Skip to main content

Soil Health: The Contribution of Microflora and Microfauna

  • Chapter
  • First Online:
Mycorrhizosphere and Pedogenesis

Abstract

Soil is a complex aggregate of both living and non-living components. There is extreme diversity in the community of living organisms that may be found within the soil. The soil living organisms has been divided into both the micro and macrofauna and flora. These living organisms have been implicated in various processes such as nutrient cycles, biological control, soil structure, and the degradation of agrochemicals and pollutants. In a nutshell these organisms enhanced soil fertility and quality. In the recent years the focus of studies have been towards maintaining soil fertility with minimal soil fertilization. This is largely due to the increase in unfertile land that is caused by overuse and total dependence on chemical fertilization that has affected the soil ecosystem. As the biological activity of soil has been connected to the process of soil fertility and quality, understanding the contribution of each of these players in the soil ecosystem is important. Practices that contribute towards enriched microflora and microfauna diversity in an ecosystem should be encouraged to increase diversity, improve soil health, crop health and production. This chapter will deal with the role of microflora and microfauna in soil health and fertility and the various roles played by these organismsĀ in affecting plant productivity in any given agro-ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghighi, S., Shahidi Bonjar, G., & Saadoun, I. (2004). First report of antifungal properties of a new strain of Streptomyces plicatus (strain101) against four Iranian phytopathogenic isolates of Verticillium dahliae, a new horizon in biocontrol agents. Biotechnology (Faisalabad), 3, 90ā€“97.

    Google ScholarĀ 

  • Agrawal, P. K., Agrawal, S., & Shrivastava, R. (2015). Modern molecular approaches for analyzing microbial diversity from mushroom compost ecosystem. 3Biotech, 5, 853ā€“866.

    Google ScholarĀ 

  • Angel, R., Claus, P., & Conrad, R. (2012). Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. The ISME Journal, 6, 847.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Balvanera, P., Pfisterer, A. B., Buchmann, N., He, J. S., Nakashizuka, T., Raffaelli, D., & Schmid, B. (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9, 1146ā€“1156.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Bardgett, R. D., Bowman, W. D., Kaufmann, R., & Schmidt, S. K. (2005). A temporal approach to linking aboveground and belowground ecology. Trends in Ecology & Evolution, 20, 634ā€“641.

    ArticleĀ  Google ScholarĀ 

  • Bates, S. T., Berg-Lyons, D., Caporaso, J. G., Walters, W. A., Knight, R., & Fierer, N. (2011). Examining the global distribution of dominant archaeal populations in soil. The ISME Journal, 5, 908.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Battigelli, J. P., & Berch, S. (2002). Soil Fauna in the sub-boreal spruce (sbs) installations of the long-term soil productivity (ltsp) study of Central British Columbia: One year results for soil Mesofauna and microfauna. British Columbia: Ministry of Forests, Prince George, Prince Rupert and Caribou Forest Regions.

    Google ScholarĀ 

  • Beare, M., Reddy, M. V., Tian, G., & Srivastava, S. (1997). Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: The role of decomposer biota. Applied Soil Ecology, 6, 87ā€“108.

    ArticleĀ  Google ScholarĀ 

  • Bergmann, G. T., et al. (2011). The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biology and Biochemistry, 43, 1450ā€“1455.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bonkowski, M., & Roy, J. (2005). Soil microbial diversity and soil functioning affect competition among grasses in experimental microcosms. Oecologia, 143, 232ā€“240.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Bonkowski, M., Cheng, W., Griffiths, B. S., Alphei, J., & Scheu, S. (2000). Microbial-faunal interactions in the rhizosphere and effects on plant growth Ā§. European Journal of Soil Biology, 36, 135ā€“147.

    ArticleĀ  Google ScholarĀ 

  • Borgonie, G., et al. (2011). Nematoda from the terrestrial deep subsurface of South Africa. Nature, 474, 79.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bradford, M., et al. (2002). Impacts of soil faunal community composition on model grassland ecosystems. Science, 298, 615ā€“618.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Brady, N., & Weil, R. (2008). Soil colloids: Seat of soil chemical and physical acidity. Upper Saddle River: Pearson Education.

