCCC, Bonn

    Google Scholar 

  • Varma D, Meena RS, Kumar S, Kumar E (2017) Response of mungbean to NPK and lime under the conditions of Vindhyan Region of Uttar Pradesh. Legum Res 40(3):542–545

    Google Scholar 

  • Verma RK (2000) Analysis of species diversity and soil quality under Tectona grandis (L. f.) and Acacia catechu (L. f.) Wild plantations raised on degraded bhata land. Indian J Ecol 27:97–108

    Google Scholar 

  • Walker JS, Briggs JM (2007) An object-oriented approach to urban forest mapping in Phoenix. Photogramm Eng Remote Sens 73:577–583

    Article  Google Scholar 

  • Walton JT (2008) Difficulties with estimating city-wide urban forest cover change from national, remotely-sensed tree canopy maps. Urban Ecosyst 11:81–90

    Article  Google Scholar 

  • Wolf KL (2005) Business district streetscapes, trees and consumer response. J For 103:396–400

    Google Scholar 

  • Wolf KL (2007) City trees and property values. Arborist News, August 2007

    Google Scholar 

  • Yadav GS, Babu S, Meena RS, Debnath C, Saha P, Debbaram C, Datta M (2017a) Effects of godawariphosgold and single supper phosphate on groundnut (Arachis hypogaea) productivity, phosphorus uptake, phosphorus use efficiency and economics. Indian J Agric Sci 87(9):1165–1169

    CAS  Google Scholar 

  • Yadav RP, Bisht JK, Bhatt JC (2017b) Biomass, carbon stock under different production systems in the mid hills of Indian Himalaya. Trop Ecol 58:15–21

    CAS  Google Scholar 

  • Yadava Y, Chhetri BBK, Raymajhi S, Tiwari KR, Sitaula BK (2017) Importance of trees outside forest (TOF) in Nepal: a review. Octa J Environ Res 5:70–81

    Google Scholar 

  • Yoon TK, Park CW, Lee SJ, Ko S, Kim KN, Son Y, Lee KH, Oh S, Lee WK, Son Y (2013) Allometric equations for estimating the aboveground volume of five common urban street tree species in Daegu, Korea. Urban For Urban Green 12:344–349

    Article  Google Scholar 

  • Zhang Y, Duan B, Xian J, Korpelainen H, Li C (2011) Links between plant diversity. Carbon stocks and environmental factors along a successional gradient in a subalpine coniferous forest in Southwest China. For Ecol Manage 262:361–369

    Article  Google Scholar 

  • Zhou W, Troy A (2008)An object-oriented approach for analysing and characterizing urban landscape at the parcel level Int J Remote Sens 29:3119-3135

    Article  Google Scholar 

  • Zhou XH, Brandle JR, Schoeneberger MM, Awada T (2007) Developing above-ground woody biomass equations for open-grown, multiple-stemmed tree species: Shelterbelt-grown Russian-olive. Ecol Model 202:311–323

    Article  Google Scholar 

  • Zhou X, Brandle JR, Awada TN, Schoeneberger MM, Martin DL, Xin Y, Tang Z (2011) The use of forest-derived specific gravity for the conversion of volume to biomass for open-grown trees on agricultural land. Biomass Bioenergy 35:1721–1731

    Article  Google Scholar 

  • Zhou X, Schoeneberger MM, Brandle JR, Awada TN, Chu J, Martin DL, Li J, Li Y, Mize CW (2014) Analyzing the uncertainties in use of forest-derived biomass equations for open-grown trees in agricultural land. For Sci 61:144–161

    Google Scholar 

  • Zomer RJ, Coe R, Place F, van Noordwijk M, Xu JC (2014) Trees on farms: an update and reanalysis of agroforestry’s global extent and socio-ecological characteristics. World Agroforestry Centre (ICRAF) Southeast Asian Regional Program, Bogor

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakravarty, S. et al. (2019). Ecosystem Services of Trees Outside Forest. In: Jhariya, M., Banerjee, A., Meena, R., Yadav, D. (eds) Sustainable Agriculture, Forest and Environmental Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-6830-1_10

Download citation

Publish with us

Policies and ethics