Skip to main content

Nutrient Enrichment in Lake Ecosystem and Its Effects on Algae and Macrophytes

  • Chapter
  • First Online:
Environmental Concerns and Sustainable Development

Abstract

Freshwater lakes constitute a significant part of the hydrological cycle of the earth as they maintain ecological balance and support diverse aquatic biodiversity. Increasing urbanization, land use modifications, pollution, and various other anthropogenic activities including catchment land use change around lakes cause stress on lake ecosystem which include eutrophication, acidification, siltation, introduction of exotic macrophytic species, and toxic contamination. Eutrophication is considered as a major stress for lake ecosystem as increasing nutrients mainly nitrogen and phosphorous result in greater density of macrophytes that leads to change in trophic states of lakes. Unhealthy anthropogenic activities leading to eutrophication and excessive growth nuisance of macrophytes result in disturbed ecological balance within the lakes. As reported by many limnologists, macrophytes in freshwater lakes are highly sensitive to slight change in climatic conditions, along with changes in nutrient concentration, because of which macrophytes are considered as bioindicators for assessing the trophic states of lakes. This review paper presents an overview of the problem of nutrient enrichment leading to eutrophication, characteristics of different trophic states, and effects of nutrient enrichment on macrophytes and algal species present in lakes. Eutrophication causes changes in physical and chemical quality of water and sediments which affects the whole ecohydrology of lakes along with changes in composition, diversity and richness, and species succession of algae and macrophytes along with change in trophic state. Eutrophication results in growth of undesirable and harmful algal species and flourishing growth of exotic invasive macrophytes resulting in altered species composition and habitat structure which affects overall ecological functioning of lakes and results in extinction of many sensitive species of algae and macrophytes. This may disturbs the overall lacustrine food web irreversibly affecting our aquatic biodiversity adversely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol Syst 35:257–284

    Article  Google Scholar 

  • Andersen JH, Conley DJ, Hedal S (2004) Palaeoecology, reference conditions and classification of ecological status: the EU Water Framework Directive in practice. Mar Pollut Bull 49(4):283–290

    Article  CAS  Google Scholar 

  • Aznar JC, Dervieux A, Grillas P (2002) Association between aquatic vegetation and landscape indicators of human pressure. Wetlands 23(1):149–160

    Article  Google Scholar 

  • Baldassarre GA, Bolen EG (1994) Waterfowl ecology and management. Wiley, New York, p 609

    Google Scholar 

  • Barendregt A, Bio AM (2003) Relevant variables to predict macrophyte communities in running waters. Ecol Model 160(3):205–217

    Article  Google Scholar 

  • Bellinger EG, Sigee DC (2015) Freshwater algae: identification and use as bioindicators. John Wiley & Sons

    Google Scholar 

  • Berman T, Chava S (1999) Algal growth on organic compounds as nitrogen sources. J Plankton Res 21:1423–1437

    Article  CAS  Google Scholar 

  • Bernez I, Daniel H, Haury J, Ferreira MT (2004) Combined effects of environmental factors and regulation on macrophyte vegetation along three rivers in western France. River Res Appl 20(1):43–59

    Article  Google Scholar 

  • Bolpagni R, Piotti A (2015) Hydro-hygrophilous vegetation diversity and distribution patterns in riverine wetlands in an agricultural landscape: a case study from the Oglio River (Po Plain, Northern Italy). Phytocoenologia 45(1–2):69–84

    Article  Google Scholar 

  • Bolpagni R, Piotti A (2016) The importance of being natural in a human-altered riverscape: role of wetland type in supporting habitat heterogeneity and the functional diversity of vegetation. Aquat Conserv Mar Freshwat Ecosyst 26(6):1168–1183

    Article  Google Scholar 

  • Brown CD, Hoyer MV, Bachmann RW, Canfield DE Jr (2000) Nutrient-chlorophyll relationships: an evaluation of empirical nutrient-chlorophyll models using Florida and north-temperate lake data. Can J Fish Aquat Sci 57(8):1574–1583

    Article  CAS  Google Scholar 

  • Brucet S, Poikane S, Lyche-Solheim A, Birk S (2013) Biological assessment of European lakes: ecological rationale and human impacts. Freshw Biol 58(6):1106–1115

    Article  Google Scholar 

  • Canfield DE (1983) Prediction of chlorophyll a concentrations in Florida lakes: the importance of phosphorus and nitrogen. Jawra J Am Water Resour Assoc 19(2):255–262