    Google ScholarĀ 

  • Dang, H., Zhang, X., Sun, J., Li, T., Zhang, Z., & Yang, G. (2008). Diversity and spatial distribution of sediment ammonia-oxidizing crenarchaeota in response to estuarine and environmental gradients in the Changjiang Estuary and East China Sea. Microbiology, 154, 2084ā€“2095.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Davis, K. E., Sangwan, P., & Janssen, P. H. (2011). Acidobacteria, Rubrobacteridae and Chloroflexi are abundant among very slow-growing and mini-colony-forming soil bacteria. Environmental Microbiology, 13, 798ā€“805.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • De Vries, F. T., & Shade, A. (2013). Controls on soil microbial community stability under climate change. Frontiers in Microbiology, 4, 265.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • DeBruyn JM, Nixon LT, Fawaz MN, Johnson AM, Radosevich M (2011) Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Applied and Environmental Microbiology. 05005-05011.

    Google ScholarĀ 

  • Denton, C. S., Bardgett, R. D., Cook, R., & Hobbs, P. J. (1999). Low amounts of root herbivory positively influence the rhizosphere microbial community in a temperate grassland soil. Soil Biology and Biochemistry, 31, 155ā€“165.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Dhar, D. W., Prasanna, R., & Singh, B. (2007). Comparative performance of three carrier based blue green algal biofertilizers for sustainable rice cultivation. Journal of Sustainable Agriculture, 30, 41ā€“50.

    ArticleĀ  Google ScholarĀ 

  • Dojka, M. A., Harris, J. K., & Pace, N. R. (2000). Expanding the known diversity and environmental distribution of an uncultured phylogenetic division of bacteria. Applied and Environmental Microbiology, 66, 1617ā€“1621.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Duffy, J. E., Cardinale, B. J., France, K. E., McIntyre, P. B., ThĆ©bault, E., & Loreau, M. (2007). The functional role of biodiversity in ecosystems: Incorporating trophic complexity. Ecology Letters, 10, 522ā€“538.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Eilers, K. G., Lauber, C. L., Knight, R., & Fierer, N. (2010). Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biology and Biochemistry, 42, 896ā€“903.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Erguder, T. H., Boon, N., Wittebolle, L., Marzorati, M., & Verstraete, W. (2009). Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiology Reviews, 33, 855ā€“869.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ferris, H., Venette, R., Van Der Meulen, H., & Lau, S. (1998). Nitrogen mineralization by bacterial-feeding nematodes: Verification and measurement. Plant and Soil, 203, 159ā€“171.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Fierer, N., Bradford, M. A., & Jackson, R. B. (2007). Toward an ecological classification of soil bacteria. Ecology, 88, 1354ā€“1364.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A., & Cleveland, C. C. (2009). Global patterns in belowground communities. Ecology Letters, 12, 1238ā€“1249.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Franco-Correa, M., Quintana, A., Duque, C., Suarez, C., RodrĆ­guez, M. X., & Barea, J.-M. (2010). Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Applied Soil Ecology, 45, 209ā€“217.

    ArticleĀ  Google ScholarĀ 

  • Garrity, G. M., & Holt, J. G. (2001). The road map to the manual. In D. R. Boone, R. W. Castenholz, & G. M. Garrity (Eds.), Bergeyā€™s manual of systematic bacteriology (Vol. 1, 2nd ed., pp. 119ā€“166). Springer: New York.

    ChapterĀ  Google ScholarĀ 

  • Goldfarb, K. C., et al. (2011). Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Frontiers in Microbiology, 2, 94.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Govaerts, B., et al. (2007). Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity. Applied Soil Ecology, 37, 18ā€“30.

    ArticleĀ  Google ScholarĀ 

  • Gremion, F., Chatzinotas, A., & Harms, H. (2003). Actinobacteria might be a dominant part of the metabolically active bacteria in heavy-metal contaminated bulk and rhizosphere soil. Environmental Microbiology, 5, 896ā€“907.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Griffiths, B. S., Ritz, K., Bardgett, R. D., Cook, R., Christensen, S., Ekelund, F., Sorensen, S. J., Baath, E., Bloem, J., de Ruiter, P. C., Dolfing, J., & Nicolardot, B. (2000). Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: An examination of the biodiversity-ecosystem function relationship. Oikos, 90, 279ā€“294.

    ArticleĀ  Google ScholarĀ 

  • Griffiths, B. S., Ritz, K., Wheatley, R., Kuan, H. L., Boag, B., Christensen, S., Ekelund, F., Sorensen, S. J., Muller, S., & Bloem, J. (2001). An examination of the biodiversity-ecosystem function relationship in arable soil microbial communities. Soil Biology and Biochemistry, 33, 1713ā€“1722.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • He, J., Shen, J., Lm, Z., Zhu, Y., Zheng, Y., Xu, M., & Di, H. (2007). Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environmental Microbiology, 9, 2364ā€“2374.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hector, A., & Bagchi, R. (2007). Biodiversity and ecosystem multifunctionality. Nature, 448, 188.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hibbett, D. S., et al. (2007). A higher-level phylogenetic classification of the Fungi. Mycological Research, 111, 509ā€“547.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Holmes, A. J., Bowyer, J., Holley, M. P., Oā€™donoghue, M., Montgomery, M., & Gillings, M. R. (2000). Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiology Ecology, 33, 111ā€“120.

    Google ScholarĀ 

  • Hoorman, J. J. (2011). The role of soil protozoa and nematodes Fact sheet: agriculture and natural resources (pp. 1ā€“5). Colombus: The Ohio State University Extension.

    Google ScholarĀ 

  • Hugenholtz, P., Goebel, B. M., & Pace, N. R. (1998). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology, 180, 4765ā€“4774.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hunt, H., & Wall, D. (2002). Modelling the effects of loss of soil biodiversity on ecosystem function. Global Change Biology, 8, 33ā€“50.

    ArticleĀ  Google ScholarĀ 

  • Ingham, R. E., Trofymow, J., Ingham, E. R., & Coleman, D. C. (1985). Interactions of bacteria, fungi, and their nematode grazers: Effects on nutrient cycling and plant growth. Ecological Monographs, 55, 119ā€“140.

    ArticleĀ  Google ScholarĀ 

  • Janssen, P. H. (2006). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology, 72, 1719ā€“1728.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Janssen, P. H., Yates, P. S., Grinton, B. E., Taylor, P. M., & Sait, M. (2002). Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Applied and Environmental Microbiology, 68, 2391ā€“2396.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Jia, Z., & Conrad, R. (2009). Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environmental Microbiology, 11, 1658ā€“1671.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jones, R. T., Robeson, M. S., Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. The ISME Journal, 3, 442.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Joseph, S. J., Hugenholtz, P., Sangwan, P., Osborne, C. A., & Janssen, P. H. (2003). Laboratory cultivation of widespread and previously uncultured soil bacteria. Applied and Environmental Microbiology, 69, 7210ā€“7215.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kaushik, B. (2004). Use of blue-green algae and Azolla biofertilizers in rice cultivation and their influence on soil properties. In Microbiology and biotechnology for sustainable development (pp. 166ā€“184). New Delhi: CBS.

    Google ScholarĀ 

  • Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A., & Kuramae, E. E. (2016). The ecology of Acidobacteria: Moving beyond genes and genomes. Frontiers in Microbiology, 7, 744.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kirk, P., Cannon, P., Minter, D., & Stalpers, J. (2008). Dictionary of the Fungi (Vol. 396). Wallingford: CABI.

    Google ScholarĀ 

  • Kƶnneke, M., Bernhard, A. E., JosĆ©, R., Walker, C. B., Waterbury, J. B., & Stahl, D. A. (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437, 543.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kuzyakov, Y. (2002). Factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science, 165, 382ā€“396.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75, 5111ā€“5120.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lee, S.-H., Ka, J.-O., & Cho, J.-C. (2008). Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS Microbiology Letters, 285, 263ā€“269.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Leininger, S., et al. (2006). Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 442, 806.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lindahl, B. D., Ihrmark, K., Boberg, J., Trumbore, S. E., Hƶgberg, P., Stenlid, J., & Finlay, R. D. (2007). Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist, 173, 611ā€“620.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu, Y. J, Hodson, M. C., & Hall, B. D. (2006). Loss of the flagellum happened only once in the fungal lineage: Phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes. BMC Evolutionary Biology, 6: 74. www.biomedcentral.com/1471ā€“2148/6/74

  • LĆ¼demann, H., & Conrad, R. (2000). Molecular retrieval of large 16S rRNA gene fragments from an Italian rice paddy soil affiliated with the class Actinobacteria. Systematic and Applied Microbiology, 23, 582ā€“584.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Lutzoni, F., Pagel, M., & Reeb, V. (2001). Major fungal lineages are derived from lichen symbiotic ancestors. Nature, 411, 937.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • MƤder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science, 296, 1694ā€“1697.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Maestre, F. T., et al. (2012). Plant species richness and ecosystem multifunctionality in global drylands. Science, 335, 214ā€“218.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Maha, A. A. L. (2013). Ecological role of animal diversity in soil system (A Case Study at El- Rawakeeb Dry Land Research Station, Sudan) 1st Annual International Interdisciplinary Conference, AIIC 2013, 24ā€“26 April, Azores, PortugalĀ ā€“ Proceedings, pp. 345ā€“350.

    Google ScholarĀ 

  • Maherali, H., & Klironomos, J. N. (2007). Influence of phylogeny on fungal community assembly and ecosystem functioning. Science, 316, 1746ā€“1748.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mukhtar, H., Lin, Y.-P., & Anthony, J. (2017). Ammonia oxidizing archaea and bacteria in east Asian paddy soilsā€”A mini review. Environments, 4, 84.

    ArticleĀ  Google ScholarĀ 

  • Nacke, H., et al. (2011). Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One, 6, e17000.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Nannipieri, P., Grego, S., Ceccanti, B., Bollag, J., & Stotzky, G. (1990). Ecological significance of the biological activity in soil. Soil Biochemistry, 6, 293ā€“355.

    Google ScholarĀ 

  • Neher, D. A. (2001). Role of nematodes in soil health and their use as indicators. Journal of Nematology, 33, 161.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Nemergut, D. R., et al. (2011). Global patterns in the biogeography of bacterial taxa. Environmental Microbiology, 13, 135ā€“144.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Newton, L., & Chantal, H. (2010). Soil Biology of the Canadian Prairies. Agricultural Soils of the Prairies. PS&C. Prairie Soils and Crops Journal, 3, 16ā€“24.

    Google ScholarĀ 

  • Nielsen, M., & Winding, A. (2002). Microorganisms as indicators of soil health. National Environmental Research Institute, Denmark Tech Rep:388.

    Google ScholarĀ 

  • Offre, P., Prosser, J. I., & Nicol, G. W. (2009). Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. FEMS Microbiology Ecology, 70, 99ā€“108.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Osler, G. H., & Sommerkorn, M. (2007). Toward a complete soil C and N cycle: Incorporating the soil fauna. Ecology, 88, 1611ā€“1621.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Plassard, C., & Dell, B. (2010). Phosphorus nutrition of mycorrhizal trees. Tree Physiology, 30, 1129ā€“1139.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Prosser, J. I., & Nicol, G. W. (2012). Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiation. Trends in Microbiology, 20, 523ā€“531.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Richardson, A. E., Barea, J.-M., McNeill, A. M., & Prigent-Combaret, C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 321, 305ā€“339.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rincon-Florez, V. A., Carvalhais, L. C., & Schenk, P. M. (2013). Culture-independent molecular tools for soil and rhizosphere microbiology. Diversity, 5, 581ā€“612.

    ArticleĀ  Google ScholarĀ 

  • Roesch, L. F., et al. (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal, 1, 283.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Roger, P.-A., & Reynaud, P.-A. (1982). Freeā€”Living blueā€”Green algae in tropical soils. In Microbiology of tropical soils and plant productivity (pp. 147ā€“168). Dordrecht: Springer.

    ChapterĀ  Google ScholarĀ 

  • Saadatnia, H., & Riahi, H. (2009). Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant, Soil and Environment, 55, 207ā€“212.

    ArticleĀ  Google ScholarĀ 

  • Sahu, D., Priyadarshani, I., & Rath, B. (2012). Cyanobacteriaā€“as potential biofertilizer. CIBTech Journal of Microbiology, 1, 20ā€“26.

    Google ScholarĀ 

  • Sangwan, P., Chen, X., Hugenholtz, P., & Janssen, P. H. (2004). Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Applied and Environmental Microbiology, 70, 5875ā€“5881.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Schimel, J. P., & Bennett, J. (2004). Nitrogen mineralization: Challenges of a changing paradigm. Ecology, 85, 591ā€“602.

    ArticleĀ  Google ScholarĀ 

  • Schrey, S. D., Schellhammer, M., Ecke, M., Hampp, R., & Tarkka, M. T. (2005). Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytologist, 168, 205ā€“216.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Seastedt, T., James, S., & Todd, T. (1988). Interactions among soil invertebrates, microbes and plant growth in the tallgrass prairie. Agriculture, Ecosystems & Environment, 24, 219ā€“228.

    ArticleĀ  Google ScholarĀ 

  • Simard, S. W., Beiler, K. J., Bingham, M. A., Deslippe, J. R., Philip, L. J., & Teste, F. P. (2012). Mycorrhizal networks: Mechanisms, ecology and modelling. Fungal Biology Reviews, 26, 39ā€“60.

    ArticleĀ  Google ScholarĀ 

  • Sohlenius, B., Bostrƶm, S., & Sandor, A. (1988). Carbon and nitrogen budgets of nematodes in arable soil. Biology and Fertility of Soils, 6, 1ā€“8.

    ArticleĀ  Google ScholarĀ 

  • Spain, A. M., Krumholz, L. R., & Elshahed, M. S. (2009). Abundance, composition, diversity and novelty of soil Proteobacteria. The ISME Journal, 3, 992.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sugiyarto, S. (2009). The effect of mulching technology to enhance the diversity of soil macroinvertebrates in Sengon-based agroforestry systems. Biodiversitas Journal of Biological Diversity, 10, 129ā€“133.

    ArticleĀ  Google ScholarĀ 

  • Tarkka, M. T., & Frey-Klett, P. (2008). Mycorrhiza helper bacteria. In MycorrhizaĀ ā€“ State of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics (pp. 113ā€“132). Heidelberg: Springer.

    Google ScholarĀ 

  • Terkina, I., Parfenova, V., & Ahn, T. (2006). Antagonistic activity of actinomycetes of Lake Baikal. Applied Biochemistry and Microbiology, 42, 173ā€“176.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Teste, F. P., Simard, S. W., & Durall, D. M. (2009). Role of mycorrhizal networks and tree proximity in ectomycorrhizal colonization of planted seedlings. Fungal Ecology, 2, 21ā€“30.

    ArticleĀ  Google ScholarĀ 

  • Thomas, W. C. (2013). Role of arthropods in maintaining soil fertility. Agriculture, 3, 629ā€“659. www.mdpi.com/journal/agriculture

    ArticleĀ  Google ScholarĀ 

  • Tourna, M., Freitag, T. E., Nicol, G. W., & Prosser, J. I. (2008). Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environmental Microbiology, 10, 1357ā€“1364.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Tourna, M., et al. (2011). Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proceedings of the National Academy of Sciences, 108, 8420ā€“8425.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Treseder, K. K., Kivlin, S. N., & Hawkes, C. V. (2011). Evolutionary trade-offs among decomposers determine responses to nitrogen enrichment. Ecology Letters, 14, 933ā€“938.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Treusch, A. H., Leininger, S., Kletzin, A., Schuster, S. C., Klenk, H. P., & Schleper, C. (2005). Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environmental Microbiology, 7, 1985ā€“1995.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Trofymow, L., & Coleman, D. (1982). The role of bacterivorous and fungivorous nematodes in cellulose and chitin decomposition. In Nematodes in soil ecosystems (pp. 111ā€“138). Austin: University of Texas.

    Google ScholarĀ 

  • Uroz, S., Calvaruso, C., Turpault, M.-P., Pierrat, J.-C., Mustin, C., & Frey-Klett, P. (2007). Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Applied and Environmental Microbiology, 73, 3019ā€“3027.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Van Der Heijden, M. G., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296ā€“310.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., et al. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304, 66ā€“74. https://doi.org/10.1126/science.1093857.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Wakelin, S., et al. (2012). Response of soil microbial communities to contrasted histories of phosphorus fertilisation in pastures. Applied Soil Ecology, 61, 40ā€“48.

    ArticleĀ  Google ScholarĀ 

  • Ward, N. L., et al. (2009). Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Applied and Environmental Microbiology, 75, 2046ā€“2056.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wardle, D. A., & Yeates, G. W. (1993). The dual importance of competition and predation as regulatory forces in terrestrial ecosystems, evidence from decomposer food-webs. Oecologia, 93, 303ā€“306.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wardle, D. A., Bardgett, R. D., Klironomos, J. N., SetƤlƤ, H., Van Der Putten, W. H., & Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629ā€“1633.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zavaleta, E. S., Pasari, J. R., Hulvey, K. B., & Tilman, G. D. (2010). Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proceedings of the National Academy of Sciences, 107, 1443ā€“1446.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhang, L.-M., Offre, P. R., He, J.-Z., Verhamme, D. T., Nicol, G. W., & Prosser, J. I. (2010). Autotrophic ammonia oxidation by soil thaumarchaea. Proceedings of the National Academy of Sciences, 107, 17240ā€“17245.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhang, L.-M., Hu, H.-W., Shen, J.-P., & He, J.-Z. (2012). Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. The ISME Journal, 6, 1032.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalaivani Nadarajah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nadarajah, K. (2019). Soil Health: The Contribution of Microflora and Microfauna. In: Varma, A., Choudhary, D. (eds) Mycorrhizosphere and Pedogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-13-6480-8_22

Download citation

Publish with us

Policies and ethics