Skip to main content

The Mycorrhizoshpere Effect on Pedogenesis and Terrestrial Biomes

  • Chapter
  • First Online:
Mycorrhizosphere and Pedogenesis

Abstract

Microorganisms are ubiquitous in nature and soil is no exception. Plenty of microbes are present as conglomerate population in soil. Many of these microbes enter into symbiotic mutualism with vascular land plants. Of special interest is the symbiosis between land plants and members of kingdom Fungi. The association is known as mycorrhizae. According to Rambelli (Ectomycorrhizae. Academic, New York, 1973), the soil and its associated microbiota under the influence of mycorrhizae is known as mycorrhizosphere and it is an area of dynamic interaction among the mycorrhizal fungi and soil microbiota of the mycorrhizosphere that drives pedogenesis and determines terrestrial biome diversity of the ecosystem through nutrient cycling and biogeochemical cycles. Extensive work has been carried out in the last few decades on role of mycorrhiza in pedogenesis and as a mediator of ecosystem diversity but these two important aspects have been dealt with separately by various authors. This review aims at dealing with the two processes together and thus have a comprehensive review literature on how this symbiosis drives pedogenesis and determines terrestrial biome of a particular ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber, J. D., Goodale, C. L., Ollinger, S. V., Smith, M. L., Magill, A. H., Martin, M. E., Hallett, R. A., & Stoddard, J. L. (2003). Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience, 53, 375–389.

    Article  Google Scholar 

  • Albornoz, F. E., Lambers, H., Turner, B. L., Teste, F. P., & Laliberté, E. (2016). Shifts in symbiotic associations in plants capable of forming root symbioses across a long-term soil chronosequence. Ecology and Evolution, 6, 2368–2377.

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen, M. F., Klironomos, J. N., Treseder, K. K., & Oechel, W. C. (2005). Responses of soil biota to elevated CO2 in a chaparral ecosystem. Ecological Applications, 15, 1701–1711.

    Article  Google Scholar 

  • Ames, R. N., Reid, C. P. P., & Ingham, E. R. (1984). Rhizosphere bacterial population responses to root colonization by vesicular-arbuscular mycorrhizal fungus. The New Phytologist, 96, 555–563.

    Article  Google Scholar 

  • Bagyaraj, D. J., & Menge, J. A. (1978). Interaction between VA Mycorrhiza and Azotobacter and their effects on rhizosphere microflora and plant growth. The New Phytologist, 80, 567–573.

    Article  Google Scholar 

  • Beerling, D. (2007). The Emerald planet. How plants changed earth’s history (288 pages). Oxford: Oxford University Press.

    Google Scholar 

  • Berner, R. A. (2006). GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 70, 5653–5664.

    Article  CAS  Google Scholar 

  • Bowen, G. D., & Theodorou, C. T. (1979). Interactions between bacteria and ectomycorrhizal fungi. Soil Biology and Biochemistry, 11, 119–126.

    Article  Google Scholar 

  • Brantley, S. L., Megonigal, J. P., Scatena, F. N., Balogh-Brunstad, Z., Barnes, R. T., Bruns, M. A., Van Cappellen, P., Dontsova, K., Hartnett, H. E., Hartshorn, A. S., Heimsath, A., Herndon, E., Jin, L., Keller, C. K., Leake, J. R., McDowell, W. H., Meinzer, F. C., Mozdzer, T. J., Petsch, S., Pett-Ridge, J., Pregitzer, K. S., Raymond, P. A., Riebe, C. S., Shumaker, K., Sutton-Grier, A., Walter, R., & Yoo, K. (2011). Twelve testable hypotheses on the geobiology of weathering. Geobiology, 9, 140–165.

    CAS  PubMed  Google Scholar 

  • Brundrett, M. C. (2002). Coevolution of roots and mycorrhizae of land plants. The New Phytologist, 154, 275–304.

    Article  PubMed  Google Scholar 

  • Butler, S. M., Melillo, J. M., Johnson, J., Mohan, J., Steudler, P. A., Lux, H., Burrows, E., Smith, R., Vario, C., & Scott, L. (2012). Soil warming alters nitrogen cycling in a New England forest: Implications for ecosystem function and structure. Oecologia, 168, 819–828.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, L., Booker, F. L., Tu, C., Burkey, K. O., Zhou, L., Shew, H. D., Rufty, T. W., & Hu, S. (2012). Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 337, 1084–1087.

