Skip to main content

Influence of Xenobiotics on the Mycorrhizosphere

  • Chapter
  • First Online:
Mycorrhizosphere and Pedogenesis

Abstract

The pollution of air, soil and water by xenobiotics creates a disturbance to the ecosystem and cause climatic changes which pose a problem to the environment. Xenobiotics are unnatural toxic substances and include those chemicals used in agriculture such as pesticides and synthetic fertilizers. Certain microorganisms in the indigenous environment have evolved mechanisms to degrade or transform the hazardous organic compounds into non-toxic substances but this ability appears to be extremely limited in plants. The rhizosphere along with the hyphosphere is termed as mycorrhizosphere. Bioremediation involves the interaction between plants and their associated microbes that reside in mycorrhizosphere. Plant roots release organic compounds called rhizodeposits that allows the growth of microbial communities. Under certain conditions, contaminants resemble rhizodeposits which stimulate the degradation process in the rhizosphere by inducing desired degradation pathways. The root exudates also provide signalling mechanisms that lead to complex interactions in the rhizosphere including symbiosis. Root colonizing symbiotic mycorrhizal fungi is mainly involved in degrading or maintaining a wide range of soil microorganisms that can breakdown environmentally persistent toxic pollutants due to their enzymatic activity. The mycorrhizal fungi colonize the cortical cells of the roots forming intraradical structures and extend their extraradical mycelium deep into the contaminated soil. These fungi are therefore able to reach the pollutants effectively and also modify the functions of existing enzymes in the rhizosphere to catalyse reactions leading to the degradation of xenobiotics. Rhizoremediation enables the plant to accumulate, translocate and metabolize the organic xenobiotics into harmless products thereby alleviating the toxicity in contaminated sites. This chapter highlights the concept of mycorrhizosphere, xenobiotic metabolism, molecular approaches for detoxifying the organic xenobiotics and the role of mycorrhizosphere in stabilizing the environment in an eco-friendly way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Ghany, T. M., & Masmali, I. A. (2016). Fungal biodegradation of organophosphorus insecticides and their impact on soil microbial population. Journal of Plant Pathology and Microbiology, 7, 349. https://doi.org/10.4172/2157-7471.1000349.

    Article  CAS  Google Scholar 

  • Adesemoye, A. O., Torbert, H. A., & Kloepper, J. W. (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 58, 921–929.

    Article  CAS  PubMed  Google Scholar 

  • Agrawal, N., & Dixit, A. K. (2015). An environmental cleanup strategy-Microbial transformation of xenobiotic compounds. International Journal of Current Microbiology and Applied Sciences, 4, 429–461.

    CAS  Google Scholar 

  • Alarcόn, A., Davies, F. T., Autenrieth, R. L., & Zuberer, D. A. (2008). Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleum-contaminated soil. International Journal of Phytoremediation, 10, 251–263.

    Article  CAS  Google Scholar 

  • Alexander, M. (1965). Biodegradation: Problems of molecular recalcitrance and microbial infallibility. Advances in Applied Microbiology, 7, 35–80.

    Article  CAS  PubMed  Google Scholar 

  • Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. In B. Alloway (Ed.), Heavy metals in soils. Environmental Pollution (Vol. 22, pp. 11–50). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Amrani, A. E., Dumas, A. S., Wick, L. Y., Yergeau, E., & Berthome, R. (2015). “Omics” insights into PAH degradation toward improved green remediation biotechnologies. Environmental Science & Technology, 49, 11281–11291.

    Article  CAS  Google Scholar 

  • Anderson TA, Coats JR (1995) An overview of microbial degradation in the rhizosphere and its implications for bioremediation. In: Skipper HD, Turco RF (eds) Bioremediation: Science and applications. SSSA Spec. Publ. 43. SSSA, ASA, and CSSA, Madison, WI, pp 135–143.

    Google Scholar 

  • Anderson, T. A., Guthrie, E. A., & Walton, B. T. (1993). Bioremediation in the rhizosphere. Environmental Science & Technology, 27, 2630–2636.

    Article  CAS  Google Scholar 

  • Aranda, E., Scervino, J. M., Godoy, P., Reina, R., Ocampo, J. A., Wittich, R. M., & García-Romera, I. (2013). Role of arbuscular mycorrhizal fungus Rhizophagus custos in the dissipation of PAHs under root-organ culture conditions. Environmental Pollution, 181, 182–189.

    Article  CAS  PubMed  Google Scholar 

  • Arora, P. K., Sasikala, C., & Ramana, C. V. (2012). Degradation of chlorinated nitroaromatic compounds. Applied Microbiology and Biotechnology, 93, 2265–2277.

    Article  CAS  PubMed  Google Scholar 

  • Asif, M., & Bhabatosh, M. (2013). Effects of inoculation with stress adapted arbuscular mycorrhizal fungus Glomus deserticola on growth of Solanum melogena L. and Sorghum sudanese Staph., seedlings under salinity and heavy metal stress conditions. Archives of Agronomy and Soil Science, 59, 173–183.

    Article  CAS  Google Scholar 

  • Atafar, Z., Mesdaghinia, A. R., Nouri, J., Homaee, M., Yunesian, M., Ahmadimoghaddam, M., & Mahvi, A. H. (2010). Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring and Assessment, 160, 83–89.

    Article  CAS  PubMed  Google Scholar 

  • Auge, R. M. (2001). Water relations drought and vesicular arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3–42.

    Article  Google Scholar 

  • Azcón, R., Medina, A., Aroca, R., & Ruiz-Lozano, J. M. (2013). Abiotic stress remediation by the arbuscular mycorrhizal symbiosis and rhizosphere bacteria/yeast interactions. In F. J. de Bruijn (Ed.), Molecular Microbial Ecology of the Rhizosphere (Vol. 2, 1st ed., pp. 991–1002). New Jersey: John Wiley & Sons, Inc.

    Chapter  Google Scholar 

  • Baetz, U., & Martinoia, E. (2014). Root exudates: The hidden part of plant defense. Trends in Plant Science, 19, 90–98.

    Article  CAS  PubMed  Google Scholar 

  • Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.

    Article  CAS  PubMed  Google Scholar 

  • Barea, J. M. (1997). Mycorrhiza/bacteria interactions on plant growth promotion. In A. Ogoshi, L. Kobayashi, Y. Homma, F. Kodama, N. Kondon, & S. Akino (Eds.), Plant growth-promoting rhizobacteria, present status and future prospects (pp. 150–158). Paris: OECD.

    Google Scholar 

  • Barkay, T., & Pritchard, H. (1988). Adaptation of aquatic microbial communities to pollutant stress. Microbiological Sciences, 5, 165–169.

