Skip to main content

Vulnerability of Soil Micro Biota Towards Natural and Anthropogenic Induced Changes and Loss of Pedospheric Functionality

  • Chapter
  • First Online:
Book cover Mycorrhizosphere and Pedogenesis

Abstract

Throughout the history of planet earth, microbes have radically reshaped all the forms of life by performing photosynthesis, producing oxygen, producing and fixing CO2 and decomposing organic matter which return nutrients back to the earth. With no microbes on earth all the different life and geochemical cycles will stop. Soil is the home to innumerable microbes. The outer most layer of the earth crust is called the pedosphere which provides bed for agriculture. All the microbiota, present in pedosphere have a strong association with their respective environments and habitats. Microbes residing the pedosphere serve as the foundation and life supporting systems to all the geochemical cycles and soil science is an outcome of all the advancements in geosciences. Geo-bio-spherically study of pedosphere involves the relation of each layer of earth with each other and their relationship with biosphere.

This chapter discusses the present scenario of pedosphere in terms of its structural composition, functions and the inter relationship of the microflora and fauna with the different layers of soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Augé, R. M. (2004). Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science, 84(4), 373–381.

    Article  Google Scholar 

  • Bhargava, P., Gupta, N., Vats, S., & Goel, R. (2017a). Health issues and heavy metals. Austin Journal of Environmental Toxicology, 3(1), 3018.

    Google Scholar 

  • Bhargava, P., Singh, A. K., & Goel, R. (2017b). Microbes: Bioresource in agriculture and environmental sustainability. In Plant-microbe interactions in agro-ecological perspectives (pp. 361–376). Singapore: Springer.

    Chapter  Google Scholar 

  • Brady, N. C., & Weil, R. R. (2008). The nature and properties of soils (Vol. 360). Upper Saddle River: Pearson Prentice Hall.

    Google Scholar 

  • Dong, X. U. E., Huai-Ying, Y. A. O., De-Yong, G. E., & Huang, C. Y. (2008). Soil microbial community structure in diverse land use systems: A comparative study using biolog, DGGE, and PLFA analyses. Pedosphere, 18(5), 653–663.

    Google Scholar 

  • Fowler, B. A. (Ed.). (2013). Biological and environmental effects of arsenic (Vol. 6). Amsterdam: Elsevier.

    Google Scholar 

  • Gadd, G. M., & Griffiths, A. J. (1977). Microorganisms and heavy metal toxicity. Microbial Ecology, 4(4), 303–317.

    Article  CAS  Google Scholar 

  • Goudie, A. S. (2018). Human impact on the natural environment. Hoboken: Wiley.

    Google Scholar 

  • Gupta, N., Vats, S., & Bhargava, P. (2018). Sustainable agriculture: Role of metagenomics and metabolomics in exploring the soil microbiota. In Silico approach for sustainable agriculture (pp. 183–199). Singapore: Springer.

    Chapter  Google Scholar 

  • Han, F. X., Banin, A., Su, Y., Monts, D. L., Plodinec, J. M., Kingery, W. L., & Triplett, G. E. (2002). Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften, 89(11), 497–504.

    Article  CAS  Google Scholar 

  • Hou, E. Q., Xiang, H. M., Li, J. L., Li, J., & Wen, D. Z. (2015). Soil acidification and heavy metals in urban parks as affected by reconstruction intensity in a humid subtropical environment. Pedosphere, 25(1), 82–92.

    Article  CAS  Google Scholar 

  • Karpachevskii, L. O. (2011). A book on the pedosphere of the earth. Eurasian Soil Science, 44(7), 832–833.

    Article  Google Scholar 

  • Kaur, A., Vats, S., Rekhi, S., Bhardwaj, A., Goel, J., Tanwar, R. S., & Gaur, K. K. (2010). Physico-chemical analysis of the industrial effluents and their impact on the soil microflora. Procedia Environmental Sciences, 2, 595–599.

    Article  Google Scholar 

  • Khaleel, R., Reddy, K. R., & Overcash, M. R. (1981). Changes in soil physical properties due to organic waste applications: A review 1. Journal of Environmental Quality, 10(2), 133–141.

    Article  Google Scholar 

  • Li, X., & Chen, Z. (2004). Soil microbial biomass C and N along a climatic transect in the Mongolian steppe. Biology and Fertility of Soils, 39(5), 344–351.

    Google Scholar 

  • Liu, E., Yan, C., Mei, X., He, W., Bing, S. H., Ding, L., et al. (2010). Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma, 158(3–4), 173–180.

    Article  CAS  Google Scholar 

  • McDaniel, M. D., Tiemann, L. K., & Grandy, A. S. (2014). Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecological Applications, 24(3), 560–570.

    Article  CAS  Google Scholar 

  • Petersen, H., & Luxton, M. (1982). A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos, 39, 288–388.

    Article  Google Scholar 

  • Renella, G., Ogunseitan, O., Giagnoni, L., & Arenella, M. (2014). Environmental proteomics: A long march in the pedosphere. Soil Biology and Biochemistry, 69, 34–37.

    Article  CAS  Google Scholar 

  • Schimel, J., & Schaeffer, S. (2012). Microbial control over carbon cycling in soil. Frontiers in Microbiology, 3, 348.

    Article  CAS  Google Scholar 

  • Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., K¨ogel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49–56.

    Article  CAS  Google Scholar 

  • Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., de Remy de Courcelles, V., Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., Lehmann, J., O’Donnell, A. G., Parton, W. J., Whitehead, D., & Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164, 80–99.

    Article  CAS  Google Scholar 

  • Van Paassen, L. A., Daza, C. M., Staal, M., Sorokin, D. Y., van der Zon, W., & van Loosdrecht, M. C. (2010). Potential soil reinforcement by biological denitrification. Ecological Engineering, 36(2), 168–175.

    Article  Google Scholar 

  • Vats, S. (2017). Methods for extractions of value-added nutraceuticals from lignocellulosic wastes and their health application. In Ingredients extraction by physicochemical methods in food (pp. 1–64). Washington, DC: American Chemical Society.

    Google Scholar 

  • Vats, S., & Kumar, R. (2015). Amylolytic-extremoenzymes: Saviour of environments. European Journal of Biomedical and Pharmaceutical Sciences, 2(5), 694–702.

    CAS  Google Scholar 

  • Vats, R., & Mishra, A. (2016). Soil agro-ecological management by vermicompost a potential organic nutrient source for the state of Uttar Pradesh. European Journal of Pharmaceutical and Medical Research, 3(9), 604–609.

    Google Scholar 

  • Vats, S., Kumar, R., & Miglani, A. K. (2011). Isolation, characterization and identification of high salinity tolerant, heavy metal contaminant and antibiotics resistant amylolytic-thermophilic pseudomonas Sp. International Journal of Pharmaceutical Sciences Review and Research, 10(2), 125–129.

    CAS  Google Scholar 

  • Vig, K., Megharaj, M., Sethunathan, N., & Naidu, R. (2003). Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review. Advances in Environmental Research, 8(1), 121–135.

    Article  CAS  Google Scholar 

  • Zhongjun, J. I. A., Kuzyakov, Y., Myrold, D., & Tiedje, J. (2017). Soil organic carbon in a changing world. Pedosphere, 27(5), 789–791.

    Article  Google Scholar 

Download references

Acknowledgements

PB thanks DST-SERB: SB/YS/LS-213/2013 for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prachi Bhargava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vats, S., Gupta, N., Bhargava, P. (2019). Vulnerability of Soil Micro Biota Towards Natural and Anthropogenic Induced Changes and Loss of Pedospheric Functionality. In: Varma, A., Choudhary, D. (eds) Mycorrhizosphere and Pedogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-13-6480-8_12

Download citation

Publish with us

Policies and ethics