    Article  CAS  PubMed  Google Scholar 

  • Chung, H., Zak, D. R., & Lilleskov, E. A. (2006). Fungal community composition and metabolism under elevated CO2 and O3. Oecologia, 147, 143.

    Article  PubMed  Google Scholar 

  • Clark, N. M., Rillig, M. C., & Nowak, R. S. (2009). Arbuscular mycorrhizal fungal abundance in the Mojave Desert: Seasonal dynamics and impacts of elevated CO2. Journal of Arid Environments, 73, 834–843.

    Article  Google Scholar 

  • Clemmensen, K. E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H., Stenlid, J., Finlay, R. D., Wardle, D. A., & Lindahl, B. D. (2013). Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science, 339, 1615–1618.

    Article  CAS  PubMed  Google Scholar 

  • Compant, S., Van Der Heijden, M. G., & Sessitsch, A. (2010). Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiology Ecology, 73, 197–214.

    CAS  PubMed  Google Scholar 

  • Conley, D. J., & Carey, J. C. (2015). Silica cycling over geologic time. Nature Geoscience, 8, 431–432.

    Article  CAS  Google Scholar 

  • De La Rosa, T. M., Aphalo, P. J., & Lehto, T. (2003). Effects of ultraviolet-B radiation on growth, mycorrhizae and mineral nutrition of silver birch (Betula pendula Roth) seedlings grown in low-nutrient conditions. Global Change Biology, 9, 65–73.

    Article  Google Scholar 

  • Duponnois, R., & Garbaye, J. (1991). Effect of dual inoculation of Douglas fir with the ectomycorrhizal fungus Laccaria laccata and mycorrhization helper bacteria (MHB) in two bare-root forest nurseries. Plant and Soil, 138, 169–176.

    Article  Google Scholar 

  • Eom, A. H., Hartnett, D. C., Wilson, G. W., & Figge, D. A. (1999). The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizae in tallgrass prairie. The American Midland Naturalist, 142, 55–70.

    Article  Google Scholar 

  • Filippelli, G. (2008). The global phosphorus cycle: Past, present, and future. Elements, 4, 89–95.

    Article  CAS  Google Scholar 

  • Finzi, A. C., Norby, R. J., Calfapietra, C., Gallet-Budynek, A., Gielen, B., Holmes, W. E., Hoosbeek, M. R., Iversen, C. M., Jackson, R. B., Kubiske, M. E., Ledford, J., Liberloo, M., Oren, R., Polle, A., Pritchard, S., Zak, D. R., Schlesinger, W. H., & Ceulemans, R. (2007). Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences USA, 104, 14014–14019.

    Article  CAS  Google Scholar 

  • Founoune, H., Duponnois, R., Bâ, A. M., & El Bouami, F. (2002). Influence of the dual arbuscular endomycorrhizal/ectomycorrhizal symbiosis on the growth of Acacia holosericea (A. Cunn. ex G. Don) in glasshouse conditions. Annals of Forest Science, 59, 93–98.

    Article  Google Scholar 

  • Frey-Klett, P., et al. (1999). Dose effect in the dual inoculation of an ectomycorrhizal fungus and a mycorrhiza helper bacterium in two forest nurseries. Soil Biology and Biochemistry, 31, 1555–1562.

    Article  CAS  Google Scholar 

  • Garcia, M. O., Ovasapyan, T., Greas, M., & Treseder, K. K. (2008). Mycorrhizal dynamics under elevated CO2 and nitrogen fertilization in a warm temperate forest. Plant and Soil, 303, 301–310.

    Article  CAS  Google Scholar 

  • Haselwandter, K. (2008). Structure and function of siderophores produced by mycorrhizal fungi. Mineralogical Magazine, 72, 61–64.

    Article  CAS  Google Scholar 

  • Heinemeyer, A., & Fitter, A. H. (2004). Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: Growth responses of the host plant and its AM fungal partner. Journal of Experimental Botany, 55(396), 525–534.

    Article  CAS  PubMed  Google Scholar 

  • Hiederer, R., & Köchy, M. (2011). Global soil organic carbon estimates and the harmonized world soil database (EUR 25225 EN). Luxembourg: Publications Office of the EU.

    Google Scholar 

  • Hiltner, L. (1904). Ãœberneuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologieunterbesonderer Berücksichtigung der Gründüngung und Brache. Arbeiten der DLG, 98, 59–78.

    Google Scholar 

  • Humphreys, C. P., Franks, P. J., Rees, M., Bidartondo, M. I., Leake, J. R., & Beerling, D. J. (2010). Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nature Communications, 1, 7.

    Article  CAS  Google Scholar 

  • IPCC. (2007). In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate change 2007 – The physical science basis: Working Group I contribution to the fourth assessment report of the IPCC. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jenny, H. (1941). Factors of soil formation – A system of quantitative pedology. New York: McGraw-Hill.

    Google Scholar 

  • Jenny, H. (1980). The soil resource, origin and behavior. New York/Heidelberg/Berlin: Springer.

    Book  Google Scholar 

  • Johnson, N. C., & Gehring, C. A. (2007). Chapter-4 mycorrhizae: Symbiotic mediators of rhizosphere and ecosystem processes. In Z. G. Cardon & J. L. Whitbeck (Eds.), The rhizosphere: An ecological perspective. Amsterdam: Elsevier Academic Press.

    Google Scholar 

  • Johnson, N. C., Graham, J. H., & Smith, F. A. (1997). Functioning of mycorrhizal associations along the mutualism-parasitism continuum. The New Phytologist, 135, 575–585.

    Article  Google Scholar 

  • Johnson, N. C., Wolf, J., Reyes, M. A., Panter, A., Koch, G. W., & Redman, A. (2005). Species of plants and associated arbuscular mycorrhizal fungi mediate mycorrhizal responses to CO2 enrichment. Global Change Biology, 11, 1156–1166.

    Article  Google Scholar 

  • Johnson, N. C., Caroline Angelard, I. R. S., & Kiers, E. T. (2013). Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecology Letters, 16, 140–153.

    Article  PubMed  Google Scholar 

  • Jumpponen, A., Trowbridge, J., Mandyam, K., & Johnson, L. (2005). Nitrogen enrichment causes minimal changes in arbuscular mycorrhizal colonization but shifts community composition-evidence from rDNA data. Biology and Fertility of Soils, 41, 217–224.

    Article  CAS  Google Scholar 

  • Kasurinen, A., Helmisaari, H. S., & Holopainen, T. (1999). The influence of elevated CO2 and O3 on fine roots and mycorrhizae of naturally growing young Scots pine trees during three exposure years. Global Change Biology, 5, 771–780.

    Article  Google Scholar 

  • Katznelson, H., Rouatt, J. W., & Peterson, E. A. (1962). The rhizosphere effect of mycorrhizal and non mycorrhizal roots of yellow birch seedlings. Canadian Journal of Botany, 40, 377–382.

    Article  Google Scholar 

  • Klironomos, J. N., & Allen, M. F. (1995). UV-B-mediated changes on below-ground communities associated with the roots of Acer saccharum. Functional Ecology, 9, 923–930.

    Article  Google Scholar 

  • Krishna, K. R., Balakrishna, A. N., & Bagyaraj, D. J. (1982). Interaction between a vesicular-arbuscular mycorrhizal fungus and Streptomyces cinnamomeous and their effects on finger millet. The New Phytologist, 92, 401–405.

    Article  Google Scholar 

  • Kristian, R. A., Riikka, R., Helge, R. P., Teis, N. M., Kirsten, B. H., Marie, F. A., & Anders, M. (2008). Solar Ultraviolet-B radiation at Zackenberg: The impact on higher plants and soil microbial communities. Advances in Ecological Research, 40, 421–440.

    Article  Google Scholar 

  • Laing, W. A. (1991). The consequences of increased ultraviolet-B radiation for plants. DSIR Fruit and Trees Internal Report, 206.

    Google Scholar 

  • Leake, J. R., & Read, D. J. (2017). Chapter-2 Mycorrhizal symbioses and pedogenesis throughout earth’s history. In N. C. Johnson, C. Gehring, & J. Jansa (Eds.), Mycorrhizal mediation of soil. Amsterdam: Elsevier.

    Google Scholar 

  • Leake, J. R., Johnson, D., Donnelly, D., Muckle, G. E., Boddy, L., & Read, D. J. (2004). Networks of power and influence: The role of mycorrhizal mycelium in controlling plant communities and agro-ecosystem functioning. Canadian Journal of Botany, 82, 1016–1045.

    Article  Google Scholar 

  • Leake, J. R., Duran, A. L., Hardy, K. E., Johnson, I., Beerling, D. J., Banwart, S. A., & Smits, M. M. (2008). Biological weathering in soil: The role of symbiotic root-associated fungi biosensing minerals and directing photosynthate-energy into grain-scale mineral weathering. Mineralogical Magazine, 72, 85–89.

    Article  CAS  Google Scholar 

  • Li, C. Y., & Castellano, M. A. (1985). Nitrogen-fixing bacteria isolated from within sporocarps of three ectomycorrhizal fungi. In: Proceedings of the 6th North American coference on mycorrhizae (p. 264), June 25–29, 1984, Bend.

    Google Scholar 

  • Lilleskov, E. A., Fahey, T. J., & Lovett, G. M. (2001). Ectomycorrhizal fungal aboveground community change over an atmospheric nitrogen deposition gradient. Ecological Applications, 11, 397–410.

    Article  Google Scholar 

  • Linderman, R. G. (1988). Mycorrhizal interactions with the rhizosphere microflora: The mycorrhizosphere effect. Paper presented at symposium: Interaction of Mycorrhizal Fungi, Aps Symp Ser.

    Google Scholar 

  • Meyer, J. R., & Linderman, R. G. (1986). Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biology and Biochemistry, 18(2), 185–190.

    Article  CAS  Google Scholar 

  • Miller, R. M., & Jastrow, J. D. (2000). Mycorrhizal fungi influence soil structure. In Y. Kapulnik & D. D. Douds Jr. (Eds.), Arbuscular mycorrhizae: Physiology and function (pp. 3–18). London: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Mohan, J. E., Clark, J. S., & Schlesinger, W. H. (2007). Long-term CO2 enrichment of a forest ecosystem: Implications for forest regeneration and succession. Ecological Applications, 17, 1198–1212.

    Article  PubMed  Google Scholar 

  • Mohan, J. E., Cowden, C. C., Baas, P., Dawadi, A., Frankson, P. T., Helmick, K., Hughes, E., Khan, S., Lang, A., Machmuller, M., Taylor, M., & Witt, C. A. (2014). Mycorrhizal fungi mediation of terrestrial Ecosystem responses to global change: Mini-review. Fungal Ecology, 10, 3–19. Science Direct. Elsevier.

    Google Scholar 

  • Neal, J. L. Jr., Lu, K. C., Bollen, W. B., & Trappe, J. M. (1968). A comparison of rhizosphere microfloras associated with mycorrhizae of red alder and Douglas-fir. Pager 57–71 In: J. M. Trappe, J. F. Franklin, R. F. Tarrant & G. M. Hansen (Eds.), Biology of Alder. USDA Forest Service, Pacific Northwest Forest and Range Experiment Station (292 pp).

    Google Scholar 

  • Neal Jr, J. L., Lu, K. C., Bollen, W. B., & Trappe, J. M. (1967, April). A comparison of rhizosphere microfloras associated with mycorrhizae of red alder and Douglas-fir. In Biology of Alder, Proceedings of Northwest Scientific Association Annual Meeting.

    Google Scholar 

  • Olsrud, M., Carlsson, B. A., Svensson, B. M., Michelsen, A., & Melillo, J. M. (2010). Responses of fungal root colonization, plant cover and leaf nutrients to long-term exposure to elevated atmospheric CO2 and warming in a subarctic birch forest understory. Global Change Biology, 16, 1820–1829.

    Article  Google Scholar 

  • Olssen, P. A., Hammer, E. C., Pallon, J., & Van Aarle, I. M. (2011). Elemental composition in vesicles of an arbuscular mycorrhizal fungus, as revealed by PIXE analysis. Fungal Biology-UK, 115, 643–648.