    CAS  PubMed  Google Scholar 

  • Barr, D. P., & Aust, S. D. (1994). Pollutant degradation by white rot fungi. Reviews of Environmental Contamination and Toxicology, 138, 49–72.

    CAS  PubMed  Google Scholar 

  • Bennet, T. W., Wnnch, K. G., & Faision, B. D. (2002). Use of fungi biodegradation. In C. J. Hurst (Ed.), Manual of environmental microbiology (pp. 960–971). Washington, DC: ASM Press.

    Google Scholar 

  • Bhandari, G. (2018). Bioremediation of industrial waste using microbial metabolic diversity. In Pankaj & A. Sharma (Eds.), Microbial biotechnology in environmental monitoring and cleanup (pp. 286–304). Hershey: IGI Global: International Publisher of Information Science and Technology Research.

    Chapter  Google Scholar 

  • Binet, P., Portal, J. M., & Leyval, C. (2000). Fate of polycyclic aromatic hydrocarbons (PAH) in the rhizosphere and mycorrhizosphere of ryegrass. Plant and Soil, 227, 207–213.

    Article  CAS  Google Scholar 

  • Bodekar, I. T. M., Nygren, C. M. R., Taylor, A. F. S., Olson, A., & Lindahl, B. D. (2009). Class II peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi. The ISME Journal, 3, 1387–1395.

    Article  CAS  Google Scholar 

  • Borde, M., Dudhane, M., & Jite, P. K. (2010). AM fungi influences the photosynthetic activity, growth and antioxidant enzymes in Allium sativum L. under salinity condition. Notulae Scientia Biologicae, 2, 64–71.

    Article  CAS  Google Scholar 

  • Borie, F., Rubio, R., & Morales, A. (2008). Arbuscular mycorrhizal fungi and soil aggregation. Journal of Soil Science and Plant Nutrition, 8, 9–18.

    Google Scholar 

  • Bray, D. E. (1997). Plant responses to water deficit. Trends in Plant Science, 2, 48–54.

    Article  Google Scholar 

  • Brundrett, M. C., & Abbott, L. K. (2002). Arbuscular mycorrhizas in plant communities. In K. Sivasithamparam, K. W. Dixon, & R. L. Barrett (Eds.), Microorganisms in plant diversity conservation and biodiversity (pp. 151–193). London: Kluwer Academica Publishers.

    Google Scholar 

  • Bulucea, C. A., Rosen, M. A., Mastorakis, N. E., Bulucea, C. A., & Brindusa, C. (2012). Approaching resonant absorption of environmental xenobiotics harmonic oscillation by linear structure. Sustainability, 4, 561–573.

    Article  Google Scholar 

  • Burke, R. M., & Cairney, J. W. G. (2002). Laccases and other polyphenol oxidases in ecto- and ericoid mycorrhizal fungi. Mycorrhiza, 12, 105–116.

    Article  CAS  PubMed  Google Scholar 

  • Campagnac, E., Sahraoui, L. A., Debiane, D., Fontaine, J., Laruelle, F., Garcon, G., Verdin, A., Durand, R., Shiralo, P., & Grandmougin, F. (2010). Arbuscular mycorrhiza partially protected chicory roots against oxidative stress induced by two fungicides, fenpropimorph and fenhexamid. Mycorrhiza, 20, 167–178.

    Article  CAS  PubMed  Google Scholar 

  • Cardozo Junior, F. M., Carneiro, R. F. V., Rocha, S. M. B., Nunes, L. A. P. L., Santos, V. M., dos Feitoza, L. L., & Araújo, A. S. F. (2016). The impact of pasture systems on soil microbial biomass and community-level physiological profiles. Land Degradation and Development, 29, 284–291.

    Article  Google Scholar 

  • Cébron, A., Louvel, B., Faure, P., France-Lanord, C., Chen, Y., & Murrell, J. C. (2011). Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates. Environmental Microbiology, 13, 722–736.

    Article  PubMed  CAS  Google Scholar 

  • Chagnon, P. L., & Bradley, R. L. (2013). Evidence that soil nutrient stoichiometry controls the competitive abilities of arbuscular mycorrhizal vs. root-borne non-mycorrhizal fungi. Fungal Ecology, 6, 557–660.

    Article  Google Scholar 

  • Channabasava, A., Lakshman, H. C., & Jorquera, M. A. (2015). Effect of fungicides on association of arbuscular mycorrhiza fungus Rhizophagus fasciculatus and growth of Proso millet (Panicum miliaceum L.). Journal of Soil Science and Plant Nutrition, 15, 35–45.

    Google Scholar 

  • Chaudhry, Q., Blom-Zandstra, M., Gupta, S., & Joner, E. J. (2005). Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environmental Science and Pollution Research, 12, 34–48.

    Article  CAS  PubMed  Google Scholar 

  • Chen, B. D., Zhu, Y. G., Duan, J., Xiao, X. Y., & Smith, S. E. (2007). Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environmental Pollution, 147, 374–380.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W., Consortium, F. B., & List, F. B. C. A. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America, 109, 6241–6246.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chibuike, G. (2013). Use of mycorrhiza in soil remediation: a review. Scientific Research and Essays, 8, 1679–1687.

    Article  CAS  Google Scholar 

  • Chinnusamy, V., Jagendorf, A., & Zhu, J. K. (2005). Understanding and improving salt tolerance in plants. Crop Science, 45, 437–448.

    Article  CAS  Google Scholar 

  • Corgié, S. C., Beguiristain, T., & Leyval, C. (2004). Spatial distribution of bacterial communities and phenanthrene degradation in the rhizosphere of Lolium perenne L. Applied and Environmental Microbiology, 70, 3552–3557.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Courty, P. E., Labbé, J., Kohler, A., Marçais, B., Bastien, C., Churin, J. L., & Garbaye, V. (2011). Effect of poplar genotypes on mycorrhizal infection and secreted enzyme activities in mycorrhizal and non-mycorrhizal roots. Journal of Experimental Botany, 62, 249–260.

    Article  CAS  PubMed  Google Scholar 

  • Crowley, D. E., Brennerova, M. V., Irwin, C., Brenner, V., & Focht, D. D. (1996). Rhizosphere effects on biodegradation of 2 5-dichlorobenzoate by a bioluminescent strain of root colonizing Pseudomonas fluorescens. FEMS Microbiology Ecology, 20, 79–89.

    Article  CAS  Google Scholar 

  • Cunningham, S. D., Anderson, T. A., Schwab, A. P., & Hsu, F. C. (1996). Phytoremediation of soils contaminated with organic pollutants. Advances in Agronomy, 56, 55–114.

    Article  CAS  Google Scholar 

  • Curl, E. A., & Truelove, B. (1986). The rhizosphere. Berlin: Springer.