    Article  CAS  Google Scholar 

  • Carbiener R, Trémolières M, Mercier JL, Ortscheit A (1990) Aquatic macrophyte communities as bioindicators of eutrophication in calcareous oligosaprobe stream waters (Upper Rhine plain, Alsace). Vegetatio 86(1):71–88

    Article  Google Scholar 

  • Carpenter SR (1981) Submersed vegetation: an internal factor in lake ecosystem succession. Am Nat 118(3):372–383

    Article  Google Scholar 

  • Carpenter SR, Lodge DM (1986) Effects of submersed macrophytes on ecosystem processes. Aquat Bot 26:341–370

    Article  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8(3):559–568

    Article  Google Scholar 

  • Carvalho L, Poikane S, Solheim AL, Phillips G, Borics G, Catalan J, Laplace-Treyture C (2012) Strength and uncertainty of phytoplankton metrics for assessing eutrophication impacts in lakes. Hydrobiologia 704(1):127–140

    Article  CAS  Google Scholar 

  • Cellamare M, Morin S, Coste M, Haury J (2012) Ecological assessment of French Atlantic lakes based on phytoplankton, phytobenthos and macrophytes. Environ Monit Assess 184(8):4685–4708

    Article  CAS  Google Scholar 

  • Chapra SC (1997) Surface water quality modeling. McGraw-Hill, New York, pp 560–575

    Google Scholar 

  • Çiçek NL, Yamuç F (2017) Using epilithic algae assemblages to assess water quality in Lake Kovada and Kovada Channel (Turkey), and in relation to environmental factors. Turk J Fish Aquat Sci 17(4):701–711

    Article  Google Scholar 

  • Cole GA, Weihe PE (2015) Textbook of limnology. Waveland Press, Long Grove

    Google Scholar 

  • Colijn F, Hesse KJ, Ladwig N, Tillman U (2002) Effects of the large-scale uncontrolled fertilization process along the continental coastal North Sea. In: Sustainable increase of marine harvesting: fundamental mechanisms and new concepts. Springer, Dordrecht, pp 133–148

    Chapter  Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Karl E, Gene E (2009) Controlling eutrophication: nitrogen and phosphorus. Science 123:1014–1015

    Article  Google Scholar 

  • Cronk JK, Fennessy MS (2001) Wetland plants: biology and ecology. Lewis Publishers, Boca Raton

    Google Scholar 

  • De Souza Cardoso L, Da Motta Marques D (2009) Hydrodynamics-driven plankton community in a shallow lake. Aquat Ecol 43(1):73–84

    Article  Google Scholar 

  • Deegan LA, Wright A, Ayvazian SG, Finn JT, Golden H, Merson RR, Harrison J (2002) Nitrogen loading alters seagrass ecosystem structure and support of higher trophic levels. Aquat Conserv Mar Freshwat Ecosyst 12(2):193–212

    Article  Google Scholar 

  • Doyle RD (2000) Effects of sediment resuspension and deposition on plant growth and reproduction. US Army Corps of Engineers, Vicksburg

    Google Scholar 

  • Duarte CM (1992) Nutrient concentration of aquatic plants: patterns across species. Limnol Oceanogr 37(4):882–889

    Article  CAS  Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6(6):503–523

    Article  CAS  Google Scholar 

  • Eriksson BK, Bergström L (2005) Local distribution patterns of macroalgae in relation to environmental variables in the northern Baltic Proper. Estuar Coast Shelf Sci 62(1–2):109–117

    Article  Google Scholar 

  • Fang Y, Yang XE, Pu PM, Chang HQ, Ding F (2004) Water eutrophication in Li-Yang reservoir and its ecological remediation countermeasures. J Soil Water Conserv 18(6):183–186

    Google Scholar 

  • Fennessy S (1998) Testing the floristic quality assessment index as an indicator of riparian wetland disturbance. Ohio Environmental Protection Agency Technical Bulletin

    Google Scholar 

  • Ferreira TF, Junior CRF, Da Motta MD (2008) Efeito da liberação de nutrientes por plantas aquáticas sobre a dinâmica de estads alternativos da comunidade fitoplanctônica em um lago raso subtropical. Rev Bras Recur Hídr 13:151–160

    Google Scholar 

  • Ferreira TF (2009) O papel das macrófitas submersas sobre a qualidade da água, restauração e conservação de lagos rasos subtropicais: estudo de caso, a Lagoa Mangueira, RS.

