Skip to main content

Exploring the Role of Mycorrhizae as Soil Ecosystem Engineer

  • Chapter
  • First Online:

Abstract

Growing population poses pressure on physical resources such as land, water and air. Today, a major challenge before ecologists and agriculturists is to provide food security to a growing population despite fast degrading landmass and deteriorating soil health. In this regard, the omnipresent mycorrhiza, abundantly available in most terrestrial ecosystems, and its symbiotic association with plants are worth exploring. “Arbuscular mycorrhizal fungi” is a nutrient-enriching, growth-stimulant, phytoremediation bio-factor which provides protection to plants from diseases and resistance against draught, salinity stress and heavy metal toxicity. Presently, the role of mycorrhiza in soil aggregation is not duly acknowledged, and the restorative mechanisms of glomalin are not fully explained. Moreover, arbuscular mycorrhizal fungi needs more focussed research as its colonisation has shown varied responses to nearby organisms. Its synergistic and antagonistic effects entirely depend upon its varying type/identity. Indiscriminate application of chemical insecticides/pesticides/weedicides in the field is disrupting natural symbiotic relations between plant and soil. Mycorrhiza are natural alternative that can be gainfully utilised for improving soil fertility and restoration and reclamation of degraded land. Awareness about its utility among policy makers and agriculturists is a step towards sustainable agriculture, reforestation, and climate change resilient farming and enhanced food security.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelmoneim, T. S., Tarek, A. A. M., Almaghrabi, O. A., Hassan, S. A., & Ismail, A. (2014). Increasing plant tolerance to drought stress by inoculation with arbuscular mycorrhizal fungi. Life Science Journal, 11(1), 10–17.

    Google Scholar 

  • Aktar, W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdisc Toxicol, 2(1), 1–12. https://doi.org/10.2478/v10102-009-0001-7.

    Article  Google Scholar 

  • Altieri, M. A. (1995). Agroecology: The science of sustainable agriculture. Boulder: Westview Press.

    Google Scholar 

  • Andrade, G., Linderman, R. G., & Bethlenfalvay, G. J. (1998). Bacterial associations with the mycorrhizosphere and hyphosphere of the arbuscular mycorrhizal fungus Glomus mosseae. Plant and Soil, 202, 79–87.

    Article  CAS  Google Scholar 

  • Andrade, S. A. L., Gratão, P. L., Azevedo, R. A., et al. (2010). Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environmental and Experimental Botany, 68, 198–207. https://doi.org/10.1016/j.envexpbot.2009.11.009.

    Article  CAS  Google Scholar 

  • Angelovičová, L., Lodenius, M., Tulisalo, E., & Fazekašová, D. (2014). Effect of heavy metals on soil enzyme activity at different field conditions in middle Spis mining area (Slovakia). Bulletin of Environmental Contamination and Toxicology, 93(6), 670–675.

    Article  PubMed  CAS  Google Scholar 

  • Aradottir, A. L., & Hagen, D. (2013). Ecological restoration: approaches and impacts on vegetation, soils and society. Advances in Agronomy, 120, 173–222. https://doi.org/10.1016/b978-0-12-407686-0.00003-8.

    Article  CAS  Google Scholar 

  • Ash, N., Blanco, H., Brown, C., et al. (2010). Ecosystems and human well-being. Washington, DC: Island Press.

    Google Scholar 

  • Augé, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3–42.

    Article  Google Scholar 

  • Augé, R. M., Toler, H. D., & Saxton, A. M. (2015). Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: A meta-analysis. Mycorrhiza, 25, 13–24.

    Article  PubMed  Google Scholar 

  • Azcón-Aguilar, C., & Barea, J. M. (1996). Arbuscular mycorrhizas and biological control of soil-borne plant pathogens: An overview of the mechanisms involved. Mycorrhiza, 6, 457–464.

    Article  Google Scholar 

  • Bakshi, M., & Varma, A. (2011). Soil enzyme: The state-of-art. In G. Shukla & A. Varma (Eds.), Soil enzymology, soil biology (Vol. 22, pp. 1–24). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Bano, S. A., & Ashfaq, D. (2013). Role of mycorrhiza to reduce heavy metal stress. Natural Science, 5(12), 16–20.

    Article  CAS  Google Scholar 

  • Bardgett, R. (2005). The biology of soil. A community and ecosystems approach (242 pages). Oxford: Oxford University Press.

    Book  Google Scholar 

  • Barea, J. M. (1997). Mycorrhiza/bacteria interactions on plant growth promotion. In A. Ogoshi, L. Kobayashi, Y. Homma, F. Kodama, N. Kondon, & S. Akino (Eds.), Plant growth-promoting rhizobacteria, present status and future prospects (pp. 150–158). Paris: OECD.

    Google Scholar 

  • Barea, J. M. (2000). Rhizosphere and mycorrhiza of field crops. In J. P. Toutant, E. Balazs, E. Galante, J. M. Lynch, J. S. Schepers, D. Werner, & P. A. Werry (Eds.), Biological resource management: connecting science and policy (pp. 110–125). Berlin/Heidelberg/New York: (OECD) INRA Editions/Springer.

    Google Scholar 

  • Barea, J. M., Azcon, R., & Azcon-Aguilar, C. (2002). Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek, 81, 343–351.

    Article  CAS  PubMed  Google Scholar 

  • Belimov, A. A., Hontzeas, N., Safronova, V. I., et al. (2005). Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology and Biochemistry, 37, 241–250.