    Book  Google Scholar 

  • Dennis, P. G., Miller, A. J., & Hirsch, P. R. (2010). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities. FEMS Microbiology Ecology, 72, 313–327.

    Article  CAS  PubMed  Google Scholar 

  • Díaz, E. (2004). Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. International Microbiology, 7, 173–180.

    PubMed  Google Scholar 

  • Dietrich, D., Hickey, W. J., & Lamar, R. T. (1995). Degradation of 4,4′- dichlorobiphenyl, 3,3′, 4,4′-tetrachlorobiphenyl and 2,2′,4,4′,5,5′-hexachlorobiphenyl by the white-rot fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology, 61, 3904–3909.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donnelly, P. K., & Fletcher, J. S. (1995). PCB metabolism by ectomycorrhizal fungi. Bulletin of Environmental Contamination and Toxicology, 54, 507–513.

    Article  CAS  PubMed  Google Scholar 

  • Donnelly, P. K., Entry, J. A., & Crawford, D. L. (1993). Degradation of atrazine and 2,4-dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro. Applied and Environmental Microbiology, 59, 2642–2647.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doty, S. L., James, C. A., Moore, A. L., Vajzovic, A., Singleton, G. L., Ma, C., Khan, Z., Xin, G., Kang, J. W., Park, J. Y., Meilan, R., Strauss, S. H., Wilkerson, J., Farin, F., & Strand, S. E. (2007). Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proceedings of the National Academy of Sciences of the United States of America, 104, 16816–16821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Druillea, M., Cabellob, M. N., Omacinia, M., & Golluscioa, R. A. (2013a). Glyphosate reduces spore viability and root colonization of arbuscular mycorrhizal fungi. Applied Soil Ecology, 64, 99–103.

    Article  Google Scholar 

  • Druillea, M., Omacinia, M., Golluscioa, R. A., & Cabellob, M. N. (2013b). Arbuscular mycorrhizal fungi are directly and indirectly affected by glyphosate application. Applied Soil Ecology, 72, 143–149.

    Article  Google Scholar 

  • Dubey, K. K., & Fulekar, M. H. (2011). Effect of pesticides on the seed germination of Cenchrus setigerus and Pennisetum pedicellatum as monocropping and co-cropping system: Implications for rhizospheric bioremediation. Romanian Biotechnological Letters, 16, 5908–5918.

    Google Scholar 

  • Dubey, K. K., & Fulekar, M. H. (2013). Investigation of potential rhizospheric isolate for cypermethrin degradation. Biotech, 3, 33–43.

    Google Scholar 

  • Duponnois, R., Kisa, M., & Plenchette, C. (2006). Phosphate solubilizing potential of the nematofungus Arthrobotrys oligospora. Journal of Plant Nutrition and Soil Science, 169, 280–282.

    Article  CAS  Google Scholar 

  • Edwards, S. J., & Kjellerup, B. V. (2013). Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Applied Microbiology and Biotechnology, 97, 9909–9921.

    Article  CAS  PubMed  Google Scholar 

  • Evelin, H., Kapoor, R., & Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany, 104, 1263–1280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, S., Li, P., Gong, Z., Ren, W., & He, N. (2008). Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L.). Chemosphere, 71, 1593–1598.

    Article  CAS  PubMed  Google Scholar 

  • Fang, C., Radosevich, M., & Fuhrmann, J. J. (2001). Characterization of rhizosphere microbial community structure in five similar grass species using fame and biology analyses. Soil Biology and Biochemistry, 33, 679–682.

    Article  CAS  Google Scholar 

  • Farooq, M., Basra, S. M. A., Hafeez, K., & Ahmad, N. (2005). Thermal hardening a new seed vigor enhancement tool in rice. Journal of Integrative Plant Biology, 47, 187–193.

    Article  Google Scholar 

  • Farrar, J., Aawes, M., Tones, D., & Lindow, S. (2003). How roots control the flux of carbon to the rhizosphere. Ecology, 84, 827–837.

    Article  Google Scholar 

  • Flathman, P. E., & Lanza, G. R. (1998). Phytoremediation current views on an emerging green technology. Journal of Soil Contamination, 7, 415–432.

    Article  Google Scholar 

  • Fokom, R., Teugwa, M. C., Nana, W. L., Ngonkeu, M. E. L., Tchameni, S., Nwaga, D., Rillig, C. M., & Amvam, Z. P. H. (2013). Glomalin, carbon, nitrogen and soil aggregate stability as affected by land use changes in the humid forest zone in South Cameroon. Applied Ecology and Environmental Research, 11, 581–592.

    Article  Google Scholar 

  • Furukawa, K. (2018). Microbial degradation of polychlorinated biphenyls. In A. M. Chakrabarty (Ed.), Biodegradation and detoxification of environmental pollutants (pp. 33–58). New York: CRC Press.

    Chapter  Google Scholar 

  • Gange, A. (1993). Translocation of mycorrhizal fungi by earthworms during early succession. Soil Biology and Biochemistry, 25, 1021–1026.

    Article  Google Scholar 

  • Gao, Y., Cheng, Z., Ling, W., & Zhu, X. (2010). Arbuscular mycorrhizal fungal hyphae contribute to the uptake of polycyclic aromatic hydrocarbons by plant roots. Bioresource Technology, 101, 6895–6901.

    Article  CAS  PubMed  Google Scholar 

  • Gianfreda, L. (2015). Enzymes of importance to rhizosphere processes. Journal of Soil Science and Plant Nutrition, 15, 283–306.

    CAS  Google Scholar 

  • Gianfreda, L., & Rao, M. A. (2008). Interactions between xenobiotics and microbial and enzymatic soil activity. Critical Reviews in Environmental Science and Technology, 38, 269–310.

    Article  CAS  Google Scholar 

  • Gianinazzi, S., Gollotte, A., Marie-Noëlle, B., van Tuinen, D., & Redecker, W. D. (2010). Agroecology the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza, 20, 519–530.

    Article  PubMed  Google Scholar 

  • Giovannetti, M., Turrini, A., Strani, P., Sbrana, C., Avio, L., & Pietrangeli, B. (2006). Mycorrhizal fungi in ecotoxicological studies: Soil impact of fungicides, insecticides and herbicides. Prevention Today, 2, 47–61.

    Google Scholar 

  • Gonzalez- Guerrero, M., Azcon- Aguilar, C., Mooney, M., Valderas, A., Macdiarmid, C. W., Eide, D. J., & Ferrol, N. (2005). Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genetics and Biology, 42, 130–140.

    Google Scholar 

  • Gonzalez, L. F., Sarria, V., & Sanchez, O. F. (2010). Degradation of chlorophenols by sequential biological-advanced oxidative process using Trametes pubescens and TiO2/U. Bioresource Technology, 101, 3493–3499.

