Skip to main content

Mycorrhizal Mediated Micronutrients Transportation in Food Based Plants: A Biofortification Strategy

  • Chapter
  • First Online:
Mycorrhizosphere and Pedogenesis

Abstract

Food based crops with enhanced micronutrients concentrations are required globally for eradicating hidden hunger. Mycorrhizal fungi have mutualistic association with roots of plant and commence enhance uptake of macro and as well micro nutrients for plants vitality. Micronutrients deficiencies cause a number of ailments in humans due the malnutrition of important micro elements such as zinc, iron, selenium, etc. Mycorrhizal fungal partner is efficient for depicting several traits for nutrient acquisition such as enhanced mycelia growth for exploring nutrients in soils, production of organic acids and metals chelating compounds (particularly siderophores), and hence provide host plants with elevated levels of essential micronutrients (Zn, Fe, Cu and Mn) in edible portion of plants such as grains and fruits. In the present chapter, the main prominence is given to mycorrhizal fungi and their prominent role in nutrient transfer into host plants, and presenting view on application of mycorrhiza for crop biofortification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alloway, B. J. (2008). Micronutrients and crop production: An introduction. In B. J. Alloway (Ed.), Micronutrient deficiencies in global crop production (pp. 1–39). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Ames, B. N. (2001). DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 475(1–2), 7–20. https://doi.org/10.1016/s0027-5107(01)00070-7.

    Article  CAS  PubMed  Google Scholar 

  • Biari, A., Gholami, A., & Rahmani, H. (2008). Growth promotion and enhanced nutrient uptake of maize (Zea mays L.) by application of plant growth promoting rhizobacteria in arid region of Iran. Journal of Biological Sciences, 8(6), 1015–1020. https://doi.org/10.3923/jbs.2008.1015.1020.

    Article  CAS  Google Scholar 

  • Bolan, N. S. (1991). A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil, 134(2), 189–207. https://doi.org/10.1007/bf00012037.

    Article  CAS  Google Scholar 

  • Bouis, H. (1996). Enrichment of food staples through plant breeding: A new strategy for fighting micronutrient malnutrition. Nutrition Reviews, 54(5), 131–137. https://doi.org/10.1111/j.1753-4887.1996.tb03915.x.

    Article  CAS  PubMed  Google Scholar 

  • Bouis, H. E. (2003). Micronutrient fortification of plants through plant breeding: Can it improve nutrition in man at low cost? Proceedings of the Nutrition Society, 62(2), 403–411. https://doi.org/10.1079/pns2003262.

    Article  PubMed  Google Scholar 

  • Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V., & Pfeiffer, W. H. (2011). Biofortification: A new tool to reduce micronutrient malnutrition. Food and Nutrition Bulletin, 32(1_suppl1), S31–S40. https://doi.org/10.1177/15648265110321s105.

    Article  PubMed  Google Scholar 

  • Bücking, H., & Heyser, W. (2003). Uptake and transfer of nutrients in ectomycorrhizal associations: Interactions between photosynthesis and phosphate nutrition. Mycorrhiza, 13(2), 59–68. https://doi.org/10.1007/s00572-002-0196-3.

    Article  CAS  PubMed  Google Scholar 

  • Bücking, H., Liepold, E., & Ambilwade, P. (2012). The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processes. In N. K. Dhal & S. C. Sahu (Eds.), Plant science (pp. 107–539). Rijeka: Intech.

    Google Scholar 

  • Burkert, B., & Robson, A. (1994). 65Zn uptake in subterranean clover (Trifolium subterraneum L.) by three vesicular-arbuscular mycorrhizal fungi in a root-free sandy soil. Soil Biology and Biochemistry, 26(9), 1117–1124. https://doi.org/10.1016/0038-0717(94)90133-3.

    Article  Google Scholar 

  • Cakmak, I., & Kutman, U. B. (2017). Agronomic biofortification of cereals with zinc: A review. European Journal of Soil Science, 69(1), 172–180. https://doi.org/10.1111/ejss.12437.

    Article  Google Scholar 

  • Cakmak, I., Kalaycı, M., Ekiz, H., Braun, H., Kılınç, Y., & Yılmaz, A. (1999). Zinc deficiency as a practical problem in plant and human nutrition in Turkey: A NATO-science for stability project. Field Crops Research, 60(1–2), 175–188. https://doi.org/10.1016/s0378-4290(98)00139-7.

    Article  Google Scholar 

  • Caris, C., Hördt, W., Hawkins, H., Römheld, V., & George, E. (1998). Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza, 8(1), 35–39. https://doi.org/10.1007/s005720050208.

    Article  CAS  Google Scholar 

  • Cartes, P., Gianfreda, L., & Mora, M. (2005). Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant and Soil, 276(1–2), 359–367. https://doi.org/10.1007/s11104-005-5691-9.

    Article  CAS  Google Scholar 

  • CGIAR (Consultative Group on International Agricultural Research Science Council). (2007). Report of the first external review of the HarvestPlus Challenge Program (p. 2008). Rome: Science Council Secretariat.

    Google Scholar 

  • Davidson, A. L., & Nikaido, H. (1991). Purification and characterization of the membrane-associated components of the maltose transport system from Escherichia coli. Journal of Biological Chemistry, 266(14), 8946–8951.

    CAS  PubMed  Google Scholar 

  • de Valença, A. W., Bake, A., Brouwer, I. D., & Giller, K. E. (2017). Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Global Food Security, 12, 8–14. https://doi.org/10.1016/j.gfs.2016.12.001.

    Article  Google Scholar 

  • Di Simine, C. D., Sayer, J. A., & Gadd, G. M. (1998). Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biology and Fertility of Soils, 28(1), 87–94. https://doi.org/10.1007/s003740050467.

    Article  Google Scholar 

  • Durán, P., Acuña, J., Jorquera, M., Azcón, R., Borie, F., Cornejo, P., & Mora, M. (2013). Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: A preliminary study as a potential Se biofortification strategy. Journal of Cereal Science, 57(3), 275–280. https://doi.org/10.1016/j.jcs.2012.11.012.

    Article  CAS  Google Scholar 

  • Ercoli, L., Schüßler, A., Arduini, I., & Pellegrino, E. (2017). Strong increase of durum wheat iron and zinc content by field-inoculation with arbuscular mycorrhizal fungi at different soil nitrogen availabilities. Plant and Soil, 419(1–2), 153–167. https://doi.org/10.1007/s11104-017-3319-5.

    Article  CAS  Google Scholar 

  • Fasim, F., Ahmed, N., Parsons, R., & Gadd, G. M. (2002). Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiology Letters, 213(1), 1–6. https://doi.org/10.1111/j.1574-6968.2002.tb11277.x.

    Article  CAS  PubMed  Google Scholar 

  • Field, S. J., Tsai, F. Y., Kuo, F., Zubiaga, A. M., Kaelin, W. G., Livingston, D. M., Okrin, S. H., & Greenberg, M. E. (1996). E2F-1 Functions in mice to promote apoptosis and suppress proliferation. Cell, 85(4), 549–561. https://doi.org/10.1016/s0092-8674(00)81255-6.

    Article  CAS  PubMed  Google Scholar 

  • Finlay, R. D., EK, H., Odham, G., & Soderstrom, B. (1988). Mycelial uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium by Pinus sylvestris plants infected with four different ectomycorrhizal fungi. New Phytologist, 110(1), 59–66. https://doi.org/10.1111/j.1469-8137.1988.tb00237.x.

    Article  Google Scholar 

  • Fomina, M., Alexander, I. J., Hillier, S., & Gadd, G. M. (2004). Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiology Journal, 21(5), 351–366. https://doi.org/10.1080/01490450490462066.

    Article  CAS  Google Scholar 

  • Garcia-Casal, M. N., Peña-Rosas, J. P., Pachón, H., De-Regil, L. M., Centeno Tablante, E., & Flores-Urrutia, M. C. (2016). Staple crops biofortified with increased micronutrient content: Effects on vitamin and mineral status, as well as health and cognitive function in the general population. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.cd012311.

  • Gibson, R. S. (2006). Zinc: The missing link in combating micronutrient malnutrition in developing countries. Proceedings of the Nutrition Society, 65(01), 51–60. https://doi.org/10.1079/pns2005474.

    Article  CAS  PubMed  Google Scholar 

  • Glick, B. R., Patten, C. L., Holguin, G., & Penrose, D. M. (1999). Biochemical and genetic mechanisms used by plant growth promoting bacteria. London: Imperial College Press. https://doi.org/10.1142/p130.