    Google Scholar 

  • Ferreira TF, Crossetti LO, Marques DMM, Cardoso L, Fragoso CR Jr, van Nes EH (2018) The structuring role of submerged macrophytes in a large subtropical shallow lake: clear effects on water chemistry and phytoplankton structure community along a vegetated-pelagic gradient. Limnologica 69:142–154

    Article  CAS  Google Scholar 

  • Fraterrigo JM, Downing JA (2008) The influence of land use on lake nutrients varies with watershed transport capacity. Ecosystems 11(7):1021–1034

    Article  CAS  Google Scholar 

  • Früh D, Stoll S, Haase P (2012) Physico-chemical variables determining the invasion risk of freshwater habitats by alien mollusks and crustaceans. Ecol Evol 2(11):2843–2853

    Article  Google Scholar 

  • Gettys LA, Haller WT, Bellaud M (2014) Biology and control of aquatic plants. A best management practices handbook, 3rd edn. Aquatic Ecosystem Restoration Foundation, Marietta

    Google Scholar 

  • Havera SP (1999) Waterfowl of Illinois, Special Publication, vol 21. Illinois Natural History Survey, Urbana, p 436

    Google Scholar 

  • Heegaard E, Birks HH, Gibson CE, Smith SJ, Wolfe-Murphy S (2001) Species–environmental relationships of aquatic macrophytes in Northern Ireland. Aquat Bot 70(3):175–223

    Article  Google Scholar 

  • Hilt S, Henschke I, Rücker J, Nixdorf B (2010) Can submerged macrophytes influence turbidity and trophic state in deep lakes? Suggestions from a case study. J Environ Qual 39(2):725–733

    Article  CAS  Google Scholar 

  • Hilton JO, Hare M, Bowes MJ, Jones JI (2006) How green is my river? A new paradigm of eutrophication in rivers. Sci Total Environ 365(1–3):66–83

    Article  CAS  Google Scholar 

  • Hoyer MV (1981) Suspended solids-zooplankton abundance: effects of phosphorus-chlorophyll a relationships in Midwest reservoirs. Doctoral dissertation, University of Missouri, Columbia

    Google Scholar 

  • Hutchinson GE (1975) A treatise of limnology, Limnological botany, vol 3. Wiley, New York

    Google Scholar 

  • Jensen HS, Andersen FO (1992) Importance of temperature, nitrate, and pH for phosphate release from aerobic sediments of four shallow, eutrophic lakes. Limnol Oceanogr 37(3):577–589

    Article  Google Scholar 

  • Kalff J (2002) Limnology. Inland water system. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Klimes J (2007) Bud banks and their role in vegetative regeneration–a literature review and proposal for simple classification and assessment. Perspect Plant Ecol Evol Syst 8(3):115–129

    Article  Google Scholar 

  • Kufel L, Kufel I (2002) Chara beds acting as nutrient sinks in shallow lakes – a review. Aquat Bot 72(3–4):249–260

    Article  Google Scholar 

  • Lacoul P, Freedman B (2006) Environmental influences on aquatic plants in freshwater ecosystems. Environ Rev 14(2):89–136

    Article  Google Scholar 

  • Leach JH, Herron RC (1992) A review of lake habitat classification. The development of an aquatic habitat classification system for lakes. CRC Press, Boca Raton, pp 27–57

    Google Scholar 

  • Leonhard BG (2013) Monitoring the eutrophication of lakes and harmful algal bloom using satellite data. Master in Emergency Early Warning and Response Space Applications

    Google Scholar 

  • Liu W, Qiu R (2007) Water eutrophication in China and the combating strategies. J Chem Technol Biotechnol 82(9):781–786

    Article  CAS  Google Scholar 

  • Liu W, Zhang Q, Liu G (2010) Lake eutrophication associated with geographic location, lake morphology and climate in China. Hydrobiologia 644(1):289–299

    Article  CAS  Google Scholar 

  • Madsen J, Chambers P, James W, Koch E, Westlake D (2001) The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444:71–84

    Article  Google Scholar 

  • Madsen JD, Wersal RM, Tyler M, Gerard PD (2006) The distribution and abundance of aquatic macrophytes in Swan Lake and Middle Lake, Minnesota. J Freshw Ecol 21(3):421–429

    Article  Google Scholar 

  • Malik M, Balkhi MH, Abubakr A, Bhat F (2017) Assessment of trophic state of Nagin Lake based on limnological and bacteriological studies. Nat Environ Pollut Technol 16(2):485–491

    CAS  Google Scholar 

  • Meerhoff M, Fosalba C, Bruzzone C, Mazzeo N, Noordoven W, Jeppesen E (2006) An experimental study of habitat choice by Daphnia: plants signal danger more than refuge in subtropical lakes. Freshw Biol 51(7):1320–1330

    Article  Google Scholar 

  • Melzer A (1999) Aquatic macrophytes as tools for lake management. Hydrobiologia 395(396):181–190

    Article  Google Scholar 

  • Middelboe AL, Sand-Jensen K (2000) Long-term changes in macroalgal communities in a Danish estuary. Phycologia 39(3):245–257

    Article  Google Scholar 

  • Mikulyuk A, Barton M, Hauxwell J, Hein C, Kujawa E, Minahan K, Wagner KI (2017) A macrophyte bioassessment approach linking taxon-specific tolerance and abundance in north temperate lakes. J Environ Manag 199:172–180

    Article  Google Scholar 

  • Mischke U, Böhmer J (2008) Software PhytoSee Version 3.0 Preliminary English Version of the calculation program for German Phyto-See-Index (PSI) according to Mischke et al. 2008 to assess natural lakes to implement the European Water Framework Directive. Free internet download (PhytoSee_Vers3_0_eng. zip). Free internet download: http://igb-berlin.de/alt2/mitarbeiter/mischke

  • Murphy KJ, Kennedy MP, McCarthy V, Ó’Hare MT, Irvine K, Adams C (2002) A review of ecology based classification systems for standing freshwaters. SNIFFER, Edinburgh

    Google Scholar 

  • National Research Council (1992) Restoration of aquatic ecosystems: science, technology, and public policy. National Academies Press, Washington, DC

    Google Scholar 

  • Naumann E (1929) The scope and chief problems of regional limnology. Int Rev Hydrobiol 22(1):423–444

    Article  CAS  Google Scholar 

  • Netherland MD, Lembi CA, Poovey AG (2009) Screening of various herbicide modes of action for selective control of algae responsible for harmful blooms (no erdc/tn-ansrp-09-2). Engineer Research and Development Center, Vicksburg, MS Coastal and Hydraulics Lab

    Google Scholar 

  • Nõges T (2009) Relationships between morphometry, geographic location and water quality parameters of European lakes. Hydrobiologia 633(1):33–43

    Article  CAS  Google Scholar 

  • Noges P, Mischke U, Laugaste R, Solimini AG (2010) Analysis of changes over 44 years in the phytoplankton of Lake Võrtsjärv (Estonia): the effect of nutrients, climate and the investigator on phytoplankton-based water quality indices. Hydrobiologia 646(1):33–48

    Article  CAS  Google Scholar 

  • Noges P, Noges T, Ghiani M, Sena F, Fresner R, Friedl M, Mildner J (2011) Increased nutrient loading and rapid changes in phytoplankton expected with climate change in stratified South European lakes: sensitivity of lakes with different trophic state and catchment properties. Hydrobiologia 667(1):255–270

    Article  CAS  Google Scholar 

  • Novotny V (1994) Water quality: prevention, identification and management of diffuse pollution. Van Nostrand-Reinhold Publishers, New York

    Google Scholar 

  • Oertli B, Auderset Joye D, Castella E, Juge R, Lehmann A, Lachavanne JB (2005) PLOCH: a standardized method for sampling and assessing the biodiversity in ponds. Aquat Conserv Mar Freshwat Ecosyst 15(6):665–679

    Article  Google Scholar 

  • Padisák J, Borics G, Grigorszky I, Soroczki-Pinter E (2006) Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index. Hydrobiologia 553(1):1–14

    Article  Google Scholar 

  • Paerl HW, Huisman J (2008) Blooms like it hot. Science 320(5872):57–58

    Article  CAS  Google Scholar 

  • Paul WJ, Hamilton DP, Ostrovsky I, Miller SD, Zhang A, Muraoka K (2012) Catchment land use and trophic state impacts on phytoplankton composition: a case study from the Rotorua lakes’ district, New Zealand. Hydrobiologia 698(1):133–146

    Article  CAS  Google Scholar 

  • Pinedo S, García M, Satta MP, De Torres M, Ballesteros E (2007) Rocky-shore communities as indicators of water quality: a case study in the Northwestern Mediterranean. Mar Pollut Bull 55(1–6):126–135

    Article  CAS  Google Scholar 

  • Rahul U, Arvind PK, Upadhyay SK (2013) Assessment of lake water quality by using Palmer and trophic state index – a case study of Upper Lake, Bhopal, India. Int Res J Environ Sci 2:1–8. ISSN:2319-1414

    Google Scholar 

  • Rakocevic-Nedovic J, Hollert H (2005) Phytoplankton community and chlorophyll a as trophic state indices of Lake Skadar (Montenegro, Balkan). Environ Sci Pollut Res 12(3):146–152

    Article  CAS  Google Scholar 

  • Rast W, Ryding SO (1989) Control of eutrophication of lakes and reservoirs. UNESCO/Parthenon Publishing Group Limited, Paris/Carnforth

    Google Scholar 

  • Reynolds CS, Reynolds JB (1985) The a typical seasonality of phytoplankton in Crose Mere, 1972: an independent test of the hypothesis that variability in the physical environment regulates community dynamics and structure. Br Phycol J 20:227–242

    Article  Google Scholar 

  • Rhew K, Baca RM, Ochs CA, Threlkeld ST (1999) Interaction effects of fish, nutrients, mixing and sediments on 74 autotrophic picoplankton and algal composition. Freshw Biol 42:99–109

    Article  Google Scholar 

  • Riley SP, Busteed GT, Kats LB, Vandergon TL, Lee LF, Dagit RG, Sauvajot RM (2005) Effects of urbanization on the distribution and abundance of amphibians and invasive species in southern California streams. Conserv Biol 19(6):1894–1907

    Article  Google Scholar 

  • Scheffer M (1998) Ecology of shallow lakes. Chapman & Hall, London, p 357

    Google Scholar 

  • Schneider S, Melzer A (2003) The Trophic Index of Macrophytes (TIM) – a new tool for indicating the trophic state of running waters. Int Rev Hydrobiol J Cover Asp Limnol Mar Biol 88(1):49–67

    Article  Google Scholar 

  • Sculthorpe CD (1967) Biology of aquatic vascular plants. Koeltz Scientific Books, Königstein

    Google Scholar 

  • Seddon B (1972) Aquatic macrophytes as limnological indicators. Freshw Biol 2:107–130

    Article  Google Scholar 

  • Seele J, Mayr M, Staab F, Raeder U (2000) Combination of two indication systems in pre-alpine lakes—diatom index and macrophyte index. Ecol Model 130(1–3):145–149

    Article  Google Scholar 

  • Sender J, Maślanko W, Różańska-Boczula M, Cianfaglione K (2017) A new multi-criteria method for the ecological assessment of lakes: a case study from the transboundary biosphere reserve ‘West Polesie’ (Poland). J Limnol 76(s1)

    Google Scholar 

  • Sevindik TO, Tunca H, Gönülol A, Gürsoy N, Küçükkaya ŞN, Kinali Z (2017) Phytoplankton dynamics and structure, and ecological status estimation by the Q assemblage index: a comparative analysis in two shallow Mediterranean lakes. Turk J Bot 41(1):25–36

    Article  CAS  Google Scholar 

  • Shen DS (2002) Study on limiting factors of water eutrophication of the network of rivers in plain. J Zhejiang Univ Agric Life Sci 28(1):94–97

    CAS  Google Scholar 

  • Smith VH (1982) The nitrogen and phosphorus dependence of algal biomass in lakes: an empirical and theoretical analysis. Limnol Oceanogr 27(6):1101–1111

    Article  CAS  Google Scholar 

  • Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ Sci Pollut Res 10(2):126–139

    Article  CAS  Google Scholar 

  • Smith VH, Bennett SJ (1999) Nitrogen: phosphorus supply ratios and phytoplankton community structure in lakes: nutrient ratios. Arch Hydrobiol 146(1):37–53

    Article  CAS  Google Scholar 

  • Soltan D, Verlaque M, Boudouresque CF, Francour P (2001) Changes in macroalgal communities in the vicinity of a Mediterranean sewage outfall after the setting up of a treatment plant. Mar Pollut Bull 42(1):59–70

    Article  CAS  Google Scholar 

  • Søndergaard M, Moss B (1998) Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. In: The structuring role of submerged macrophytes in lakes. Springer, New York, pp 115–132

    Chapter  Google Scholar 

  • Stednick JD, Hall EB (2001) Applicability of trophic status indicators to Colorado plains reservoirs. Completion report, Colorado Water Resources Research Institute, no. 195

    Google Scholar 

  • Stelzer D, Schneider S, Melzer A (2005) Macrophyte-based assessment of lakes – a contribution to the implementation of the European Water Framework Directive in Germany. Int Rev Hydrobiol J Cover Asp Limnol Mar Biol 90(2):223–237

    Article  CAS  Google Scholar 

  • Stewart BA, Davies BR (1990) Allochthonous input and retention in a small mountain stream, South Africa. Hydrobiologia 202(3):135–146

    Article  Google Scholar 

  • Stewart AJ, Robert G, Wetzel WK (1982) Influence of dissolved humic materials on carbon assimilation and alkaline phosphatase activity in natural algal-bacterial assemblages. Freshw Biol 12(4):369–380

    Article  CAS  Google Scholar 

  • Strayer DL (2010) Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshw Biol 55:152–174

    Article  Google Scholar 

  • Suren AM, Ormerod SJ (1998) Aquatic bryophytes in Himalayan streams: testing a distribution model in a highly heterogeneous environment. Freshw Biol 40(4):697–716

    Article  Google Scholar 

  • Telesh IV (2004) Plankton of the Baltic estuarine ecosystems with emphasis on Neva Estuary: a review of present knowledge and research perspectives. Mar Pollut Bull 49(3):206–219

    Article  CAS  Google Scholar 

  • Thiébaut G, Muller S (1998) The impact of eutrophication on aquatic macrophyte diversity in weakly mineralized streams in the Northern Vosges Mountains (NE France). Biodivers Conserv 7(8):1051–1068

    Article  Google Scholar 

  • Thiebaut G, Guérold F, Muller S (2002) Are trophic and diversity indices based on macrophyte communities pertinent tools to monitor water quality? Water Res 36(14):3602–3610

    Article  CAS  Google Scholar 

  • Tibby J, Tiller D (2007) Climate–water quality relationships in three Western Victorian (Australia) lakes 1984–2000. Hydrobiologia 591(1):219–234

    Article  CAS  Google Scholar 

  • Toporowska M, Pawlik-Skowronska B, Krupa D, Kornijow R (2010) Winter versus summer blooming of phytoplankton in a shallow lake: effect of hypertrophic conditions. Pol J Ecol 58(1):3–12

    Google Scholar 

  • Van den Berg M, Coops H, Simons J, De Keizer A (1998) Clear water associated with dense Chara vegetation in the shallow and turbid Lake Veluwemeer

    Google Scholar 

  • Velinsky DJ (2004) Ecologically based small pond management. Limnol Small Ponds 2:3–67

    Google Scholar 

  • Wersal RM, Madsen JD (2012) Aquatic plants their uses and risks. A review of the global status of aquatic plants. FAO, Rome

    Google Scholar 

  • Western D (2001) Human-modified ecosystems and future evolution. Proc Natl Acad Sci 98(10):5458–5465

    Article  CAS  Google Scholar 

  • Wetzel RG (1992) Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. In: Dissolved organic matter in lacustrine ecosystems. Springer, Dordrecht, pp 181–198

    Chapter  Google Scholar 

  • Wu J, Cheng S, Liang W, He F, Wu Z (2009) Effects of sediment anoxia and light on turion germination and early growth of Potamogeton crispus. Hydrobiologia 628(1):111–119

    Article  Google Scholar 

  • Xie D, Yu D, Yu LF, Liu CH (2010) Asexual propagations of introduced exotic macrophytes Elodea nuttallii, Myriophyllum aquaticum, and M. propinquum are improved by nutrient-rich sediments in China. Hydrobiologia 655(1):37–47

    Article  Google Scholar 

  • Xie D, Zhou H, Zhu H, Ji H, Li N, An S (2015) Differences in the regeneration traits of Potamogeton crispus turions from macrophyte-and phytoplankton-dominated lakes. Sci Rep 5:12907

    Article  CAS  Google Scholar 

  • Yang XE, Wu X, Hao HL, He ZL (2008) Mechanisms and assessment of water eutrophication. J Zhejiang Univ Sci B 9(3):197–209

    Article  CAS  Google Scholar 

  • Yin K (2002) Monsoonal influence on seasonal variations in nutrients and phytoplankton biomass in coastal waters of Hong Kong in the vicinity of the Pearl River estuary. Mar Ecol Prog Ser 245:111–122

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to UGC and the Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, for providing us infrastructure and facilities for doing this review work.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to authorship, research, and publication of this article.

Funding

No financial support or funding is provided for the publication of this review paper.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dubey, D., Dutta, V. (2020). Nutrient Enrichment in Lake Ecosystem and Its Effects on Algae and Macrophytes. In: Shukla, V., Kumar, N. (eds) Environmental Concerns and Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6358-0_5

Download citation

Publish with us

Policies and ethics