    Article  CAS  PubMed  Google Scholar 

  • González-Chávez, M. C., Carrillo-González, R., Wright, S. F., & Nichols, K. A. (2004). The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 130, 317–323.

    Article  PubMed  CAS  Google Scholar 

  • Graham, J. H., Leonard, R. T., & Menge, J. A. (1981). Membrane-mediated decrease in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiology, 68, 549–552.

    Article  Google Scholar 

  • Gramss, G., & Rudeschko, O. (1998). Activities of oxidoreductase enzymes in tissue extracts and sterile root exudates of three crop plants, and some properties of the peroxidase component. The New Phytologist, 138, 401–409.

    Article  CAS  Google Scholar 

  • Green, H., Larsen, J., Olsson, P. A., Jensen, D. F., & Jakobsen, I. (1999). Suppression of the biocontrol agent Trichoderma harzianum by mycelium of the arbuscular mycorrhizal fungus Glomus intraradices in root-free soil. Applied and Environmental Microbiology, 65, 1428–1434.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greń, I., Guzik, U., Wojcieszyńska, D., & Łabużek, S. (2008). Molekularne podstawy rozkładu ksenobiotycznych związków aromatycznych. Biotechnologia, 2, 58–67.

    Google Scholar 

  • Harley, J. L. (1989). The fourth benefactors’ lecture the significance of mycorrhiza. Mycological Research, 92, 129–139.

    Article  Google Scholar 

  • Harms, H., Schlosser, D., & Wick, L. Y. (2011). Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews. Microbiology, 9, 177–192.

    Article  CAS  PubMed  Google Scholar 

  • He, Y., Xu, J., Tang, C., & Wu, Y. (2005). Facilitation of pentachlorophenol degradation in the rhizosphere of ryegrass (Lolium perenne L.). Soil Biology and Biochemistry, 37, 2017–2024.

    Article  CAS  Google Scholar 

  • Higson, F. K. (1992). Microbial degradation of nitroaromatic compounds. Advances in Applied Microbiology, 37, 1–19.

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt, U., Regvar, M., & Bothe, H. (2007). Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry, 68, 139–146.

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger, P., Gobran, G. R., Gregory, P. J., & Wenzel, W. W. (2005). Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. The New Phytologist, 168, 293–303.

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger, P., Bengough, A. G., Vetterlein, D., & Young, I. M. (2009). Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant and Soil, 321, 117–152.

    Article  CAS  Google Scholar 

  • Hsu, T. S., & Bartha, R. (1979). Accelerated mineralization of two organophosphate insecticides in the rhizosphere. Applied and Environmental Microbiology, 37, 36–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, Y. L., Li, Q. B., Deng, X., Lu, Y. H., Liao, X. K., Hong, M. Y., & Wang, Y. (2005). Aerobic and anaerobic biodegradation of polyethylene glycols using sludge microbes. Process Biochemistry, 40, 207–211.

    Article  CAS  Google Scholar 

  • Huber, C., Bartha, B., Harpaintner, R., & Schröder, P. (2009). Metabolism of acetaminophen (paracetamol) in plants two independent pathways result in the formation of a glutathione and a glucose conjugate. Environmental Science and Pollution Research, 16, 206–213.

    Article  CAS  PubMed  Google Scholar 

  • Husaini, A., Roslan, H. A., Hii, K. S. Y., & Ang, C. H. (2008). Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites. World Journal of Microbiology and Biotechnology, 24, 2789–2797.

    Article  CAS  Google Scholar 

  • Ibanez, S. G., Medina, M. I., & Agostini, E. (2011). Phenol tolerance, changes of antioxidative enzymes and cellular damage in transgenic tobacco hairy roots colonized by arbuscular mycorrhizal fungi. Chemosphere, 83, 700–705.

    Article  CAS  PubMed  Google Scholar 

  • Ichinose, H. (2013). Cytochrome P450 of wood-rotting basidiomycetes and biotechnological applications. Biotechnology and Applied Biochemistry, 60, 71–81.

    Article  CAS  PubMed  Google Scholar 

  • Ipsilantis, I., Samourelis, C., & Karpouzas, D. G. (2012). The impact of biological pesticides on arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 45, 147–155.

    Article  CAS  Google Scholar 

  • Jacquot, E., van Tuinen, D., Gianinazzi, S., & Gianinazzi-Pearson, V. (2000). Monitoring species of arbuscular mycorrhizal fungi in planta and in soil by nested PCR: Application to the study of the impact of sewage sludge. Plant and Soil, 226, 179–188.

    Article  CAS  Google Scholar 

  • Jansa, J., Bukovská, P., & Gryndler, M. (2013). Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts – or just soil free-riders? Frontiers in Plant Science, 4, 134. https://doi.org/10.3389/fpls.2013.00134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johansson, J. F., Paul, L. R., & Finlay, R. D. (2004). Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology, 48, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Joner, E., & Leyval, C. (2001). Influence of arbuscular mycorrhiza on clover and ryegrass grown together in a soil spiked with polycyclic aromatic hydrocarbons. Mycorrhiza, 10, 155–159.

    Article  CAS  Google Scholar 

  • Joner, E., & Leyval, C. (2009). Phytoremediation of organic pollutants using mycorrhizal plants: A new aspect of rhizosphere interactions. In E. Lichtfouse, M. Navarrete, P. Debaeke, S. Véronique, & C. Alberola (Eds.), Sustainable agriculture (pp. 885–894). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Joner, E. J., Johansen, A., Loibner, A. P., de la Cruz, M. A., Szolar, O. H., Portal, J. M., & Leyval, C. (2001). Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil. Environmental Science & Technology, 35, 2773–2777.

    Article  CAS  Google Scholar 

  • Joner, E. J., Roos, P., Jansa, J., Frossard, E., Leyval, C., & Jakobsen, I. (2004). No significant contribution of arbuscular mycorrhizal fungi to transfer of radiocesium from soil to plants. Applied and Environmental Microbiology, 70, 6512–6517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joner, E. J., Leyval, C., & Colpaert, J. V. (2006). Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere. Environmental Pollution, 142, 34–38.

    Article  CAS  PubMed  Google Scholar 

  • Kaimi, E., Mukaidani, T., Miyoshi, S., & Tamaki, M. (2006). Ryegrass enhancement of biodegradation in diesel contaminated soil. Environmental and Experimental Botany, 55, 110–119.

    Article  CAS  Google Scholar 

  • Karimi, A., Khodaverdiloo, H., Sepehri, M., & Sadaghiani, M. R. (2011). Arbuscular mycorrhizal fungi and heavy metal contaminated soils. African Journal of Microbiology Research, 5, 1571–1576.

    CAS  Google Scholar 

  • Karpouzas, D. G., & Singh, B. K. (2006). Microbial degradation of organophosphorus xenobiotics metabolic pathways and molecular basis. Physics of Bacterial Morphogenesis, 51, 119–185.

    CAS  Google Scholar 

  • Karpouzas, D. G., Papadopoulou, E., Ipsilantis, I., Friedel, I., Petric, I., Udikovic-Kolic, N., Djuric, S., Kandeler, E., Menkissoglu-Spiroudi, U., & Martin-Laurent, F. (2014). Effects of nicosulfuron on the abundance and diversity of arbuscular mycorrhizal fungi used as indicators of pesticide soil microbial toxicity. Ecological Indicators, 39, 44–53.

    Article  CAS  Google Scholar 

  • Khalvati, M. A. (2005). Quantification of water uptake of hyphae contributing to barley subjected to drought conditions. Doctoral Dissertation, Technical University of Munich. Academic, pp 89.

    Google Scholar 

  • Khalvati, M., Barth, B., Dupigny, A., & Schröder, P. (2010). Arbuscular mycorrhizal association is beneficial for growth and detoxification of xenobiotics of barley under drought stress. Journal of Soils and Sediments, 10, 54–64.

    Article  CAS  Google Scholar 

  • Khan, A. G., Kuek, C., Chaudhry, T. M., Khoo, C. S., & Hayes, W. J. (2000). Plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41, 197–207.

    Article  CAS  PubMed  Google Scholar 

  • Kohler, A. (2015). Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 47, 410–415.

    Article  CAS  PubMed  Google Scholar 

  • Kuiper, I., Lagendijk, E. L., Bloemberg, G. V., & Lugtenberg, B. J. (2004). Rhizoremediation: A beneficial plant–microbe interaction. Molecular Plant-Microbe Interactions, 17, 6–15.

    Article  CAS  PubMed  Google Scholar 

  • Laheurte, F., Leyval, C., & Berthelin, J. (1990). Root exudates of maize, pine and beech seedlings influenced by mycorrhizal and bacterial inoculation. Symbiosis, 9, 111–116.

    Google Scholar 

  • Lanfranco, L., Bolchi, A., Ros, E. C., Ottonello, S., & Bonfante, P. (2002). Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiology, 130, 58–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leake, J. R., Johnson, D., Donnelly, D. P., Muckle, G. E., Boddy, L., & Read, D. J. (2004). Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany, 82, 1016–1045.

    Article  Google Scholar 

  • Lee, S.-H., Lee, W.-S., Lee, C.-H., & Kim, J.-G. (2008). Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. Journal of Hazardous Materials, 153, 892–898.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann, A. (2015). Plant root and mycorrhizal fungal traits for understanding soil aggregation. The New Phytologist, 205, 1385–1388.

    Article  PubMed  CAS  Google Scholar 

  • Leja, K., & Lewandowicz, G. (2010). Polymer biodegradation and biodegradable polymer sea review. Polish Journal of Environmental Studies, 19, 255–266.

    Google Scholar 

  • Lenoir, I., Fontaine, J., & Lounès-Hadj Sahraoui, A. (2016). Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry, 123, 4–15.

    Article  CAS  PubMed  Google Scholar 

  • Leyval, C., Turnau, K., & Haselwandter. (1997). Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza, 7, 139–153.

    Article  CAS  Google Scholar 

  • Li, X.-L., George, E., & Marschner, H. (1991). Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilized with ammonium. The New Phytologist, 119, 397–404.

    Article  CAS  Google Scholar 

  • Liao, H. L., Chen, Y., Bruns, T. D., Peay, K. G., Taylor, J. W., Branco, S., Talbot, J. M., & Vilgalys, R. (2014). Metatranscriptomic analysis of ectomycorrhizal roots reveal genes associated with Piloderma-Pinus symbiosis: Improved methodologies for assessing gene expression in situ. Environmental Microbiology, 16, 3730–3742.

    Article  CAS  PubMed  Google Scholar 

  • Longato, S., & Bonfante, P. (1997). Molecular identification of mycorrhizal fungi by direct amplification of microsatellite regions. Mycological Research, 101, 425–432.

    Article  CAS  Google Scholar 

  • Mack, R. N., Simberloff, D., Mark Lonsdale, W., Evans, H., Clout, M., & Bazzaz, F. A. (2000). Biotic invasions: Causes, epidemiology, global consequences and control. Ecological Applications, 10, 689–710.

    Article  Google Scholar 

  • Malachowska-Jutsz, A., & Kalka, J. (2010). Influence of mycorrhizal fungi on remediation of soil contaminated by petroleum hydrocarbons. Bulletin of Environment, 19, 3217–3223.

    CAS  Google Scholar 

  • Mangan, S. A., Schnitzer, S. A., Herre, E. A., Mack, K. M. L., & Valencia, M. C. (2010). Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature, 466, 752–755.

    Article  CAS  PubMed  Google Scholar 

  • Marco-Urrea, E., & Reddy, C. A. (2012). Degradation of chloro organic pollutants by white rot fungi. In S. N. Singh (Ed.), Microbial degradation of xenobiotics (pp. 31–66). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Marecik, R., Kroliczak, P., Czaczyk, K., Bialas, W., Olejnik, A., & Cyplik, P. (2008). Atrazine degradation by aerobic microorganisms isolated from the rhizosphere of sweet flag (Acorus calamus L.). Biodegradation, 19, 293–301.

    Article  CAS  PubMed  Google Scholar 

  • Mariela, F. P., Pável, M. E. I., Manuel, S. R. L., Jesús, F. G. M., & Reyes, L. O. (2016). Dehydrogenase and mycorrhizal colonization: tools for monitoring agrosystem soil quality. Applied Soil Ecology, 100, 144–153.

    Article  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). London: Academic.

    Google Scholar 

  • Mathur, N., Bhatnagar, P., Mohan, K., Bakre, P., Nagar, P., & Bijarnia, M. (2007). Mutagenicity evaluation of industrial sludge from common effluent treatment plant. Chemosphere, 67, 1229–1235.

    Article  CAS  PubMed  Google Scholar 

  • Matsui, T., Nomura, Y., Takano, M., Imai, S., Nakayama, H., Miyasaka, H., Okuhata, H., Tanaka, S., Matsuura, H., Harada, K., Bamba, T., Hirata, K., & Kato, K. (2011). Molecular cloning and partial characterization of a peroxidase gene expressed in the roots of Portulaca oleracea cv., one potentially useful in the remediation of phenolic pollutants. Bioscience, Biotechnology, and Biochemistry, 75, 882–890.