    Book  Google Scholar 

  • Govasmark, E., & Salbu, B. (2011). Translocation and re-translocation of selenium taken up from nutrient solution during vegetative growth in spring wheat. Journal of the Science of Food and Agriculture, 91(8), 1367–1372. https://doi.org/10.1002/jsfa.4387.

    Article  CAS  PubMed  Google Scholar 

  • Graham, R., Senadhira, D., Beebe, S., Iglesias, C., & Monasterio, I. (1999). Breeding for micronutrient density in edible portions of staple food crops: Conventional approaches. Field Crops Research, 60(1–2), 57–80. https://doi.org/10.1016/s0378-4290(98)00133-6.

    Article  Google Scholar 

  • Graham, R. D., Welch, R. M., & Bouis, H. E. (2001). Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: Principles, perspectives and knowledge gaps. Advances in Agronomy, 70, 77–142. https://doi.org/10.1016/s0065-2113(01)70004-1.

    Article  Google Scholar 

  • Grunwald, U., Guo, W., Fischer, K., Isayenkov, S., Ludwig-Müller, J., Hause, B., Yan, X., Küster, H., & Franken, P. (2009). Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots. Planta, 229(5), 1023–1034. https://doi.org/10.1007/s00425-008-0877-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gyaneshwar, P., Kumar, G. N., Parekh, L. J., & Poole, P. S. (2002). Role of soil microorganisms in improving P nutrition of plants. In J. J. Adu-Gyamfi (Ed.), Food security in nutrient-stressed environments: Exploiting plants’ genetic capabilities (Developments in plant and soil sciences, Vol. 95). Dordrecht: Springer. https://doi.org/10.1007/978-94-017-1570-6_15.

    Chapter  Google Scholar 

  • Hart, M., Ehret, D. L., Krumbein, A., Leung, C., Murch, S., Turi, C., & Franken, P. (2015). Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza, 25(5), 359–376. https://doi.org/10.1007/s00572-014-0617-0.

    Article  CAS  PubMed  Google Scholar 

  • Haselwandter, K., Dobernigg, B., Beck, W., Jung, G., Cansier, A., & Winkelmann, G. (1992). Isolation and identification of hydroxamate siderophores of ericoid mycorrhizal fungi. Biometals, 5(1), 51–56. https://doi.org/10.1007/bf01079698.

    Article  CAS  Google Scholar 

  • Hatfield, D. L., Tsuji, P. A., Carlson, B. A., & Gladyshev, V. N. (2014). Selenium and selenocysteine: Roles in cancer, health, and development. Trends in Biochemical Sciences, 39(3), 112–120. https://doi.org/10.1016/j.tibs.2013.12.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, X., & Nara, K. (2007). Element biofortification: Can mycorrhizas potentially offer a more effective and sustainable pathway to curb human malnutrition? Trends in Plant Science, 12(8), 331–333. https://doi.org/10.1016/j.tplants.2007.06.008.

    Article  CAS  PubMed  Google Scholar 

  • Hotz, C., & Brown, K. H. (2004). International Zinc Nutrition Consultative Group (IZiNCG) technical document no. 1. Assessment of the risk of zinc deficiency in populations and options for its control. Food and Nutrition Bulletin, 25, S94–S203.

    Article  Google Scholar 

  • Humbert, P. O., Rogers, C., Ganiatsas, S., Landsberg, R. L., Trimarchi, J. M., Dandapani, S., Brugnara, C., Erdman, S., Schrenzel, M., Bronson, R. T., & Lees, J. A. (2000). E2F4 is essential for normal erythrocyte maturation and neonatal viability. Molecular Cell, 6(2), 281–291. https://doi.org/10.1016/s1097-2765(00)00029-0.

    Article  CAS  PubMed  Google Scholar 

  • Jansa, J., Mozafar, A., & Frossard, E. (2003). Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie, 23(5–6), 481–488. https://doi.org/10.1051/agro:2003013.

    Article  CAS  Google Scholar 

  • Javelle, A., Morel, M., Rodríguez-Pastrana, B., Botton, B., André, B., Marini, A. M., & Chalot, M. (2003). Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Molecular Microbiology, 47(2), 411–430. https://doi.org/10.1046/j.1365-2958.2003.03303.x.