    Article  CAS  Google Scholar 

  • Bingham, M. A., & Simard, S. W. (2011). Do mycorrhizal network benefits to survival and growth of interior Douglas-fir seedlings increase with soil moisture stress? Ecology and Evolution. https://doi.org/10.1002/ece3.24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bingham, M. A., & Simard, S. W. (2012). Ectomycorrhizal networks of Pseudotsuga menziesii var. glauca trees facilitate establishment of conspecific seedlings under drought. Ecosystems, 15, 188–199.

    Article  CAS  Google Scholar 

  • Boddington, C. L., & Dodd, J. C. (2000). The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. I. Field studies in an Indonesian ultisol. Plant and Soil, 218, 137–144.

    Article  CAS  Google Scholar 

  • Bothe, H., Turnau, K., & Regvar, M. (2010). The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza, 20, 445–458.

    Article  PubMed  Google Scholar 

  • Brockwell, J., Bottomley, P. J., & Thies, J. E. (1995). Manipulation of rhizobia microflora for improving legume productivity and soil fertility: A critical assessment. Plant and Soil, 174, 143–180.

    Article  CAS  Google Scholar 

  • Brundrett, M. C. (2004). Diversity and classification of mycorrhizal associations. Biological Reviews of the Cambridge Philosophical Society, 79, 473–495.

    Article  PubMed  Google Scholar 

  • Cardoso, I. M., & Kuyper, T. W. (2006). Mycorrhizas and tropical soil fertility. Agricultue, Ecosystems and Environment, 116, 72–84.

    Google Scholar 

  • CBD. (2010). Aichi biodiversity targets. Available at: http://www.cbd.int/sp/targets/

    Google Scholar 

  • Chaer, G. M., Resende, A. S., Campello, E. F. C., et al. (2011). Nitrogen-fixing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiology, 31, 139–149.

    Article  PubMed  Google Scholar 

  • Challinor, A., Wheeler, T., & Garforth, C. (2007). Assessing the vulnerability of food crop systems in Africa to climate change. Climatic Change, 83, 381–399.

    Article  Google Scholar 

  • Chaubey, O. P., Bohre, P., & Singhal, P. K. (2012). Impact of bioreclamation of coal mine spoil on nutritional and microbial characteristics—A case study. International Journal of Bio-Science and Bio-Technology, 4, 69–79.

    Google Scholar 

  • Chaudhry, V., Rehman, A., Mishra, A., Chauhan, P., & Nautiyal, C. (2012). Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microbial Ecology, 64, 450–460.

    Article  PubMed  Google Scholar 

  • Chen, B., Christie, P., & Li, L. (2001). A modified glass bead compartment cultivation system for studies on nutrient and trace metal uptake by arbuscular mycorrhiza. Chemosphere, 42, 185–192.

    Article  CAS  PubMed  Google Scholar 

  • Chen, B. D., Xiao, X. Y., Zhu, Y. G., et al. (2007). The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. The Science of the Total Environment, 379, 226–234.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., He, F., Zhang, X., Sun, X., Zheng, J., & Zheng, J. (2014). Heavy metal pollution decreases microbial abundance: Diversity and activity within particle-size fractions of a paddy soil. FEMS Microbiology Ecology, 87, 164–181.

    Article  CAS  PubMed  Google Scholar 

  • Christie, P., Li, X. L., & Chen, B. D. (2004). Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant and Soil, 261, 209–217.

    Article  CAS  Google Scholar 

  • Clements, F. E. (1936). Nature and structure of the climax. Journal of Ecology, 24, 252–284.

    Article  Google Scholar 

  • Daeia, G., Ardekania, M. R., Rejalic, F., et al. (2009). Alleviation of salinity stress on wheat yield, yield components and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. Journal of Plant Physiology, 166, 617–625.

    Article  CAS  Google Scholar 

  • Dai, A. (2011). Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change, 2, 45–65.

    Google Scholar 

  • Daily, G. C., Alexander, S., Ehrlich, P., et al. (1997). Ecosystem services: Benefits supplied to human societies by natural ecosystems. Issues in Ecology, 2, 1–16.

    Google Scholar 

  • del Val, C., Barea, J. M., & Azcòn-Aguilar, C. (1999). Assessing the tolerance to heavy metals of arbuscular mycorrhizal fungi isolated from sewage sludge-contaminated soils. Applied Soil Ecology, 11, 261–269.

    Article  Google Scholar 

  • Dickson, S. (2004). The Arum-Paris continuum of mycorrhizal symbioses. The New Phytologist, 163, 187–200.

    Article  PubMed  Google Scholar 

  • Djukic, D., & Mandic, L. (2006). Microorganisms as indicators of soil pollution with heavy metals. Acta Agriculturae Serbica, 11, 45–55.

    Google Scholar 

  • Dominguez, L. S., & Sersic, A. (2004). The southernmost mycoheterotrophic plant, Arachnitis uniflora: Root morphology and anatomy. Mycologia, 96, 1143–1151.

    Article  PubMed  Google Scholar 

  • Dong, L. Q., & Zhang, K. Q. (2006). Microbial control of plant-parasitic nematodes: A five-party interaction. Plant and Soil, 288, 31–45.

    Article  CAS  Google Scholar 

  • Drigo, B., Pijl, A. S., Duyts, H., et al. (2010). Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America, 107, 10938–10942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Druebert, C., Lang, C., Valtanen, K., et al. (2009). Beech carbon productivity as driver of ectomycorrhizal abundance and diversity. Plant, Cell & Environment, 32, 992–1003.

    Article  CAS  Google Scholar 

  • Dueck, T. A., Visser, P., Ernst, W. H. O., et al. (1986). Vesicular-arbuscular mycorrhizae decrease zinc-toxicity to grasses growing in zinc-polluted soil. Soil Biology and Biochemistry, 18, 331–333.

    Article  Google Scholar 

  • Fernandez, C. W., Langley, J. A., Chapman, S., et al. (2016). The decomposition of ectomycorrhizal fungal necromass. Soil Biology and Biochemistry, 93, 38–49.

    Article  CAS  Google Scholar 

  • Fitter, A. H., Heinemeyer, A., & Staddon, P. L. (2000). The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: A mycocentric approach. The New Phytologist, 147, 179–187.

    Article  CAS  Google Scholar 

  • Frouz, J., Elhottová, D., Kuráž, V., et al. (2006). Effect of soil macrofauna on other soil biota and soil. Formation in reclaimed and unreclaimed post mining sites: Result of field microcosm experiment. Applied Soil Ecology, 33, 308–320.

    Article  Google Scholar 

  • Galli, U., Schüepp, H., & Brunold, C. (1994). Heavy metal binding by mycorrhizal fungi. Physiologia Plantarum, 92, 364–368.

    Article  CAS  Google Scholar 

  • Gamalero, E., Lingua, G., Berta, G., et al. (2009). Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Canadian Journal of Microbiology, 55, 501–514.

    Article  CAS  PubMed  Google Scholar 

  • Gaur, A., & Adholeya, A. (2004). Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Science, 86, 528–534.

    CAS  Google Scholar 

  • Gianinazzi, S., Schüepp, H., Barea, J. M., et al. (2002). Mycorrhizal technology in agriculture—From genes to bioproducts. Basel: Birkha¨user Verlag.

    Book  Google Scholar 

  • Gianinazzi, S., Gollotte, A., Binet, M. N., et al. (2010). Agroecology: The key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza. https://doi.org/10.1007/s00572-010-0333-3.

    Article  PubMed  Google Scholar 

  • Gildon, A., & Tinker, P. B. (1981). A heavy metal tolerant strain of a mycorrhizal fungus. Transactions of the British Mycological Society, 77, 648–649.

    Article  Google Scholar 

  • Gisbert, C., Ros, R., De, H. A., et al. (2000). A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochemical and Biophysical Research Communications, 303, 440–445.

    Article  CAS  Google Scholar 

  • Glick, B. (2003). Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 21, 383–393.

    Article  CAS  PubMed  Google Scholar 

  • Glick, B. R. (2010). Using soil bacteria to facilitate phytoremediation. Biotechnology Advances, 28, 367–374.

    Article  CAS  PubMed  Google Scholar 

  • Griffioen, W. A. J., Ietswaart, J. H., & Ernst, W. H. O. (1994). Mycorrhizal infection of an Agrostis capillaris population on a copper contaminated soil. Plant and Soil, 158, 83–89.

    Article  CAS  Google Scholar 

  • Harrier, L. A., & Watson, C. A. (2003). The role of arbuscular mycorrhizal fungi in sustainable cropping systems. Advances in Agronomy, 79, 185–225.

    Article  Google Scholar 

  • Hartnett, D. C., & Wilson, W. T. (1999). Mycorrhizae influence plant community structure and diversity in tall grass prairie. Ecology, 80, 1187–1195.

    Article  Google Scholar 

  • Haselwandter, K., Leyval, C., & Sanders, F. E. (1994). Impact of arbuscular mycorrhizal fungi on plant uptake of heavy metals and radionuclides from soil. In S. Gianinazzi & H. Schüepp (Eds.), Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems (pp. 179–189). Basel: Birkhäuser.

    Chapter  Google Scholar 

  • Hashim, M. A., Mukhopadhyay, S., Sahu, J. N., et al. (2011). Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management, 92, 2355–2388.

    Article  CAS  PubMed  Google Scholar 

  • Hawkins, H. J., Johansen, A., & George, E. (2000). Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant and Soil, 226, 275–285.

    Article  CAS  Google Scholar 

  • Heggo, A., Angle, J. S., & Chaney, R. L. (1990). Effects of vesicular Arbuscular mycorrhizal fungi on heavy-metal uptake by soybeans. Soil Biology and Biochemistry, 22, 865–869.

    Article  CAS  Google Scholar 

  • Hodge, A. (2001). Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. The New Phytologist, 151, 725–734.

    Article  CAS  PubMed  Google Scholar 

  • Hodge, A., Campbell, C. D., & Fitter, H. (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 413, 297–299.

    Article  CAS  PubMed  Google Scholar 

  • Holec, M., & Frouz, J. (2006). The effect of two ant species Lasius niger and Lasius flavus on soil properties in two contrasting habitats. European Journal of Soil Biology, 42, 213–217.

    Article  Google Scholar 

  • Huang, L., Xie, J., Lv, B., et al. (2013). Optimization of nutrient component for diesel oil degradation by Acinetobacter beijerinckii ZRS. Marine Pollution Bulletin, 76, 325–332. https://doi.org/10.1016/jmarpolbul.2013.03.037.

    Article  CAS  PubMed  Google Scholar 

  • Ietswaart, J. H., Griffioen, W. A. J., & Ernst, W. H. O. (1992). Seasonality of VAM infection in three populations of Agrostis capillaries (Gramineae) on soil with or without heavy metal enrichment. Plant and Soil, 139, 67–73.

    Article  CAS  Google Scholar 

  • Imhof, S. (1997). Root anatomy and mycotrophy of the achlorophyllous Voyria tenella Hooker (Gentianaceae). Botanica Acta: Journal of the German Botanical Society, 110, 298–305.

    Article  Google Scholar 

  • Imhof, S. (1999). Anatomy and mycotrophy of the achlorophyllous Afrothismia winkleri (Engl.) Schltr. (Burmanniaceae). The New Phytologist, 144, 533–540.

    Article  PubMed  Google Scholar 

  • Imhof, S. (2003). A dorsiventral mycorrhizal root in the achlorophyllous Sciaphila polygyna (Triuridaceae). Mycorrhiza, 13, 327–332.

    Article  PubMed  Google Scholar 

  • Imhof, S. (2007). Specialized mycorrhizal colonization pattern in achlorophyllous Epirixanthes spp. (Polygalaceae). Plant Biology, 9, 786–792.

    Article  CAS  PubMed  Google Scholar 

  • Imhof, S. (2009). Arbuscular, ecto-related, orchid mycorrhizas-three independent structural lineages towards mycoheterotrophy: Implications for classification? Mycorrhiza, 19, 357–363.

    Article  PubMed  Google Scholar 

  • Isaac, S. (1992). Fungal-plant interactions. Cambridge: Chapman & Hall.

    Google Scholar 

  • Islam, M. R., Trivedi, P., Palaniappan, P., et al. (2009). Evaluating the effect of fertilizer application on soil microbial community structure in rice based cropping system using fatty acid methyl esters (FAME) analysis. World Journal of Microbiology and Biotechnology, 25, 1115.

    Article  CAS  Google Scholar 

  • Islam, M. R., Trivedi, P., Madhaiyan, M., et al. (2010). Isolation, enumeration, and characterization of diazotrophic bacteria from paddy soil sample under long-term fertilizer management experiment. Biology and Fertility of Soils, 46, 261.

    Article  CAS  Google Scholar 

  • Jacobs, D. F., Oliet, J. A., Aronson, J., et al. (2015). Restoring forests: What constitutes success in the twenty-first century? New Forest, 46, 601–614. https://doi.org/10.1007/s11056-015-9513-5.

    Article  Google Scholar 

  • Jastrow, J. D., & Miller, R. M. (1997). Soil aggregate stabilization and carbon sequestration: Feedbacks through organomineral associations. In R. Lal, J. M. Kimble, R. F. Follett, & B. A. Stewart (Eds.), Soil processes and the carbon cycle (pp. 207–223). Boca Raton: CRC Press.

    Google Scholar 

  • Jeffries, P., Gianinazzi, S., Perotto, S., et al. (2002). The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 37, 1–16.

    Google Scholar 

  • Jeffries, P., Gianinazzi, S., Perotto, S., et al. (2003). The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 37, 1–16.

    Google Scholar 

  • Jenny, H. (1980). The soil resource: Origin and behaviour (Ecological studies, Vol. 37, 377 pages). New York: Springer.

    Book  Google Scholar 

  • Joner, E. J., Leyval, C., & Briones, R. (2000). Metal binding capacity of arbuscular mycorrhizal mycelium. Biology and Fertility of Soils, 226, 227–234.

    CAS  Google Scholar 

  • Jones, C. G., Lawton, J. H., & Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69, 373–386.

    Article  Google Scholar 

  • Jouquet, P., Dauber, J., Lagerlof, J., Lavelle, P., et al. (2006). Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops. Applied Soil Ecology, 32, 153–164.

    Article  Google Scholar 

  • Jouquet, P., Bernard-Reversat, F., Bottinelli, N., et al. (2007). Influence of changes in land use and earthworm activities on carbon and nitrogen dynamics in a steepland ecosystem in Northern Vietnam. Biology and Fertility of Soils, 44, 69–77.

    Article  CAS  Google Scholar 

  • Kaiser, C., Koranda, M., Kitzler, B., et al. (2010). Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. The New Phytologist, 187, 843–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaldorf, M., Kuhn, A. J., Schroder, W. H., et al. (1999). Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. Journal of Plant Physiology, 154, 718–728.

    Article  CAS  Google Scholar 

  • Kaur, R., Singh, A., & Kang, J. S. (2014). Influence on different types of mycorrhizal fungi on crop productivity. Current Agriculture Research Journal, 2, 51–54.

    Article  Google Scholar 

  • Khan, A. G. (2004). Co-inoculum of vesicular-arbuscular mycorrhizal fungi, mycorrhiza-helper-bacteria, and plant growth promoting rhizobacteria for phytoremediation of heavy metal contaminated soils. Proceedings of the V international conference on environmental geochemistry in the tropics, Haiko, Hainan, China. Institute Soil Science, Chinese Academy of Science, Nanjing, PR China. March 21–26, p. 68.

    Google Scholar 

  • Khan, A. G. (2005). Mycorrhizas and phytoremediation. In N. Willey (Ed.), Methods in biotechnology: Phytoremediation: Methods and reviews. Totowa: Humana Press Inc.

    Google Scholar 

  • Khan, A. G., Kuek, C., Chaudhry, T. M., et al. (2000). Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41, 197e207.

    Article  Google Scholar 

  • Khan, S., Afzal, M., Iqbal, S., et al. (2013). Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere, 90, 1317–1332.

    Article  CAS  PubMed  Google Scholar 

  • Khan, S. R., Singh, S. K., & Rastogi, N. (2017). Heavy metal accumulation and ecosystem engineering by two common mine site-nesting ant species: Implications for pollution-level assessment and bioremediation of coal mine soil. Environmental Monitoring and Assessment, 189, 195. https://doi.org/10.1007/s10661-017-5865-y.

    Article  CAS  PubMed  Google Scholar 

  • Lebeau, T., Braud, A., & Jezequel, K. (2008). Performance of bioaugmentation assisted phytoextraction applied to metal contaminated soils: A review. Environmental Pollution, 153, 497–522.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann, J., Cravo, M. S., Maceˆdo, J. L. V., et al. (2001). Phosphorus management for perennial crops in central Amazonian upland soils. Plant and Soil, 237, 309–319.

    Article  CAS  Google Scholar 

  • Lehto, T., & Zwiazek, J. J. (2011). Ectomycorrhizas and water relations of trees: A review. Mycorrhiza, 21, 71–90.