    Article  CAS  PubMed  Google Scholar 

  • Maurya, P. K., & Malik, D. S. (2016). Distribution of heavy metals in water, sediments and fish tissue (Heteropneustis fossilis) in Kali River of western UP India. International Journal of Fisheries and Aquatic Studies, 4, 208–215.

    Google Scholar 

  • Meharg, A. A., & Cairney, J. W. G. (2000). Ectomycorrhizas- extending the capabilities of rhizosphere remediation? Soil Biology and Biochemistry, 32, 1475–1484.

    Article  CAS  Google Scholar 

  • Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37, 634–663.

    Article  CAS  PubMed  Google Scholar 

  • Miransari, M. (2011). Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnology Advances, 29, 645–653.

    Article  CAS  PubMed  Google Scholar 

  • Moredo, N., Lorenzo, M., Domínguez, A., Moldes, D., Cameselle, C., & Sanroman, A. (2003). Enhanced ligninolytic enzyme production and degrading capability of Phanerochaete chrysosporium and Trametes versicolor. World Journal of Microbiology and Biotechnology, 19, 665–669.

    Article  CAS  Google Scholar 

  • Mougin, C., Cheviron, N., Pinheiro, M., Lebrun, J. D., & Boukcim, H. (2013). New insights into the use of filamentous fungi and their degradative enzymes as tools for assessing the ecotoxicity of contaminated soils during bioremediation processes. In E. Goltapeh, Y. Danesh, & A. Varma (Eds.), Fungi as Bioremediators. Soil Biology (Vol. 32, pp. 419–432). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

    Article  CAS  PubMed  Google Scholar 

  • Nichols, K. A. (2003). Characterization of glomalin, a glycoprotein produced by arbuscular mycorrhizal fungi. Ph.D., Dissertation, University of Maryland, USA, http://hdl.handle.net/1903/86

  • Nziguheba, G., & Smolders, E. (2008). Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Science of the Total Environment, 390, 53–57.

    Article  CAS  PubMed  Google Scholar 

  • Padmavathi, T. (2017). The role of arbuscular mycorrhizal fungi in salt and drought stresses. In D. J. Bagyaraj & Jamaluddin (Eds.), Microbes for plant stress management (pp. 183–204). New Delhi: New India Publishing Agency.

    Google Scholar 

  • Paul, D., Pandey, G., Pandey, J., & Jain, R. K. (2005). Accessing microbial diversity for bioremediation and environmental restoration. Trends in Biotechnology, 23, 135–142.

    Article  CAS  PubMed  Google Scholar 

  • Peng, G., Xiaofen, W., Wanbin, Z., Hongyan, Y., Xu, C., & Zongjun, C. (2008). Degradation of corn stalk by the composite microbial system of MC1. Journal of Environmental Sciences, 20, 109–111.

    Article  Google Scholar 

  • Philippot, L., Raaijmakers, J. M., Lemanceau, P., & van der Putten, W. H. (2013). Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews. Microbiology, 11, 789–799.

    Article  CAS  PubMed  Google Scholar 

  • Pinedo-Rilla, C., Aleu, J., & Collado, I. G. (2009). Pollutants biodegradation by fungi. Current Organic Chemistry, 13, 1194–1214.

    Article  Google Scholar 

  • Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C., & Mo€enne-Loccoz, Y. (2009). The rhizosphere: A playground and battlefield for soil borne pathogens and beneficial microorganisms. Plant and Soil, 321, 341–361.

    Article  CAS  Google Scholar 

  • Rambelli, A. (1973). The rhizosphere of mycorrhizae. In G. C. Marks & T. T. Kozlowski (Eds.), Ectomycorrhizae: Their ecology and physiology (pp. 299–343). New York: Academic.

    Chapter  Google Scholar 

  • Read, D. J., Leake, J. R., & Perez-Moreno, J. (2004). Mycorrhizal fungi as drivers of ecosystem process in heathland and boreal forest biomes. Canadian Journal of Botany, 82, 1243–1263.

    Article  CAS  Google Scholar 

  • Reiger, P. G., Meier, H.-M., Gerle, M., Vogt, U., Groth, T., & Knackmuss, H.-J. (2002). Xenobiotics in the environment: Present and future strategies to obviate the problem of biological persistence. Journal of Biotechnology, 94, 101–123.

    Article  Google Scholar 

  • Rengasamy, P. (2006). World salinization with emphasis on Australia. Journal of Experimental Botany, 57, 1017–1023.

    Article  CAS  PubMed  Google Scholar 

  • Rillig, M. C., & Mummey, D. L. (2006). Mycorrhizas and soil structure. The New Phytologist, 171, 41–53.

    Article  CAS  PubMed  Google Scholar 

  • Rillig, M. C., Wright, S. F., & Eviner, V. T. (2002). The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species. Plant and Soil, 238, 325–333.

    Article  CAS  Google Scholar 

  • Rillig, M. C., Aguilar-Trigueros, C. A., Bergmann, J., Verbruggen, E., Veresoglou, S. D., & Lehmann, A. (2015). Plant root and mycorrhizal fungal traits for understanding soil aggregation. The New Phytologist, 205, 1385–1388.

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Becerril, F., van Tuinen, D., Martin-Laurent, F., Metwally, A., Dietz, K. J., Gianinazzi, S., & Gianinazzi-Pearson, V. (2005). Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza, 16, 51–60.

    Article  CAS  PubMed  Google Scholar 

  • Rohrbacher, F., & St-Arnaud, M. (2016). Root exudation: The ecological driver of hydrocarbon rhizoremediation. Agronomy, 6, 19. https://doi.org/10.3390/agronomy6010019.

    Article  CAS  Google Scholar 

  • Roth-Bejerano, N., Navarro-Ródenas, A., & Gutiérrez, A. (2014). Types of mycorrhizal association. In V. Kagan-Zur, N. Roth-Bejerano, Y. Sitrit, & A. Morte (Eds.), Desert Truffles. Soil Biology (Vol. 38, pp. 69–80). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Ruiz-Lozano, J. M. (2003). Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza, 13, 309–317.

    Article  PubMed  Google Scholar 

  • Sainz, M. J., Gonzalez, P. B., & Vilarino, A. (2006). Effects of hexachlorocyclohexane on rhizosphere fungal propagules and root colonization by arbuscular mycorrhizal fungi in Plantago lanceolata. European Journal of Soil Science, 57, 83–90.

    Article  CAS  Google Scholar 

  • Salzer, P., Corbere, H., & Boller, T. (1999). Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta, 208, 319–325.

    Article  CAS  Google Scholar 

  • Sanchez-Diaz, M., & Honrubia, M. (1994). Water relations and alleviation of drought stress in mycorrhizal plants. In S. Gianinazzi & H. Schepp (Eds.), Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems (pp. 167–178). Basel: Birkhuser.