    Article  CAS  Google Scholar 

  • Oswald, E. T., & Ferchau, H. A. (1968). Bacterial association of coniferous mycorrhizae. Plant and Soil, 28, 187–192.

    Article  Google Scholar 

  • Pardo, L. H., Fenn, M. E., Goodale, C. L., Geiser, L. H., Driscoll, C. T., Allen, E. B., Baron, J. S., Bobbink, R., Bowman, W. D., Clark, C. M., Emmett, B., Gilliam, F. S., Greaver, T. L., Hall, S. J., Lilleskov, E. A., Liu, L. L., Lynch, J. A., Nadelhoffer, K. J., Perakis, S. S., Robin-Abbott, M. J., Stoddard, J. L., Weathers, K. C., & Dennis, R. L. (2011). Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecological Applications, 21, 3049–3082.

    Article  Google Scholar 

  • Parrent, J. L., & Vilgalys, R. (2007). Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO2 and nitrogen fertilization. The New Phytologist, 176, 164–174.

    Article  PubMed  Google Scholar 

  • Peterjohn, W. T., Melillo, J. M., Steudler, P. A., Newkirk, K. M., Bowles, F. P., & Aber, J. D. (1994). Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecological Applications, 4, 617–625.

    Article  Google Scholar 

  • Phillips, J. D. (2009). Biological energy in landscape evolution. American Journal of Science, 309, 271–290.

    Article  Google Scholar 

  • Pirozynski, K. A., & Malloch, D. W. (1975). The origin of land plants: A matter of mycotrophism. Biosystems, 6, 153–164.

    Article  CAS  PubMed  Google Scholar 

  • Quirk, J., Leake, J. R., Banwart, S. A., Taylor, L. L., & Beerling, D. J. (2014). Weathering by tree-root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline. Biogeosciences, 11, 321–331.

    Article  CAS  Google Scholar 

  • Quirk, J., Leake, J. R., Johnson, D. A., Taylor, L. L., Saccone, L., & Beerling, D. J. (2015). Constraining the role of early land plants in Palaeozoic weathering and global cooling. Proceedings of the Royal Society B, 282, 20151115. https://doi.org/10.1098/rspb.2015.1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rambelli, A. (1973). The rhizosphere of mycorrhizae. In G. L. Marks & T. T. Koslowski (Eds.), Ectomycorrhizae (pp. 299–343). New York: Academic.

    Chapter  Google Scholar 

  • Read, D. J. (1991). Mycorrhizae in ecosystems. Experientia, 47, 376–391.

    Article  Google Scholar 

  • Reay, D. S., Dentener, F., Smith, P., Grace, J., & Feely, R. A. (2008). Global nitrogen deposition and carbon sinks. Nature Geoscience, 1, 430–437.

    Article  CAS  Google Scholar 

  • Reboredo, F., & Lidon, F. J. C. (2012). UV-B radiation effects on terrestrial plants – A perspective. Emirates Journal of Food and Agriculture, 24, 502–509.

    Article  Google Scholar 

  • Redecker, D., Kodner, R., & Graham, L. E. (2000). Glomalean fungi from the Ordovician. Science, 289, 1920–1921.

    Article  CAS  PubMed  Google Scholar 

  • Rillig, M. C., Field, C. B., & Allen, M. F. (1999). Soil biota responses to long-term atmospheric CO2 enrichment in two California annual grasslands. Oecologia, 119, 572–577.

    Article  PubMed  Google Scholar 

  • Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R., & Kapos, V. (2014). Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management, 5, 81–91.

    Article  CAS  Google Scholar 

  • Schisler, D. A., & Linderman, R. G. (1989). Influence of humic-rich organic amendments to coniferous nursery soils on Douglas-fir growth, damping-off and associated soil microorganisms. Soil Biology and Biochemistry, 21(3), 403–408.

    Article  Google Scholar 

  • Siguenza, C., Corkidi, L., & Allen, E. B. (2006a). Feedbacks of soil inoculum of mycorrhizal fungi altered by N deposition on the growth of a native shrub and an invasive annual grass. Plant and Soil, 286, 153–165.

    Article  CAS  Google Scholar 

  • Siguenza, C., Crowley, D. E., & Allen, E. B. (2006b). Soil microorganisms of a native shrub and exotic grasses along a nitrogen deposition gradient in southern California. Applied Soil Ecology, 32, 13–26.

    Article  Google Scholar 

  • Smith, S. E., & Read, D. J. (1997). Mycorrhizal symbiosis. New York: Academic.

    Google Scholar 

  • Soudzilovskaia, N. A., Douma, J. C., Akhmetzhanova, A. A., Bodegom, P. M., Cornwell, W. K., Moens, E. J., Treseder, K. K., Tibbett, M., Wang, Y. P., & Cornelissen, J. H. C. (2015). Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Global Ecology and Biogeography, 24, 371–382.

    Article  Google Scholar 

  • Stubblefield, S. P., Taylor, T. N., & Trappe, J. M. (1987). Fossil mycorrhizae: A case for symbiosis. Science, 237, 59–60.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, L. L., Leake, J. R., Quirk, J., Hardy, K., Banwart, S. A., & Beerling, D. J. (2009). Biological weathering and the longterm carbon cycle: Integrating mycorrhizal evolution and function into the current paradigm. Geobiology, 7, 171–191.

    Article  CAS  PubMed  Google Scholar 

  • Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47, 123–138.

    Article  Google Scholar 

  • Trenberth, K. E., Smith, L., Qian, T., Dai, A., & Fasullo, J. (2007). Estimates of the global water budget and its annual cycle using observational and model data. Journal of Hydrometeorology, 8, 758–769.

    Article  Google Scholar 

  • Turner, B. L., Lambers, H., Condron, L. M., Cramer, M. D., Leake, J. R., Richardson, A. E., & Smith, S. E. (2013). Soil microbial biomass and the fate of phosphorus during long-term ecosystem development. Plant and Soil, 367, 225–234.

    Article  CAS  Google Scholar 

  • van Breemen, N., Finlay, R., Lundström, U., Jongmans, A. G., Giesler, R., & Olsson, M. (2000). Mycorrhizal weathering: A true case of mineral plant nutrition? Biogeochemistry, 49(1), 53–67.

    Article  Google Scholar 

  • van de Staaij, J., Rozema, J., van Beem, A., & Aerts, R. (2001). Increased solar UV-B radiation may reduce infection by arbuscular mycorrhizal fungi (AMF) in dune grassland plants: Evidence from five years of field exposure. Plant Ecology, 154(1–2), 169.

    Article  Google Scholar 

  • van der Heijden, M. G. A., Klironomos John, N., Margot, U., Peter, M., Ruth, S.-E., Thomas, B., Andres, W., & Sanders, I. R. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69–72.

    Article  CAS  Google Scholar 

  • Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of Earth’s ecosystems. Science, 277, 494–499.

    Article  CAS  Google Scholar 

  • Vohník, M., Burdíková, Z., Albrechtová, J., & Vosátka, M. (2009). Testate Amoebae (Arcellinida and Euglyphida) vs. Ericoid Mycorrhizal and DSE fungi: A possible novel interaction in the Mycorrhizosphere of Ericaceous plants? Microbial Ecology, 57, 203–214.

    Article  PubMed  Google Scholar 

  • Walker, T. W., & Syers, J. K. (1976). The fate of phosphorus during pedogenesis. Geoderma, 15, 1–19.

    Article  CAS  Google Scholar 

  • Zhang, L., Fan, J., Ding, X., He, X., Zhang, F., & Feng, G. (2014). Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biology and Biochemistry, 74, 177–183.

    Article  CAS  Google Scholar 

  • Zhang, L., Xu, M., Liu, Y., Zhang, F., Hodge, A., & Feng, G. (2016). Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. The New Phytologist, 210, 1022–1032.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dey, S., Bhattacharyya, R. (2019). The Mycorrhizoshpere Effect on Pedogenesis and Terrestrial Biomes. In: Varma, A., Choudhary, D. (eds) Mycorrhizosphere and Pedogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-13-6480-8_16

Download citation

Publish with us

Policies and ethics