    Article  CAS  PubMed  Google Scholar 

  • Jin, H., Pfeffer, P. E., Douds, D. D., Piotrowski, E., Lammers, P. J., & Shachar-Hill, Y. (2005). The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytologist, 168(3), 687–696. https://doi.org/10.1111/j.1469-8137.2005.01536.x.

    Article  CAS  PubMed  Google Scholar 

  • Jones, M. D., Durall, D. M., & Tinker, P. B. (1998). A comparison of arbuscular and ectomycorrhizal Eucalyptus coccifera: Growth response, phosphorus uptake efficiency and external hyphal production. New Phytologist, 140(1), 125–134. https://doi.org/10.1046/j.1469-8137.1998.00253.x.

    Article  Google Scholar 

  • Joshi, S., Singh, A. V., & Prasad, B. (2018). Enzymatic activity and plant growth promoting potential of endophytic bacteria isolated from Ocimum sanctum and Aloe vera. International Journal of Current Microbiology and Applied Sciences, 7(06), 2314–2326.

    Article  Google Scholar 

  • Khush, G. (2003). Productivity improvements in rice. Nutrition Reviews, 61(suppl_6), S114–S116. https://doi.org/10.1301/nr.2003.jun.s114-s116.

    Article  PubMed  Google Scholar 

  • Koide, R. T., & Kabir, Z. (2000). Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytologist, 148(3), 511–517. https://doi.org/10.1046/j.1469-8137.2000.00776.x.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y. J., & George, E. (2005). Contribution of mycorrhizal hyphae to the uptake of metal cations by cucumber plants at two levels of phosphorus supply. Plant and Soil, 278(1–2), 361–370. https://doi.org/10.1007/s11104-005-0373-1.

    Article  CAS  Google Scholar 

  • Leone, G., Sears, R., Huang, E., Rempel, R., Nuckolls, F., Park, C. H., Giangrande, P., Wu, L., Saavedra, H. I., Field, S. J., Thompson, M. A., Yang, H., Fujiwara, Y., Greenberg, M. E., Orkin, S., Smith, C., & Nevins, J. R. (2001). Myc requires distinct E2F activities to induce S phase and apoptosis. Molecular Cell, 8(1), 105–113. https://doi.org/10.1016/s1097-2765(01)00275-1.

    Article  CAS  PubMed  Google Scholar 

  • Li, X. L., Marschner, H., & George, E. (1991). Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant and Soil, 136(1), 49–57. https://doi.org/10.1007/BF02465219.

    Article  CAS  Google Scholar 

  • López-Millán, A., Grusak, M. A., Abadía, A., & Abadía, J. (2013). Iron deficiency in plants: An insight from proteomic approaches. Frontiers in Plant Science, 4, 254. https://doi.org/10.3389/fpls.2013.00254.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynch, J. P., & Brown, K. M. (2008). Root strategies for phosphorus acquisition. In P. J. White & J. P. Hammond (Eds.), The ecophysiology of plant–phosphorus interactions (Vol. 7, pp. 83–116). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Mäder, P., Kaiser, F., Adholeya, A., Singh, R., Uppal, H. S., Sharma, A. K., Srivastava, R., Sahai, V., Aragno, M., Wiemken, A., Johri, B. N., & Fried, P. M. (2011). Inoculation of root microorganisms for sustainable wheat–rice and wheat–black gram rotations in India. Soil Biology and Biochemistry, 43(3), 609–619.

    Article  Google Scholar 

  • Malagoli, M., Schiavon, M., Dall’Acqua, S., & Pilon-Smits, E. A. (2015). Effects of selenium biofortification on crop nutritional quality. Frontiers in Plant Science, 6, 280. https://doi.org/10.3389/fpls.2015.00280.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marschner, H. (1993). Zinc uptake from soils. In A. D. Robson (Ed.), Zinc in soils and plants (Developments in plant and soil sciences, Vol. 55, pp. 59–77). Dordrecht: Springer.

    Google Scholar 

  • Marschner, H. (1995). Functions of mineral nutrients. Mineral Nutrition of Higher Plants, 229–312. https://doi.org/10.1016/b978-012473542-2/50010-9.

