Skip to main content

0-1 Integer Programming Based on DNA Tetrahedral Probe

  • Conference paper
  • First Online:
Computational Intelligence and Intelligent Systems (ISICA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 986))

Included in the following conference series:

  • 506 Accesses

Abstract

It is difficult to find an effective algorithm for solving NP complete problems such as integer programming. The nanostructure constructed by DNA origami combines huge parallelism and massive storage capacity of DNA computing. In the calculation process, it can effectively avoid the number of experimental operations required by other DNA computing models. It greatly reduces the time consumption and the rate of misinterpretation, thus providing an effective way to efficiently solve integer programming. DNA tetrahedron is a nanostructure constructed by origami. It has stable structure, good toughness and compression resistance, simple production process, high yield, rich functional modification sites, good biocompatibility, but also resistance to a variety of specific or non-specific nuclease. Therefore it can reduce the misinterpretation rate of biochemical reactions using DNA tetrahedron and DNA single strand to construct probes, finding the true solution according to the constraint condition. And then it can improve the computational efficiency of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seeman, N.C.: Structural DNA nanotechnology: growing along with nano letters. Nano Lett. 10(6), 1971–1978 (2010)

    Article  Google Scholar 

  2. LaBean, T.H.: Nanotechnology: another dimension for DNA art. Nature 459(7245), 331–332 (2009)

    Article  Google Scholar 

  3. Yang, X., Wenzler, L.A., Qi, J., et al.: Ligation of DNA triangles containing double crossover molecules. J. Am. Chem. Soc. 120(38), 9779–9786 (1998)

    Article  Google Scholar 

  4. Winfree, E., Liu, F., Wenzler, L.A., et al.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)

    Article  Google Scholar 

  5. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)

    Article  Google Scholar 

  6. Seeman, N.C.: Nucleic-acid Junctions and Lattices. J. Theor. Biol. 99(11), 237–247 (1982)

    Article  Google Scholar 

  7. Winfree, E., Liu, F.R., Sedman, N.C.: Design and self-assemble of two-dimensional DNA crvstals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  8. Rothemund, P.W., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2, 2041–2053 (2004)

    Article  Google Scholar 

  9. Sa-Ardyen, P., Vologodskii, A.V., Seeman, N.C.: The flexibility of DNA double crossover molecules. Biophys. J. 84, 3829–38371 (2003)

    Article  Google Scholar 

  10. Fu, T.J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32, 3211–3220 (1993)

    Article  Google Scholar 

  11. Li, X.J., Yang, X.P., Oi, J., et al.: Antiparallel DNA double crossover molecules as components for nanoconstruction. J. Am. Chem. Soc. 118, 6131–6140 (1996)

    Article  Google Scholar 

  12. LaBean, T.H., Yan, H., Kopatsch, J., et al.: Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–18601 (2000)

    Article  Google Scholar 

  13. Yan, H., Park, S.H., Finkelstein, G., et al.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003)

    Article  Google Scholar 

  14. He, Y., Chen, Y., Liu, H.P., et al.: Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc. 127, 12202–122031 (2005)

    Article  Google Scholar 

  15. He, Y., Ye, T., Su, M., et al.: Hierarchical self-assembly of DNA into symmetric supramolecular polyhedral. Nature 452, 198–201 (2008)

    Article  Google Scholar 

  16. Zhang, F., Nangreave, J., Liu, Y., et al.: Reconfigurable DNA origami to generate quasifractal patterns. Nano Lett. 12, 3290–3295 (2012)

    Article  Google Scholar 

  17. Wei, B.R., Dai, M.J., Yin, P.: Complex shapes self-assembled from single-stranded DNA tiles. Nature 485, 623–626 (2012)

    Article  Google Scholar 

  18. Douglas, S.M., Chou, J.J., Shih, W.M.: DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc. Natl. Acad. Sci. USA 104, 6644–6648 (2007)

    Article  Google Scholar 

  19. Andersen, E.S., et al.: DNA origami design of dolphin-shaped structures with flexible tails. ACS Nano 2(6), 1213–1218 (2008)

    Article  Google Scholar 

  20. Dietz, H., Douglas, S.M., Shih, W.M.: Folding DNA into twisted and curved nanoscale shapes. Science 325(5941), 725–730 (2009)

    Article  Google Scholar 

  21. Ke, Y., Sharma, J., Liu, M., Jahn, K., Liu, Y., Yan, H.: Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett. 9(6), 2445–2447 (2009)