    Article  PubMed  Google Scholar 

  • Lekberg, Y., & Koide, R. T. (2005). Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. The New Phytologist, 168, 189–204.

    Article  CAS  PubMed  Google Scholar 

  • Lewandowski, T. L., Dunfield, K. E., & Antunes, P. M. (2013). Isolate identity determines plant tolerance to pathogen attack in assembled mycorrhizal communities. PLoS One, 8(4), e61329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leyval, C., Turnau, K., & Haselwandter, K. (1997). Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza, 7, 139–153.

    Article  CAS  Google Scholar 

  • Li, X. L., & Christie, P. (2001). Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn contaminated soil. Chemosphere, 42, 201–207.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Ma, Z., Van der Kuijp, T. J., et al. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468, 843–853.

    Article  PubMed  CAS  Google Scholar 

  • Lovelock, C. E., Wright, S. F., Clark, D. A., et al. (2004). Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. Journal of Ecology, 92, 278–287.

    Article  CAS  Google Scholar 

  • Malcova, R., Vosátka, M., & Gryndler, M. (2003). Effects of inoculation with Glomus intraradices on lead uptake by Zea mays L. and Agrostis capillaris L. Applied Soil Ecology, 2003(23), 55–67.

    Article  Google Scholar 

  • Malekzadeh, E., Alikhani, A. H., Savaghebi-Fioozabadi, R. G., et al. (2011). Influence of arbuscular mycorrhizal fungi and an improving growth bacterium on Cd uptake and maize growth in Cd-polluted soils. Spanish Journal of Agricultural Research, 9, 1213–1223.

    Article  Google Scholar 

  • Marques, A. P. G. C., Rangel, A. O. S. S., & Castro, P. M. L. (2009). Remediation of heavy metal contaminated soils: Phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology, 39(8), 622–654.

    Article  CAS  Google Scholar 

  • Martin, F., & Nehls, U. (2009). Harnessing ectomycorrhizal genomics for ecological insights. Current Opinion in Plant Biology, 12, 508–515.

    Article  CAS  PubMed  Google Scholar 

  • Martin, F., Kohler, A., & Duplessis, S. (2007). Living in harmony in the wood underground: Ectomycorrhizal genomics. Current Opinion in Plant Biology, 10, 204–210.

    Article  CAS  PubMed  Google Scholar 

  • Marx, D. H. (1975). Mycorrhizae and the establishment of trees on stripmined land. The Ohio Journal of Science, 75, 88–297.

    Google Scholar 

  • Marx, D. H. (1980). Role of mycorrhizae in forestation of surface mines. In: Proceedings of Trees for Reclamation. 27–28 October, 1980, Lexington, KY, pp. 109–116.

    Google Scholar 

  • Masto, R. E., Chhonkar, P. K., Singh, D., et al. (2006). Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical Inceptisol. Soil Biology and Biochemistry, 38, 1577–1158.

    Article  CAS  Google Scholar 

  • Masto, R. E., Chhonkar, P. K., Singh, D., et al. (2007). Soil quality response to long-term nutrient and crop management on a semiarid Inceptisol. Agriculture, Ecosystems and Environment, 118, 130–142.

    Article  CAS  Google Scholar 

  • McCormick, M. K., Whigham, D. F., Sloan, D., et al. (2006). Orchid–fungus fidelity: A marriage meant to last? Ecology, 87, 903–911.

    Article  PubMed  Google Scholar 

  • McCormick, M. K., Whigham, D. F., O’Neill, J. P., et al. (2009). Abundance and distribution of Corallorhiza odontorhiza reflect variations in climate and ectomycorrhizae. Ecological Monographs, 79, 619–635.

    Article  Google Scholar 

  • McGonigle, T. P., & Miller, M. H. (1999). Winter survival of extraradical hyphae and spores of arbuscular mycorrhizal fungi in the field. Applied Soil Ecology, 12, 41–50.

    Article  Google Scholar 

  • McGrath, S. P., Chaudri, A. M., & Giller, K. E. (1995). Long-term effects of metal in sewage sludge on soils, microorganisms and plants. Journal of Industrial Microbiology, 14, 94–104.

    Article  CAS  PubMed  Google Scholar 

  • Medina, A., Roldán, A., & Azcón, R. (2010). The effectiveness of arbuscular-mycorrhizal fungi and Aspergillus niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil. Journal of Environmental Management, 91, 2553. https://doi.org/10.1016/j.jenvman.2010.07.008.

    Article  CAS  Google Scholar 

  • Meena, V. S., Maurya, B. R., & Verma, J. P. (2014). Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiological Research, 169, 337–347.

    Article  CAS  PubMed  Google Scholar 

  • Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being. In Millennium ecosystem assessment. Washington, DC: Island Press.

    Google Scholar 

  • Miller, R. M., & Jastrow, J. D. (1994). Vesicular-arbuscular mycorrhizae and biogeochemical cycling. In F. L. Pfleger & R. G. Linderman (Eds.), Mycorrhizae and plant health (pp. 189–212). St. Paul: APS Press, The American Phytopathlogical Society.

    Google Scholar 

  • Miller, R. M., & Jastrow, J. D. (2000). Mycorrhizal fungi influence soil structure. In Y. Kapulnik & D. D. Douds (Eds.), Arbuscular mycorrhizas: Physiology and function (pp. 3–18). Dordrecht: Kluwer Academic.

    Chapter  Google Scholar 

  • Mortimer, P. E., Pe’rez-Ferna’ndez, M. A., & Valentine, A. J. (2008). The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biology and Biochemistry, 40, 1019–1027.

    Article  CAS  Google Scholar 

  • Nath, S., Deb, B., & Sharma, I. (2012). Isolation and characterization of cadmium and lead resistant bacteria. Global Advanced Research Journal of Microbiology, 1(11), 194–198.

    Google Scholar 

  • Nehls, U., Gohringer, F., Wittulsky, S., et al. (2010). Fungal carbohydrate support in the ectomycorrhizal symbiosis: A review. Plant Biology, 12, 292–301.

    Article  CAS  PubMed  Google Scholar 

  • Newsham, K. K., Fitter, A. H., & Watkinson, A. R. (1995). Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. Journal of Ecology, 83, 991–1000.

    Article  Google Scholar 

  • Nottingham, A. T., Turner, B. L., Winter, K., et al. (2013). Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest. FEMS Microbiology Ecology, 85, 37–50.

    Article  PubMed  Google Scholar 

  • Olsson, P. A., Thingstrup, I., Jakobsen, I., et al. (1999). Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biology and Biochemistry, 31, 1879–1887.

    Article  CAS  Google Scholar 

  • Orlowska, E., Zubek, S., Jurkiewicz, A., et al. (2002). Influence of restoration on arbuscular mycorrhiza of Biscutella laevigata L. (Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calamine spoil mounds. Mycorrhiza, 12, 153–160.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, B., Agrawal, M., & Singh, S. (2016). Ecological risk assessment of soil contamination by trace elements around coal mining area. Journal of Soils and Sediments, 16, 159–168.

    Article  CAS  Google Scholar 

  • Patra, P., Pati, B. K., Ghosh, G. K., et al. (2013). Effect of bio-fertilizers and Sulphur on growth, yield, and oil content of hybrid sunflower (Helianthus annuus L.) in a typical lateritic soil. 2, 603. https://doi.org/10.4172/scientificreports.603.

  • Pawlowska, T. B., Blaszkowski, J., & Rühling, A. (1996). The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza, 6, 499–505.

    Article  Google Scholar 

  • Pena, R., Offermann, C., Simon, J., et al. (2010). Girdling affects ectomycorrhizal fungal (EMF) diversity and reveals functional differences in EMF community composition in a beech forest. Applied and Environmental Microbiology, 76, 1831–1841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poornima, M., Kumar, R. S., & Thomas, P. D. (2014). Isolation and molecular characterization of bacterial Strains from tannery effluent and reduction of chromium. International Journal of Current Microbiology and Applied Sciences, 3, 530–538.

    Google Scholar 

  • Porcel, R., Aroca, R., & Ruiz-Lozano, J. M. (2012). Salinity stress alleviation using arbuscular mycorrhizal fungi: A review. Agronomy for Sustainable Development, 31(1), 181–200.

    Article  CAS  Google Scholar 

  • Querejeta, J. I., Egerton-Warburton, L. M., & Allen, M. F. (2009). Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability. Ecology, 90, 649–662.

    Article  PubMed  Google Scholar 

  • Rashid, M. I., Mujawar, L. H., Shahzad, T., et al. (2016). Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiolgical Research, 183, 26–41.

    Article  CAS  Google Scholar 

  • Ravnskov, S., Nybroe, O., & Jakobsen, I. (1999). Influence of an Arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hyphosphere soil. The New Phytologist, 142, 113–122.

    Article  Google Scholar 

  • Read, D. J. (1991). Mycorrhizas in ecosystems. Experientia, 47, 376–391.

    Article  Google Scholar 

  • Remy, W., Taylor, T. N., Hass, H., & Kerp, H. (1994). 4-hundred million year old vesicular-arbuscular mycorrhizae. PNAS USA, 91, 11841–11843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rillig, M. C. (2004a). Arbuscular mycorrhizae and terrestrial ecosystemprocesses. Ecology Letters, 7, 740–754.

    Article  Google Scholar 

  • Rillig, M. C. (2004b). Arbuscular mycorrhizae, glomalin and soil aggregation. Canadian Journal of Soil Science, 84(4), 355–363.

    Article  Google Scholar 

  • Rillig, M. C., Wright, S. F., Nichols, K. A., et al. (2001). Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant and Soil, 233, 167–177.

    Article  CAS  Google Scholar 

  • Rillig, M. C., Wright, S. F., Nichols, K. A., Schmid, W. F., & Torn, M. S. (2002). The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species. Plant and Soil, 238, 325–333.

    Article  CAS  Google Scholar 

  • Ritz, K., & Young, I. M. (2004). Interaction between soil structure and fungi. Mycologist, 18, 52–59.

    Article  Google Scholar 

  • Robertson, G. P., & Swinton, S. M. (2005). Reconciling agricultural productivity and environmental integrity: A grand challenge for agriculture. Frontiers in Ecology and the Environment, 3, 38–46.

    Article  Google Scholar 

  • Rooney, D. C., Killham, K., Bending, G. D., et al. (2009). Mycorrhizas and biomass crops: Opportunities for future sustainable development. Trends in Plant Science, 14, 542–549.

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig, C., Iglesias, A., Yang, X. B., et al. (2001). Climate change and extreme weather events: Implications for food production, plant diseases, and pests. Global Change and Human Health, 2, 90–104.

    Article  Google Scholar 

  • Ryan, M. H., & Graham, J. H. (2002). Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant and Soil, 244, 263–271.

    Article  CAS  Google Scholar 

  • Salminen, J., Anh, B. T., & van Gestel, C. A. M. (2001). Indirect effects of zinc on soli microbes via a keystone enchytraeid species. Environmental Toxicology and Chemistry, 20, 1167–1174.

    Article  CAS  PubMed  Google Scholar 

  • Sambandan, K., Kannan, K., & Raman, N. (1992). Distribution of vesicular-arbuscular mycorrhizal fungi in heavy metal polluted soils of Tamil Nadu, India. Journal of Environmental Biology, 13, 159–167.

    CAS  Google Scholar 

  • Sekabira, K., Oryem-Origa, H., Mutumba, G., et al. (2011). Heavy metal phytoremediation by Commelina benghalensis (L.) and Cynodon dactylon (L.) growing in urban stream sediments. International Journal of Plant Physiology and Biochemistry, 3, 133–142.

    CAS  Google Scholar 

  • Selosse, M. A., Richard, R., XSimar, H., et al. (2006). Mycorrhizal networks: des liaisons dangereuses. Trends in Ecology & Evolution, 21, 621–628.

    Article  Google Scholar 

  • Sheoran, V., Sheoran, A. S., & Poonia, P. (2010). Soil reclamation of abandoned mine land by revegetation: A review. International Journal of Soil, Sediment and Water, 3, 1–20.

    Google Scholar 

  • Shetty, K. G., Hetrick, B. A. D., Figge, D. A. H., et al. (1994). Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environmental Pollution, 86, 181–188.

    Article  CAS  PubMed  Google Scholar 

  • Shu, W. S., Yeb, Z. H., Lana, C. Y., et al. (2002). Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environmental Pollution, 120, 445–453.

    Article  CAS  PubMed  Google Scholar 

  • Singh, A. N., Raghubanshi, A. S., & Singh, J. S. (2002). Plantations as a tool for mine spoil restoration. Current Science, 82, 1436–1441.

    CAS  Google Scholar 

  • Singh, P. K., Singh, M., & Tripathi, B. N. (2013). Glomalin: an arbuscular mycorrhizal fungal soil protein. Protoplasma, 250(3), 663–669.

    Article  CAS  PubMed  Google Scholar 

  • Smith, S. E., & Read, D. J. (1997a). Mycorrhizal symbiosis. New York: Academic.

    Google Scholar 

  • Smith, S. E., & Read, D. J. (1997b). Mycorrhizal symbiosis. London: Academic.

    Google Scholar 

  • Smith, S. E., & Read, D. J. (2008a). Mycorrhizal symbiosis. San Diego: Academic.

    Google Scholar 

  • Smith, S. E., & Read, D. J. (2008b). Mycorrhizal symbiosis (3rd ed.). London: Academic.

    Google Scholar 

  • Šourková, M., Frouz, J., & Šantrůčková, H. (2005). Accumulation of carbon, nitrogen and phosphorus during soil formation on alder spoil heaps after brown-coal mining, near Sokolov (Czech Republic). Geoderma, 124, 203–214.

    Article  CAS  Google Scholar 

  • Susarla, S., Medina, V. F., & McCutcheon, S. C. (2002). Phytoremediation: An ecological solution to organic chemical contamination. Ecological Engineering, 18, 647–658.

    Article  Google Scholar 

  • Swaty, R., Michael, H. M., Deckert, R., & Gehring, C. A. (2016). Mapping the potential mycorrhizal associations of the conterminous United States of America. Fungal Ecology, 1–9.

    Google Scholar 

  • Thompson, J. P. (1991). Improving the mycorrhizal condition of the soil through cultural practices and effects on growth and phosphorus uptake in plants. In C. Johansen, K. K. Lee, & K. L. Sahrawat (Eds.), Phosphorus nutrition of grain legumes in the semi-arid tropics (pp. 117–137). Andhra Pradesh: ICRISAT.

    Google Scholar 

  • Tilman, D., Lehman, C. L., & Thomson, K. T. (1997). Plant diversity and ecosystem productivity: Theoretical considerations. Proceedings of the National Academy of Sciences of the United States of America, 94, 1857–1861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonin, C., Vandenkoornhuyse, P., Joner, E. J., et al. (2001). Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza, 10, 161–168.

    Article  CAS  Google Scholar 

  • Toro, M., Azcón, R., & Barea, J. M. (1997). Improvement of arbuscular mycorrhizal development by inoculation with phosphate solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Applied and Environmental Microbiology, 63, 4408–4412.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trenberth, K. E., Dai, A., van der Schrier, G., et al. (2013). Global warming and changes in drought. Nature Climate Change, 4, 17–22.

    Article  Google Scholar 

  • Tscherko, D., Hammesfahr, U., Marx, M. C., et al. (2004). Shifts in rhizosphere microbial communities and enzyme activity of Poa alpina across an alpine chronosequence. Soil Biology and Biochemistry, 36, 1685–1698.

    Article  CAS  Google Scholar 

  • Tubiello, F. N., Rosenzweig, C., Goldberg, R. A., et al. (2002). Effects of climate change on us crop production: Simulation results using two different GCM scenarios. Part I: Wheat, potato, maize, and citrus. Climate Research, 20, 259–270.

    Article  Google Scholar 

  • Turnau, K., Kottke, I., & Oberwinkler, F. (1993). Element localization in mycorrhizal roots of Pteridium aquilinum (L.) Kuhn collected from experimental plots treated with cadmium dust. The New Phytologist, 123, 313–324.

    Article  CAS  Google Scholar 

  • Turnau, K., Jurkiewicz, A., & Lingua, G. (2005). Role of arbuscular mycorrhiza and associated microorganisms in phytoremediation of heavy metal polluted sites. In M. N. V. Prasad, K. S. Sajwan, & R. Naidu (Eds.), Trace elements in the environment (pp. 235–252). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Turnau, K., Anielska, T., & Ryszka, P. (2008). Establishment of arbuscular mycorrhizal plants originating from xerothermic grasslands on heavy metal rich industrial wastes-new solution for waste revegetation. Plant and Soil, 305, 267–280.

    Article  CAS  Google Scholar 

  • Ul Hassan, Z., Ali, S., Rizwan, M., et al. (2017). Role of bioremediation agents (bacteria, fungi, and algae) in alleviating heavy metal toxicity (Probiotics in agroecosystem, pp. 517–537). Singapore: Springer.

    Book  Google Scholar 

  • UN. (2000). UN Secretary General’s report A/504/2000 Chapter C. “Defending the Soil”.

    Google Scholar 

  • Upadhyaya, H., Panda, S. K., Bhattacharjee, M. K., et al. (2010). Role of arbuscular mycorrhiza in heavy metal tolerance in plants: Prospects for phytoremediation. Journal of Phytology, 2, 16–27.

    Google Scholar 

  • Valdenegro, M., Barea, J. M., & Azcòn, R. (2001). Influence of arbuscular mycorrhizal fungi, Rhizobium meliloti strains and PGPR inoculation on the growth of Medicago arborea used as model legume for revegetation and biological reactivation in a semi-arid Mediterranean area. Plant Growth Regulation, 34, 233–240.

    Article  CAS  Google Scholar 

  • Van der Heijden, M. G. A., & Horton, T. R. (2009). Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 97, 1139–1150.

    Article  Google Scholar 

  • Van der Heijden, M. G. A., Klironomos, J. N., Ursic, M., et al. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69–72.

    Article  CAS  Google Scholar 

  • Van der Heijden, M. G. A., Bardgett, R. D., & van Straalen, N. M. (2008). The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296–310.

    Article  PubMed  Google Scholar 

  • Van der Heijden, M. G. A., Martin, F. M., Selosse, M. A., et al. (2015). Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytologist, 205, 1406–1423.

    Article  PubMed  CAS  Google Scholar 

  • Vivas, A., Vörös, A., Biro, B., et al. (2003). Beneficial effects of indigenous Cd tolerant and Cd-sensitive Glomus mosseae associated with a Cd-adapted strain of Brevibacillus sp. in improving plant tolerance to Cd contamination. Applied Soil Ecology, 24, 177–186.

    Article  Google Scholar 

  • Wall, D. H., & Virginia, R. A. (1999). Controls on soil biodiversity: Insights from extreme environments. Applied Soil Ecology, 13, 137–150.

    Article  Google Scholar 

  • Wang, F. Y., Lin, X. G., & Yin, R. (2007). Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens – a field case. Environmental Pollution, 147, 248–255.

    Article  CAS  PubMed  Google Scholar 

  • Weissenhorn, I., Leyval, C., & Berthelin, J. (1993). Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy metal-polluted soils. Plant and Soil, 157, 247–256.

    Article  CAS  Google Scholar 

  • Weissenhorn, I., Leyval, C., & Berthelin, J. (1995a). Bioavailability of heavy metals and abundance of arbuscular mycorrhiza in a soil polluted by atmospheric deposition from a smelter. Biology and Fertility of Soils, 19, 22–28.

    Article  CAS  Google Scholar 

  • Weissenhorn, I., Leyval, C., Belgy, G., et al. (1995b). Arbuscular mycorrhizal contribution to heavy metal uptake by maize (Zea mays L.) in pot culture with contaminated soil. Mycorrhiza, 5, 245–251.

    CAS  Google Scholar 

  • Weyens, N., Truyens, S., Dupae, J., et al. (2010). Potential of the TCE-Degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. S. Environmental Pollution, 158, 2915–2919.

    Article  CAS  PubMed  Google Scholar 

  • Widden, P. (1996). The morphology of vesicular-arbuscular mycorrhizae in Clintonia borealis and Medeola virginiana. Canadian Journal of Botany, 74, 679–685.

    Article  Google Scholar 

  • Wright, S. F., & Upadhyaya, A. (1998). A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil, 198, 97–107.

    Article  CAS  Google Scholar 

  • Yang, G., Liu, N., Lu, W., et al. (2014). The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability. Journal of Ecology, 102, 1072–1082.

    Article  CAS  Google Scholar 

  • Yao, Q., Li, X., Weidang, A., et al. (2003). Bi-directional transfer of phosphorus between red clover and perennial ryegrass via arbuscular mycorrhizal hyphal links. European Journal of Soil Biology, 39, 47–54.

    Article  CAS  Google Scholar 

  • Yasmeen, T., Hameed, S., Tariq, M., et al. (2012). Vigna radiata root associated mycorrhizae and their helping bacteria for improving crop productivity. Pakistan Journal of Botany, 44, 87–94.

    Google Scholar 

  • Zaidi, A., & Khan, M. S. (2005). Interactive effect of Rhizotrophic microorganisms on growth, yield and nutrient uptake of wheat. Journal of Plant Nutrition, 28, 2079–2092.

    Article  CAS  Google Scholar 

  • Zak, J. C., & Parkinson, D. (1982). Initial vesicular-arbuscular mycorrhizal development of the slender wheatgrass on two amended mine soils. Canadian Journal of Botany, 60, 2241–2248.

    Article  Google Scholar 

  • Zhu, Y. G., & Miller, R. M. (2003). Carbon cycling by arbuscular mycorrhizal fungi in soil—Plant systems. Trends in Plant Science, 8, 407–409.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Huma Vaseem is thankful to UGC for Start-Up grant, Antra Chatterjee is thankful to CSIR-UGC for senior research fellow and Shbbir R. Khan is thankful to MANF-UGC.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chatterjee, A., Khan, S.R., Vaseem, H. (2019). Exploring the Role of Mycorrhizae as Soil Ecosystem Engineer. In: Varma, A., Choudhary, D. (eds) Mycorrhizosphere and Pedogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-13-6480-8_5

Download citation

Publish with us

Policies and ethics