    Chapter  Google Scholar 

  • Marschner, H., & Dell, B. (1994). Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159(1), 89–102. https://doi.org/10.1007/bf00000098.

    Article  CAS  Google Scholar 

  • Martino, E., Perotto, S., Parsons, R., & Gadd, G. M. (2003). Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biology and Biochemistry, 35(1), 133–141. https://doi.org/10.1016/s0038-0717(02)00247-x.

    Article  CAS  Google Scholar 

  • Mayer, J. E., Pfeiffer, W. H., & Beyer, P. (2008). Biofortified crops to alleviate micronutrient malnutrition. Current Opinion in Plant Biology, 11(2), 166–170. https://doi.org/10.1016/j.pbi.2008.01.007.

    Article  CAS  PubMed  Google Scholar 

  • Milagres, A. M., Machuca, A., & Napoleão, D. (1999). Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. Journal of Microbiological Methods, 37(1), 1–6. https://doi.org/10.1016/s0167-7012(99)00028-7.

    Article  CAS  PubMed  Google Scholar 

  • Miller, G. W., Huang, I. J., Welkie, G. W., & Pushnik, J. C. (1995). Function of iron in plants with special emphasis on chloroplasts and photosynthetic activity. In J. Abadía (Ed.), Iron nutrition in soils and plants (Developments in plant and soil sciences, Vol. 59, pp. 19–28). Dordrecht: Springer.

    Google Scholar 

  • MoHFW. (2013). Government of India. Guidelines for control of iron deficiency anemia. Available at http://www.unicef.org/india/10._National_Iron_Plus_Initiative_Guidelines_for_Control_of_IDA.pdf. Accessed 29 Mar 2013.

  • Mora, M. L., Pinilla, L., Rosas, A., & Cartes, P. (2008). Selenium uptake and its influence on the antioxidative system of white clover as affected by lime and phosphorus fertilization. Plant and Soil, 303(1–2), 139–149. https://doi.org/10.1007/s11104-007-9494-z.

    Article  CAS  Google Scholar 

  • Murray-Kolb, L. E. (2013). Iron and brain functions. Current Opinion in Clinical Nutrition and Metabolic Care, 16(6), 703–707. https://doi.org/10.1097/mco.0b013e3283653ef8.

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe, D. M., & Sylvia, D. M. (1991). Mechanisms of vesicular-arbuscular mycorrhizal plant growth response. In D. K. Arora, B. Rai, K. G. Mukerji, & G. R. Knudsen (Eds.), Handbook of applied mycology (Soil and plants, Vol. 1, pp. 35–53). New York: Marcel Dekker, Inc.

    Google Scholar 

  • Parniske, M. (2008). Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nature Reviews. Microbiology, 6(10), 763–775. https://doi.org/10.1038/nrmicro1987.

    Article  CAS  PubMed  Google Scholar 

  • Pellegrino, E., & Bedini, S. (2014). Enhancing ecosystem services in sustainable agriculture: Biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 68, 429–439. https://doi.org/10.1016/j.soilbio.2013.09.030.

    Article  CAS  Google Scholar 

  • Pellegrino, E., Öpik, M., Bonari, E., & Ercoli, L. (2015). Responses of wheat to arbuscular mycorrhizal fungi: A meta-analysis of field studies from 1975 to 2013. Soil Biology and Biochemistry, 84, 210–217. https://doi.org/10.1016/j.soilbio.2015.02.020.

    Article  CAS  Google Scholar 

  • Plenchette, C., Clermont-Dauphin, C., Meynard, J. M., & Fortin, J. A. (2005). Managing arbuscular mycorrhizal fungi in cropping systems. Canadian Journal of Plant Science, 85(1), 31–40. https://doi.org/10.4141/p03-159.

    Article  Google Scholar 

  • Prasad, A. S. (2007). Zinc: Mechanisms of host defense. The Journal of Nutrition., 137(5), 1345–1349. https://doi.org/10.1093/jn/137.5.1345.

    Article  CAS  PubMed  Google Scholar 

  • Prasad, B., Kumar, A., Singh, A. V., & Kumar, A. (2016). Plant growth and seed yield attributes as influenced by bacterial isolates under glass house. Progressive Research, 11(IV), 2573–2576.

    Google Scholar 

  • Rana, A., Saharan, B., Nain, L., Prasanna, R., & Shivay, Y. S. (2012). Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Science and Plant Nutrition, 58(5), 573–582. https://doi.org/10.1080/00380768.2012.716750.

    Article  CAS  Google Scholar 

  • Rausch, C., Daram, P., Brunner, S., Jansa, J., Laloi, M., Leggewie, G., Nikolaus Amrhein, N., & Bucher, M. (2001). A phosphate transporter expressed in arbuscule-containing cells in potato. Nature, 414, 462–470. https://doi.org/10.1038/35106601.

    Article  CAS  PubMed  Google Scholar 

  • Rayman, M. P. (2012). Selenium and human health. The Lancet., 379(9822), 1256–1268. https://doi.org/10.1016/s0140-6736(11)61452-9.

    Article  CAS  Google Scholar 

  • Royzman, I., Whittaker, A. J., & Orr-Weaver, T. L. (1997). Mutations in Drosophila DP and E2F distinguish G1-S progression from an associated transcriptional program. Genes & Development, 11(15), 1999–2011. https://doi.org/10.1101/gad.11.15.1999.

    Article  CAS  Google Scholar 

  • Ruel, M. T., & Alderman, H. (2013). Nutrition-sensitive interventions and programmes: How can they help to accelerate progress in improving maternal and child nutrition? The Lancet, 382(9891), 536–551. https://doi.org/10.1016/s0140-6736(13)60843-0.

    Article  Google Scholar 

  • Salgueiro, M. J., Zubillaga, M., Lysionek, A., Cremaschi, G., Goldman, C. G., Caro, R., De Paoli, T., Hager, A., Weill, R., & Boccio, J. (2000). Zinc status and immune system relationship: A review. Biological Trace Element Research, 76(3), 193–205. https://doi.org/10.1385/bter:76:3:193.

    Article  CAS  PubMed  Google Scholar 

  • Saravanan, V. S., Subramoniam, S. R., & Raj, S. A. (2003). Assessing in vitro solubilization potential of different zinc solubilizing bacterial (zsb) isolates. Brazilian Journal of Microbiology, 34, 121–125.

    Article  Google Scholar 

  • Schachtman, D. P., Reid, R. J., & Ayling, S. (1998). Phosphorus uptake by plants: From soil to cell. Plant Physiology, 116(2), 447–453. https://doi.org/10.1104/pp.116.2.447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz, M. W., Hoeksema, J. D., Gehring, C. A., Johnson, N. C., Klironomos, J. N., Abbott, L. K., & Pringle, A. (2006). The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecology Letters, 9(5), 501–515. https://doi.org/10.1111/j.1461-0248.2006.00910.x.

    Article  PubMed  Google Scholar 

  • Shiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3(3), 307–327. https://doi.org/10.1007/s12571-011-0140-5.

    Article  Google Scholar 

  • Singh, A. V., & Goel, R. (2015). Plant growth promoting efficiency of Chryseobacterium sp. PSR10 on finger millet (Eleusine coracana). Journal of Global Biosciences., 4(6), 2569–2575.

    Google Scholar 

  • Singh, A. V., & Prasad, B. (2014). Enhancement of plant growth, nodulation and seed yield through Plant Growth Promoting Rhizobacteria in Lentil (Lens culinaris Medik cv. VL125). International Journal of Current Microbiology and Applied Sciences, 3(6), 614–622.

    Google Scholar 

  • Singh, A. V., Shah, S., & Prasad, B. (2010). Effect of phosphate solubilizing bacteria on plant growth promotion and nodulation in soybean (Glycine max (L.) Merr). Journal of Hill Agriculture, 1(1), 35–39.

    CAS  Google Scholar 

  • Singh, A. V., Prasad, B., & Shah, S. (2011). Influence of phosphate solubilizing bacteria for enhancement of plant growth and seed yield in lentil. Journal of Crop and Weed, 7(1), 1–4.

    Google Scholar 

  • Singh, A. V., Chandra, R., & Reeta, G. (2013). Phosphate solubilization by Chryseobacterium sp. and their combined effect with N and P fertilizers on plant growth promotion. Archives of Agronomy and Soil Science, 59(5), 641–651.

    Article  CAS  Google Scholar 

  • Singh, J., Singh, A. V., Prasad, B., & Shah, S. (2017). Sustainable agriculture strategies of wheat biofortification through microorganisms. In A. Kumar, A. Kumar, & B. Prasad (Eds.), Wheat a premier food crop. New Delhi: Kalyani Publishers.

    Google Scholar 

  • Singh, A. V., Prasad, B., & Goel, R. (2018). Plant Growth Promoting Efficiency of Phosphate Solubilizing Chryseobacterium sp. PSR 10 with Different Doses of N and P Fertilizers on Lentil (Lens culinaris var. PL-5) Growth and Yield. International Journal of Current Microbiology and Applied Sciences, 7(05), 2280–2289.

    Article  Google Scholar 

  • Smith, S. E., & Read, D. J. (1997). Mycorrhizal symbiosis (2nd ed., ix + 605 pp). San Diego: Academic.

    Google Scholar 

  • Smith, S. E., & Read, D. J. (2008). Growth and carbon economy of arbuscular mycorrhizal symbionts. In S. E. Smith & D. J. Read (Eds.), Mycorrhizal symbiosis (pp. 117–144). London: Academic. https://doi.org/10.1016/B978-012370526-6.50006-4.

    Chapter  Google Scholar 

  • Smith, S. E., Smith, F. A., & Jakobsen, I. (2003). Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology, 133(1), 16–20. https://doi.org/10.1104/pp.103.024380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava, M. P., Tewari, R., & Sharma, N. (2013). Effect of different cultural variables on siderophores produced by Trichoderma spp. International Journal of Advanced Research, 1, 1–6.

    Google Scholar 

  • Stoltzfus, R. J., & Dreyfuss, M. L. (1998). Micronutrient deficiency disorders. In Guidelines for the use of iron supplements to prevent and treat iron deficiency anemia (pp. 1–39). Washington, DC: ILSI Press.

    Google Scholar 

  • Stonor, R. N., Smith, S. E., Manjarrez, M., Facelli, E., & Smith, F. A. (2014). Mycorrhizal responses in wheat: Shading decreases growth but does not lower the contribution of the fungal phosphate uptake pathway. Mycorrhiza, 24(6), 465–472. https://doi.org/10.1007/s00572-014-0556-9.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian, K. S., Bharathi, C., & Jegan, A. (2008). Response of maize to mycorrhizal colonization at varying levels of zinc and phosphorus. Biology and Fertility of Soils, 45(2), 133–144. https://doi.org/10.1007/s00374-008-0317-z.

    Article  CAS  Google Scholar 

  • Subramanian, K. S., Tenshia, V., Jayalakshmi, K., & Ramachandran, V. (2009). Biochemical changes and zinc fractions in arbuscular mycorrhizal fungus (Glomus intraradices) inoculated and uninoculated soils under differential zinc fertilization. Applied Soil Ecology, 43(1), 32–39. https://doi.org/10.1016/j.apsoil.2009.05.009.

    Article  Google Scholar 

  • Subramanian, K. S., Balakrishnan, N., & Senthil, N. (2013). Mycorrhizal symbiosis to increase the grain micronutrient content in maize. Australian Journal of Crop Science, 7(7), 900–910.

    CAS  Google Scholar 

  • Taktek, S., St-Arnaud, M., Piché, Y., Fortin, J. A., & Antoun, H. (2016). Igneous phosphate rock solubilization by biofilm-forming mycorrhizobacteria and hyphobacteria associated with Rhizoglomus irregulare DAOM 197198. Mycorrhiza, 27(1), 13–22. https://doi.org/10.1007/s00572-016-0726-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarkalson, D. D., Jolley, V. D., Robbins, C. W., & Terry, R. E. (1998). Mycorrhizal colonization and nutrient uptake of dry bean in manure and compost manure treated subsoil and untreated topsoil and subsoil. Journal of Plant Nutrition, 21(9), 1867–1878. https://doi.org/10.1080/01904169809365529.

    Article  CAS  Google Scholar 

  • Tatry, M., El Kassis, E., Lambilliotte, R., Corratgé, C., Van Aarle, I., Amenc, L. K., Alary, R., Zimmermann, S., Sentenac, H., & Plassard, C. (2009). Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster. The Plant Journal., 57(6), 1092–1102. https://doi.org/10.1111/j.1365-313x.2008.03749.x.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J. P., Clewett, T. G., & Fiske, M. L. (2013). Field inoculation with arbuscular-mycorrhizal fungi overcomes phosphorus and zinc deficiencies of linseed (Linum usitatissimum) in a vertisol subject to long-fallow disorder. Plant and Soil, 371(1–2), 117–137. https://doi.org/10.1007/s11104-013-1679-z.

    Article  CAS  Google Scholar 

  • Toussaint, J., St-Arnaud, M., & Charest, C. (2004). Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Canadian Journal of Microbiology, 50(4), 251–260. https://doi.org/10.1139/w04-009.

    Article  CAS  PubMed  Google Scholar 

  • Upadhayay, V. K., Singh, A. V., & Pareek, N. (2018). An insight in decoding the multifarious and splendid role of microorganisms in crop biofortification. International Journal of Current Microbiology and Applied Sciences, 7(06), 2407–2418. https://doi.org/10.20546/ijcmas.2018.706.286.

    Article  Google Scholar 

  • van der Heijden, M. G. A., Martin, F. M., Selosse, M., & Sanders, I. R. (2015). Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytologist, 205(4), 1406–1423. https://doi.org/10.1111/nph.13288.

    Article  CAS  PubMed  Google Scholar 

  • Vance, C. P. (2010). Quantitative trait loci, epigenetics, sugars, and microRNAs: Quaternaries in phosphate acquisition and use. Plant Physiology, 154(2), 582–588. https://doi.org/10.1104/pp.110.161067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Grebmer, K., Saltzman, A., Birol, E., Wiesmann, D., Prasai, N., Yin, S., Yohannes, Y., Menon, P., Thompson, J., & Sonntag, A. (2014). 2014 Global hunger index: The challenge of hidden hunger. Bonn/Washington, DC/Dublin: Welthungerhilfe/International Food Policy Research Institute/Concern Worldwide. https://doi.org/10.2499/9780896299580.

    Book  Google Scholar 

  • White, P. J., & Broadley, M. R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets - iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182(1), 49–84. https://doi.org/10.1111/j.1469-8137.2008.02738.x.

    Article  CAS  PubMed  Google Scholar 

  • Whiting, S. N., De Souza, M. P., & Terry, N. (2001). Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspica erulescens. Environmental Science & Technology, 35(15), 3144–3150. https://doi.org/10.1021/es001938v.

    Article  CAS  Google Scholar 

  • WHO (World Health Organization). (2002). The world health report 2002 – Reducing risks, promoting healthy life. Geneva: World Health Organization.

    Google Scholar 

  • Willmann, M., Gerlach, N., Buer, B., Polatajko, A., Nagy, R., Koebke, E., Jansa, J., Flisch, R., & Bucher, M. (2013). Mycorrhizal phosphate uptake pathway in maize: Vital for growth and cob development on nutrient poor agricultural and greenhouse soils. Frontiers in Plant Science, 4, 533. https://doi.org/10.3389/fpls.2013.00533.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright, D. P., Read, D. J., & Scholes, J. D. (1998). Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant, Cell and Environment, 21(9), 881–891. https://doi.org/10.1046/j.1365-3040.1998.00351.x.

    Article  Google Scholar 

  • Wu, S., Cheung, K., Luo, Y., & Wong, M. (2006). Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environmental Pollution, 140(1), 124–135. https://doi.org/10.1016/j.envpol.2005.06.023.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, R., Singh, A. V., Kumar, M., & Yadav, S. (2016). Phytochemical analysis and plant growth promoting properties of endophytic fungi isolated from tulsi and Aloe vera. International Journal of Agricultural and Statistical Sciences, 12(1), 239–248.

    Google Scholar 

  • Zeng, H., & Combs, G. F. (2008). Selenium as an anticancer nutrient: Roles in cell proliferation and tumor cell invasion. The Journal of Nutritional Biochemistry., 19(1), 1–7. https://doi.org/10.1016/j.jnutbio.2007.02.005.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Upadhayay, V.K., Singh, J., Khan, A., Lohani, S., Singh, A.V. (2019). Mycorrhizal Mediated Micronutrients Transportation in Food Based Plants: A Biofortification Strategy. In: Varma, A., Choudhary, D. (eds) Mycorrhizosphere and Pedogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-13-6480-8_1

Download citation

Publish with us

Policies and ethics