    Chapter  Google Scholar 

  • Savci, S. (2012). Investigation of effect of chemical fertilizers on environment. APCBEE Procedia, 1, 287–292.

    Article  CAS  Google Scholar 

  • Scheibner, K., Hofrichter, M., & Fritsche, W. (1997). Mineralization of 2-amino-4,6-dinitrotoluene by manganese peroxidase of the white-rot fungus Nematoloma frowardii. Biotechnology Letters, 19, 835–839.

    Article  CAS  Google Scholar 

  • Scheublin, T. R., Sanders, I. R., Keel, C., & van der Meer, J. R. (2010). Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. The ISME Journal, 4, 752–763.

    Article  PubMed  Google Scholar 

  • Schnoor, T. K., Lekberg, Y., Rosendahl, S., & Olsson, P. A. (2011). Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland. Mycorrhiza, 21, 211–220.

    Article  PubMed  Google Scholar 

  • Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., Bolchacova, E., Voigt, K., & Crous, P. W. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proceedings of the National Academy of Sciences of the United States of America, 109, 6241–6246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiner, R. P., & Bethlenfalvay, G. J. (1997). Plant and soil response to single and mixed species of arbuscular mycorrhizal fungi under fungicide stress. Applied Soil Ecology, 7, 93–102.

    Article  Google Scholar 

  • Schweiger, P. F., & Jakobsen, I. (1998). Dose-response relationships between four pesticides and phosphorus uptake by hyphae of arbuscular mycorrhizas. Soil Biology and Biochemistry, 30, 1415–1422.

    Article  CAS  Google Scholar 

  • Serra, A.-A., Nuttens, A., Larvor, V., Renault, D., Couée, I., Sulmon, C., & Gouesbet, G. (2013). Low environmentally relevant levels of bioactive xenobiotics and associated degradation products cause cryptic perturbations of metabolism and molecular stress responses in Arabidopsis thaliana. Journal of Experimental Botany, 64, 2753–2766.

    Article  CAS  PubMed  Google Scholar 

  • Shah, F., Nicolas, C., Bentzer, J., Ellstrom, M., Smits, M., Rineau, F., Canbäck, B., Floudas, D., Carleer, R., Lackner, G., Braesel, J., Hoffmeister, D., Henrissat, B., Ahrén, D., Johansson, T., Hibbett, D. S., Martin, F., Persson, P., & Tunlid, A. (2015). Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saptrotrophic acncestors. The New Phytologist, 209, 1705–1719.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shann, J. R., & Boyle, J. J. (1994). Influence of plant species on in situ rhizosphere degradation. In T. A. Anderson & J. R. Coats (Eds.), Bioremediation through rhizosphere technology (pp. 70–81). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Shaw, L. J., & Burns, R. G. (2007). Influence of the rhizosphere on the biodegradation of organic xenobiotics—a case study with 2,4-dichlorophenoxyacetic acid. In H. J. Heipieper (Ed.), Bioremediation of soils contaminated with aromatic compounds: Effects of rhizosphere, bioavailability, gene regulation and stress adaptation (pp. 5–30). Berlin: Springer.

    Chapter  Google Scholar 

  • Shetty, K. G., Hetrick, B. A. D., Figge, D. A. H., & Schwab, A. P. (1994). Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environmental Pollution, 86, 181–188.

    Article  CAS  PubMed  Google Scholar 

  • Sicliliano, S. D., & Germide, J. T. (1999). Enhanced phytoremediation of chlorobenzoates in rhizosphere soil. Soil Biology and Biochemistry, 31, 299–305.

    Article  Google Scholar 

  • Silambarasan, S., & Abraham, J. (2013). Mycoremediation of endosulfan and its metabolites in aqueous medium and soil by Botryosphaeria laricina JAS6 and Aspergillus tamarii JAS9. PLoS One, 8, 77–170.

    Article  CAS  Google Scholar 

  • Simon, A., Bindshedler, S., Job, D., Wick, L. Y., Filippidou, S., Kooli, W. M., & Junier, P. (2015). Exploiting the fungal highway: Development of a novel tool for the in situ isolation of bacteria migrating along fungal mycelium. FEMS Microbiology Ecology, 91, 1–13.

    Article  CAS  Google Scholar 

  • Singh, R. (2017). Biodegradation of xenobiotics- a way for environmental detoxification. IJDR, 7, 14082–14087.

    Google Scholar 

  • Singh, D. K. (2008). Biodegradation and bioremediation of pesticide in soil: Concept, method and recent developments. Indian Journal of Microbiology, 48, 35–40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh, B., & Walker, A. (2006). Microbial degradation of organophosphorus compounds. FEMS Microbiology Reviews, 30, 428–471.

    Article  CAS  PubMed  Google Scholar 

  • Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis. New York: Academic.

    Google Scholar 

  • Smith, S. E., & Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosytems scales. Annual Review of Plant Biology, 62, 227–250.

    Article  CAS  PubMed  Google Scholar 

  • Sonon, L. S., & Schwab, A. P. (2004). Transport and persistence of nitrate atrazine and alachlor in large intact soil columns under two levels of moisture content. Soil Science, 8, 541–553.

    Article  Google Scholar 

  • Spain, J. C., & van Veld, P. A. (1983). Adaptation of natural microbial communities to degradation of xenobiotic compounds: Effects of concentration, exposure time, inoculum, and chemical structure. Applied and Environmental Microbiology, 45, 428–435.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spokes, J. R., MacDonald, R. M., & Hayman, D. M. (1981). Effects of plant protection chemicals on vesicular-arbuscular mycorrhizas. Pesticide Science, 12, 346–350.

    Article  CAS  Google Scholar 

  • Sudova, R., & Vosatka, M. (2007). Difference in the effects of three arbuscular mycorrhizal fungal strains on P and Pb accumulation by maize plants. Plant and Soil, 296, 77–83.

    Article  CAS  Google Scholar 

  • Talaat, N. B., & Shawky. (2014). Protective effect of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environment and Experimental Botany, 98, 20–31.

    Article  CAS  Google Scholar 

  • Tejeda-Agredano, M. C., Gallego, S., Vila, J., Grifoll, M., Ortega-Calvo, J. J., & Cantos, M. (2013). Influence of the sunflower rhizosphere on the biodegradation of PAHs in soil. Soil Biology and Biochemistry, 57, 830–840.

    Article  CAS  Google Scholar 

  • Teng, Y., Luo, Y., Sun, X., Tu, C., Xu, L., Liu, W., Li, Z., & Christie, P. (2010). Influence of arbuscular mycorrhiza and Rhizobium on phytoremediation by alfalfa of an agricultural soil contaminated with weathered PCBs: A field study. International Journal of Phytoremediation, 12, 516–533.

    Article  CAS  PubMed  Google Scholar 

  • Testa, A., Di Matteo, A., Rao, M. A., Monti, M. M., Pedata, P. A., & Van Der Lee, T. A. J. (2012). A genomic approach for identification of fungal genes involved in pentachlorophenol degradation. Advance Research Science Areas, 9, 1386–1389.

    Google Scholar 

  • Toljander, J. F., Lindahl, B. D., Paul, L. R., Elfstrand, M., & Finlay, R. D. (2007). Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiology Ecology, 61, 295–304.

    Article  CAS  PubMed  Google Scholar 

  • Turnau, K., Mleczko, P., Blaudez, D., Chalot, M., & Botton, B. (2002). Heavy metal binding properties of Pinus sylvestris mycorrhizas from industrial wastes. Acta Societatis Botanicorum Poloniae, 71, 253–261.

    Article  CAS  Google Scholar 

  • Van Elsas, J. D., Costa, R., Jansson, J., Sjöling, S., Bailey, M., & Nalin, R. (2008). The metagenomics of disease-suppressive soils– experiences from the metacontrol project. Trends in Biotechnology, 26, 591–601.

    Article  PubMed  CAS  Google Scholar 

  • Van Hamme, J. D., Singh, A., & Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 67, 503–549.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varsha, Y. M., Naga Deepthi, C. H., & Chenna, S. (2011). An emphasis on xenobiotic degradation in environmental cleanup. Journal of Bioremediation and Biodegradation, 11, 001. https://doi.org/10.4172/2155-6199.S11-001.

    Article  Google Scholar 

  • Visioli, F. (2015). Xenobiotics and human health: A new view of their pharma-nutritional role. Pharma Nutrition, 3, 60–64.

    Article  CAS  Google Scholar 

  • Vivas, A., Barea, J. M., Biro, B., & Azcon, R. (2006). Effectiveness of autochthonous bacterium and mycorrhizal fungus on Trifolium growth, symbiotic development and soil enzymatic activities in Zn contaminated soil. Journal of Applied Microbiology, 100, 587–598.

    Article  CAS  PubMed  Google Scholar 

  • Volante, A., Lingua, G., Cesaro, P., Cresta, A., Puppo, M., Ariati, L., & Berta, G. (2005). Influence of three species of arbuscular mycorrhizal fungi on the persistence of aromatic hydrocarbons in contaminated substrates. Mycorrhiza, 16, 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Wang, F. Y., Shia, Z. Y., Tongb, R. J., & Xua, X. F. (2011a). Dynamics of phoxim residues in green onion and soil as influenced by arbuscular mycorrhizal fungi. Journal of Hazardous Materials, 185, 112–116.

    Article  CAS  PubMed  Google Scholar 

  • Wang, F. Y., Tong, R. J., Shi, Z. Y., Xu, X. F., & He, X. H. (2011b). Inoculations with arbuscular mycorrhizal fungi increase vegetable yields and decrease phoxim concentrations in carrot and green onion and their soils. PLoS One, 6, e16949. https://doi.org/10.1371/journal.pone.0016949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Ye, X., Ding, G., & Xu, F. (2013). Overexpression of phyA and appA genes improves soil organic phosphorus utilisation and seed phytase activity in Brassica napus. PLoS One, 8(4), e60801. https://doi.org/10.1371/journal.pone.0060801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissenhorn, I., & Leyval, C. (1996). Spore germination of arbuscular mycorrhizal fungi in soils differing in heavy metal content and other parameters. European Journal of Soil Biology, 32, 165–172.

    CAS  Google Scholar 

  • White, J. C., Ross, D. W., Gent, M. P., Eitzer, B. D., & Mattina, M. I. (2006). Effect of mycorrhizal fungi on the phytoextraction of weathered p,p-DDE by Cucurbita pepo. Journal of Hazardous Materials, 137, 1750–1757.

    Article  CAS  PubMed  Google Scholar 

  • Wyss, P., & Bonfante, P. (1993). Amplification of genomic DNA of arbuscular mycorrhizal (AM) fungi by PCR using short arbitrary primers. Mycological Research, 97, 1351–1357.

    Article  CAS  Google Scholar 

  • Yadav, J. S., Quensen, J. F., III, Tiedje, J. M., & Reddy, C. A. (1995). Degradation of polychlorinated biphenyl mixtures (Aroclors 1242, 1254 and 1260) by the white-rot fungus Phanerochaete chrysosporium as evidenced by congener specific analysis. Applied and Environmental Microbiology, 61, 2560–2565.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, X. Z., Wu, S. C., Wu, F. Y., & Wong, M. H. (2011). Earthworm- mycorrhiza interaction on Cd uptake and growth of ryegrass. Soil Biology and Biochemistry, 37, 195–201.

    Article  CAS  Google Scholar 

  • Zamal, A., Ayub, N., Usman, M., & Khan, A. G. (2002). Arbuscular mycorrhizal fungi enhance zinc and nickel uptake from contaminated soil by soybean and lentil. International Journal of Phytoremediation, 4, 205–221.

    Article  Google Scholar 

  • Zelenev, V. V., van Bruggen, A. H. C., & Semenov, A. M. (2005). Modeling wave-like dynamics of oligotrophic and copiotrophic bacteria along wheat roots in response to nutrient input from a growing root tip. Ecological Modelling, 188, 404–417.

    Article  CAS  Google Scholar 

  • Zhang, Y., Liu, J., Zhou, Y., Gong, T., Wang, J., & Ge, Y. (2013). Enhanced phytoremediation of mixed heavy metal mercury organic pollutants trichloroethylene with transgenic alfalfa co-expressing glutathione S-transferase and human P4502 E1. Journal of Hazardous Materials, 15, 1100–1107.

    Article  CAS  Google Scholar 

  • Zhang, L., Fan, J. Q., Ding, X. D., He, X. H., Zhang, F. S., & Feng, G. (2014). Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biology and Biochemistry, 74, 177–183.

    Article  CAS  Google Scholar 

  • Zocco, D., Van Aarle, I. M., Oger, E., Lanfranco, L., & Declerck, S. (2011). Fenpropimorph and fenhexamid impact phosphorus translocation by arbuscular mycorrhizal fungi. Mycorrhiza, 21, 363–374.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koshila Ravi, R., Anusuya, S., Balachandar, M., Yuvarani, S., Nagaraj, K., Muthukumar, T. (2019). Influence of Xenobiotics on the Mycorrhizosphere. In: Varma, A., Choudhary, D. (eds) Mycorrhizosphere and Pedogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-13-6480-8_7

Download citation

Publish with us

Policies and ethics