    Article  Google Scholar 

  22. Han, D., et al.: DNA gridiron nanostructures based on four-arm junctions. Science 339(6126), 1412–1415 (2013)

    Article  Google Scholar 

  23. Kim, K.R., Kim, D.R., Lee, T., Yhee, J.Y., Kim, B.S., Abn, D.R.: Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells. Chem. Commun. 49(20), 2010–2012 (2013)

    Article  Google Scholar 

  24. Williams, S., Lund, K., Lin, C., Wonka, P., Lindsay, S., Yan, H.: Tiamat: a three-dimensional editing tool for complex DNA structures. In: Goel, A., Simmel, F.C., Sosík, P. (eds.) DNA 2008. LNCS, vol. 5347, pp. 90–101. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03076-5_8

    Chapter  Google Scholar 

  25. Zhu, J., Wei, B., Yuan, Y., et al.: UNIQUIMER 3D, a software system for structural DNA nanotechnology design, analysis and evaluation. Nucleic Acids Res. 37(7), 2164 (2009)

    Article  Google Scholar 

  26. Goodman, R.P.: NANEV: a program employing evolutionary methods for the design of nucleic acid nanostructures. Biotechniques 38(4), 548–550 (2005)

    Article  Google Scholar 

  27. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bull. Am. Math. Soc. 64, 275–278 (1958)

    Article  MathSciNet  Google Scholar 

  28. Wang, S.Y., Yang, A.M.: DNA solution of integer linear programming. Appl. Math. Comput. 170, 626–632 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(11), 1021–1024 (1994)

    Article  Google Scholar 

  30. Yin, Z.X., Zhang, F.Y., Xu, J.: The general form of 0-1 programming problem based on DNA computing. Biosystems 70(1), 73–79 (2003)

    Article  Google Scholar 

  31. Zhang, F.Y., Yin, Z.X., Xu, J.: Application of DNA chip on 0-1 planning problem. Biochem. Biophys. 30(3), 412–415 (2003)

    Google Scholar 

  32. Yin, Z.X., Zhang, F.Y., Xu, J.: 0-1 DNA computing model for programming problem. J. Electron. Inf. 15(1), 1–5 (2003)

    Google Scholar 

  33. Wang, L., Lin, Y.P., Li, Z.Y.: DNA computation for a category of special integer programming problem. J. Comput. Res. Dev. 42(8), 1431–1437 (2005)

    Article  Google Scholar 

  34. Zhou K., Tong X.J., Xu J.: The improvement on algorithm of DNA computing on 0-1 programming problem. In: Proceedings of the Fifth International Conference on Machine Learning and Cybernetics, Dalian, pp. 4282–4286 (2006)

    Google Scholar 

  35. Yang, J., Yin, Z.: 0-1 integer programming problem based on RecA- mediated triple- stranded DNA structure. Comput. Eng. Appl. 44(2), 76–79 (2008)

    Google Scholar 

  36. Zhang, X.C., Niu, Y., Cui, G.Z., et al.: Application of DNA self-assembly on 0-1 integer programming problem. J. Comput. Theor. Nanosci. 7(1), 165–172 (2010)

    Article  Google Scholar 

  37. Li, F., Liu, J., Li, Z.: DNA computation model based on self-assembled nanoparticle probes for 0–1 integer programming problem. Math. Comput. Simul. 151, 1–4 (2017)

    Google Scholar 

  38. Yin, Z., Cui, J., Yang, J.: Integer programming problem based on plasmid DNA computing model. Chin. J. Electron. 26(6), 1284–1288 (2017)

    Article  Google Scholar 

  39. Chen, Y.H., Sha, S.: Molecular beacon model of 0-1 integer programming based on microfluidic chip. J. Guangdong Polytech. Norm. Univ. 2, 004 (2016)

    Google Scholar 

Download references

Acknowledgment

This project is supported by National Natural Science Foundation of China (No. 61702008, No. 61672001) and Anhui Natural Science Foundation (No. 1808085MF193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiang Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, J., Yang, X., Yin, Z., Qiang, Z., Cui, J. (2019). 0-1 Integer Programming Based on DNA Tetrahedral Probe. In: Peng, H., Deng, C., Wu, Z., Liu, Y. (eds) Computational Intelligence and Intelligent Systems. ISICA 2018. Communications in Computer and Information Science, vol 986. Springer, Singapore. https://doi.org/10.1007/978-981-13-6473-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6473-0_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6472-3

  • Online ISBN: 978-981-13-6473-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics