Skip to main content

Wireless Resource Management for Green Communications

  • Chapter
  • First Online:
5G Green Mobile Communication Networks
  • 739 Accesses

Abstract

The time-frequency spatial distribution of multi-network radiant energy \( {\mathbf{e}}(t,f,{\mathbf{s}}) \) depends on the topology of the network, the location of the base station, the transmit power of the antenna, and the physical environment of the wireless communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beaulieu, N., and Q. Xie. 2004. An optimal lognormal approximation to log-normal sum distributions. IEEE Transactions on Vehicular Technology 53 (2): 479–489.

    Article  Google Scholar 

  2. Fischione, C., F. Graziosi, and F. Santucc. 2007. Approximation for a sum of on-off lognormal processes with wireless applications. IEEE Transactions on Communications 55 (10): 1984–1993.

    Article  Google Scholar 

  3. Zhu, Y., J. Xu, Y. Yang, and J. Wang. 2013. Statistical analysis of the uplink inter-cell interference for cellular systems. Journal of Electronics & Information Technology 35 (8): 1971–1976.

    Article  Google Scholar 

  4. Pijcke, B., M. Zwingelstein-Colin, M. Gazalet, et al. 2011. An analytical model for the inter-cell interference power in the downlink of wireless cellular networks. EURASIP Journal on Wireless Communications and Networking 2011: 1–20.

    Article  Google Scholar 

  5. Seol, C., and K. Cheun. 2009. A statistical inter-cell interference model for downlink cellular OFDMA networks under log-normal shadowing and multipath rayleigh fading. IEEE Transactions on Communications 57 (10): 3069–3077.

    Article  Google Scholar 

  6. Seol, C., and K. Cheun. 2010. A statistical inter-cell interference model for downlink cellular OFDMA networks under log-normal shadowing and ricean fading. IEEE Communication Letters 14 (11): 1011–1013.

    Article  Google Scholar 

  7. Sung, K.W., H. Haas, and S. McLaughlin. 2010. A semi-analytical PDF of downlink SINR for femtocell networks. EURASIP Journal on Wireless Communications and Networking: Special Issue on Femtocell Networks 2010: 1–9.

    Article  Google Scholar 

  8. Moiseev, S., S. Filin, M. Kondakov, et al. 2006. Analysis of the statistical properties of the SINR in the IEEE 802.16 OFDMA network. Proceedings of IEEE International Conference on Communications (ICC) 12: 5595–5599.

    Google Scholar 

  9. Hamdi, K. 2009. On the statistics of signal-to-interference plus noise ratio in wireless communications. IEEE Transactions on Communications 57 (11): 3199–3204.

    Article  Google Scholar 

  10. Singh, S., N. Mehta, A. Molisch, et al. 2010. Moment-matched log-normal modeling of uplink interference with power control and cell selection. IEEE Transactions on Wireless Communications 9 (3): 932–938.

    Article  Google Scholar 

  11. Viering, I., A. Klein, M. Ivrlac, et al. 2006. On uplink intercell interference in a cellular system. In Proceedings of IEEE International Conference on Communications (ICC), vol.5, 2095–2100.

    Google Scholar 

  12. Jain, R. 2011. An analytical model for reverse link outage probability in OFDMA wireless system. In Proceedings of 2011 International Conference on Emerging Trends in Networks and Computer Communications (ETNCC), 173–177.

    Google Scholar 

  13. Tabassum, H., F. Yilmaz, Z. Dawy, et al. 2013. A framework for uplink intercell interference modeling with channel-based scheduling. IEEE Transactions on Wireless Communications 12 (1): 206–217.

    Article  Google Scholar 

  14. Zhu, Y., J. Xu,Y. Yang, et al. 2012. Inter-cell interference statistics of uplink OFDM systems with soft frequency reuse. In Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), 4764–4769.

    Google Scholar 

  15. Zhu, Y., J. Xu, J. Wang, and Y. Yang. 2013. Statistical analysis of inter-cell interference in uplink OFDMA networks with soft frequency reuse. EURASIP Journal on Advances in Signal Processing 2013: 1–12.

    Article  Google Scholar 

  16. Jing, Z., X. Ge, Z. Li, et al. 2013. Analysis of the uplink maximum achievable rate with location-dependent intercell signal interference factors based on linear wyner model. IEEE Transactions on Vehicular Technology 62 (9): 4615–4628.

    Article  Google Scholar 

  17. Xu, J., J. Zhang, and J. Andrews. 2011. On the accuracy of the wyner model in cellular networks. IEEE Transactions on Wireless Communications 10 (9): 3098–3109.

    Article  Google Scholar 

  18. Novlan, T., H. Dhillon, and J. Andrews. 2013. Analytical modeling of uplink cellular networks. IEEE Transactions on Wireless Communications 12 (6): 2669–2679.

    Article  Google Scholar 

  19. Novlan, T., and J. Andrews. 2013. Analytical evaluation of uplink fractional frequency reuse. IEEE Transactions on Communications 61 (5): 2098–2108.

    Article  Google Scholar 

  20. Novlan, T., R. Ganti, A. Ghosh, et al. 2011. Analytical evaluation of fractional frequency reuse for OFDMA cellular networks. IEEE Transactions on Wireless Communications 10 (12): 4294–4305.

    Article  Google Scholar 

  21. Novlan, T., R. Ganti, A. Ghosh, et al. 2012. Analytical evaluation of fractional frequency reuse for heterogeneous cellular networks. IEEE Transactions on Communications 60 (7): 2029–2039.

    Article  Google Scholar 

  22. Dhillon, H., R. Ganti, F. Baccelli, and J. Andrews. 2012. Modeling and analysis of k-tier downlink heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications 30 (3): 550–560.

    Article  Google Scholar 

  23. Mukherjee, S. 2012. Distribution of downlink SINR in heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications 30 (3): 575–585.

    Article  Google Scholar 

  24. Jo, H., Y. Sang, P. Xia, and J. Andrews. 2012. Heterogeneous cellular networks with flexible cell association: a comprehensive downlink SINR analysis. IEEE Transactions on Wireless Communications 11 (10): 3484–3495.

    Article  Google Scholar 

  25. Dhillon, H., and J. Andrews. 2014. Downlink rate distribution in heterogeneous cellular networks under generalized cell selection. IEEE Wireless Communications Letters 3 (1): 42–45.

    Article  Google Scholar 

  26. Singh, S., and J. Andrews. 2014. Joint resource partitioning and offloading in heterogeneous cellular networks. IEEE Transactions on Wireless Communications 13 (2): 888–901.

    Article  Google Scholar 

  27. Elsawy, H., E. Hossain, and M. Haenggi. 2013. Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a survey. IEEE Communications Surveys & Tutorials 15 (3), 996–1019, Third Quarter.

    Article  Google Scholar 

  28. Beaulieu, N.C., and Q. Xie. 2004. An optimal lognormal approximation to lognormal sum distributions. IEEE Transactions on Vehicular Technology 53 (2): 479–489.

    Article  Google Scholar 

  29. Lam, C., and T. Le-Ngoc. 2007. Log-shifted gamma approximation to lognormal sum distributions. IEEE Transactions on Vehicular Technology 56 (4): 2121–2129.

    Article  Google Scholar 

  30. Nie, H., and S. Chen. 2007. Lognormal sum approximation with type IV pearson distribution. IEEE Communications Letters 11 (10): 790–792.

    Article  Google Scholar 

  31. Wu, Z., X. Li, R. Husnay, V. Chakravarthy, B. Wang, and Z. Wu. 2009. A novel highly accurate log skew normal approximation method to lognormal sum distributions. In Proceedings of IEEE Wireless Communications and Networking Conference, 1–6.

    Google Scholar 

  32. Li, X., Z. Wu, V. Chakravarthy, and Z. Wu. 2011. A low-complexity approximation to lognormal sum distributions via transformed log skew normal distribution. IEEE Transactions on Vehicular Technology 60 (8): 4040–4045.

    Article  Google Scholar 

  33. Zhuang, W., and M. Ismail. 2012. Cooperation in wireless communication networks. IEEE Wireless Communications 19 (2): 10–20.

    Article  Google Scholar 

  34. Kim, S., B. Lee, and D. Park. 2014. Energy-per-bit minimized radio resource allocation in heterogeneous networks. IEEE Transactions on Wireless Communications 13 (4): 1862–1873.

    Article  Google Scholar 

  35. Razaviyayn, M., M. Hong, and Z. Luo. 2013. A unified convergence analysis of block successive minimization methods for nonsmooth optimization. SIAM Journal on Optimization 23 (2): 1126–1153.

    Article  MathSciNet  Google Scholar 

  36. Rossi, M., A. M. Tulino, O. Simeone, and A.M. Haimovich. 2011. Nonconvex utility maximization in Gaussian MISO broadcast and interference channels. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2960–2963.

    Google Scholar 

  37. Babich, F., and G. Lombardi. 2000. Statistical analysis and characterization of the indoor propagation channel. IEEE Transactions on Communications 48 (3): 455–464.

    Article  Google Scholar 

  38. Zheng, G., K.-K. Wong, and T.-S. Ng. 2008. Throughput maximization in linear multiuser MIMO-OFDM downlink systems. IEEE Transactions on Vehicular Technology 57 (3): 1993–1998.

    Article  Google Scholar 

  39. Ismail, M., and W. Zhuang. 2012. A distributed multi-service resource allocation algorithm in heterogeneous wireless access medium. IEEE Journal on Selected Areas in Communications 30 (2): 425–432.

    Article  Google Scholar 

  40. Ismail, M., A. Abdrabou, and W. Zhuang. 2013. Cooperative decentralized resource allocation in heterogeneous wireless access medium. IEEE Transactions on Wireless Communications 12 (2): 714–724.

    Article  Google Scholar 

  41. Tachwali, Y., B.F. Lo, I.F. Akyildiz, and R. Agusti. 2013. Multiuser resource allocation optimization using bandwidth-power product in cognitive radio networks. IEEE Journal on Selected Areas in Communications 31 (3): 451–463.

    Article  Google Scholar 

  42. Wang, S., Z. Zhou, M. Ge, and C. Wang. 2013. Resource allocation for heterogeneous cognitive radio networks with imperfect spectrum sensing. IEEE Journal on Selected Areas in Communications 31 (3): 464–475.

    Article  Google Scholar 

  43. Liao, W., M. Hong, Y. Liu, and Z. Luo. 2013. Base station activation and linear transceiver design for optimal resource management in heterogeneous networks. arXiv: 1309.4138 [cs.IT]. Available online: http://arxiv.org/abs/1309.4138.

  44. Hong, M., and Z. Luo. 2012. Signal processing and optimal resource allocation for the interference channel. arXiv:1206.5144v1 [cs.IT]. Available online: http://arxiv.org/abs/1206.5144.

  45. Devolder, O., F. Glineur, and Y. Nesterov. 2012. Double smoothing technique for large-scale linearly constrained convex optimization. SIAM Journal on Optimization 22 (2): 702–727.

    Article  MathSciNet  Google Scholar 

  46. Dinh, Q.T., I. Necoara, and M. Diehl. 2013. Fast inexact decomposition algorithms for largescale separable convex optimization. arXiv:1212.4275v2 [math.OC]. Available online: http://arxiv.org/abs/1212.4275.

  47. Koshal, J., A. Nedic, and U.V. Shanbhag. 2011. Multiuser optimization: distributed algorithms and error analysis. SIAM Journal on Optimization 21 (3): 1046–1081.

    Article  MathSciNet  Google Scholar 

  48. Tseng, P. 2010. Approximation accuracy, gradient methods, and error bound for structured convex optimization. Mathematical Programming 125 (2): 263–295.

    Article  MathSciNet  Google Scholar 

  49. Srivastava, K., A. Nedíc, and D. Stipanovíc. 2013. Distributed bregman distance algorithms for min-max optimization. In Agent-Based Optimization. Springer Studies in Computational Intelligence (SCI), 143–174.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix 1

Let \( x_{1} \) and \( x_{2} \) represent the optimal solution under \( \mu_{1} \) and \( \mu_{2} \), i.e., \( x_{1} = x*\left( {\mu_{1} ;\mu_{1} } \right) \), \( x_{2} = x*\left( {\mu_{2} ;\mu_{1} } \right) \). Thus the following inequality is obtained

$$ \begin{array}{*{20}l} {\left\| {\nabla_{u} \phi } \right.(u_{1} ;\mu_{1} ) - \left. {\nabla_{u} \phi (u_{2} ;\mu_{1} )} \right\|} \hfill \\ { = \left\| {\left. {\sum\limits_{i = 1}^{N} {\{ \nabla_{u} \phi_{i} (u_{ 1} ;\mu_{1} ){ - }\nabla_{u} \phi_{i} (u_{2} ;\mu_{1} )\} } } \right\|} \right.} \hfill \\ { = \left\| {\left. {\sum\limits_{i = 1}^{N} {\{ g_{ij} (x_{1i} ) - g_{ij} (x_{2i} )\} } } \right\|} \right.} \hfill \\ { \le \sum\limits_{i = 1}^{N} {\sum\limits_{j = 1}^{m} {\left\| {\left. {g_{ij} (x_{1i} ) - g_{ij} (x_{2i} )} \right\|} \right.} } } \hfill \\ \end{array} $$
(5.61)

Based on the assumption in Sect. 5.4.1, the gradient norm is bounded by a scalar \( M_{ij} (g) \). Thus, according to the mean value theorem, we have \( \left\| {\left. {g_{i} (x_{1i} ) - g_{i} (x_{2i} )} \right\|} \right. \le M_{ij} (g)\left\| {\left. {x_{1i} - x_{2i} } \right\|} \right. \). By combining with (5.61), the following inequality can be obtained

$$ \begin{array}{*{20}l} {\left\| {\nabla_{u} \phi } \right.(u_{1} ;\mu_{1} ) - \left. {\nabla_{u} \phi (u_{2} ;\mu_{1} )} \right\|} \hfill \\ { \le \sum\limits_{i = 1}^{N} {\sum\limits_{j = 1}^{m} {M_{ij} (g)\left\| {\left. {x_{1i} - x_{2i} } \right\|} \right.} } } \hfill \\ \end{array} . $$
(5.62)

For the first order optimality conditions of (5.10), we obtain

$$ \left\{ {\begin{array}{*{20}c} {\left\langle {\left. {\nabla f_{i} (x_{1i} ) + \sum\limits_{j = 1}^{m} {u_{1j} \nabla g_{ij} (x_{1i} ) + \mu_{1} \nabla d_{i} (x_{1i} ),x_{2i} - x_{1i} } } \right\rangle \ge 0} \right.} \\ {\left\langle {\left. {\nabla f_{i} (x_{2i} ) + \sum\limits_{j = 1}^{m} {u_{2j} \nabla g_{ij} (x_{2i} ) + \mu_{1} \nabla d_{i} (x_{2i} ),x_{1i} - x_{2i} } } \right\rangle \ge 0} \right.} \\ \end{array} } \right.. $$
(5.63)

By adding these inequalities of (5.63), underlying inequalities can be obtained

$$ \begin{array}{*{20}l} {\left\langle {\left. {\sum\limits_{j = 1}^{m} {u_{2j} \nabla g_{ij} (x_{2i} ) - \sum\limits_{j = 1}^{m} {\mu_{1j} } \nabla g_{ij} (x_{1i} ),x_{1i} - x_{2i} } } \right\rangle } \right.} \hfill \\ { \ge \left\langle {\nabla f_{i} (x_{1i} ) - \nabla f_{i} (x_{ 2i} ),x_{1i} - x_{2i} } \right\rangle } \hfill \\ { + \mu_{1} \left\langle {\nabla d_{i} (x_{1i} ) - \nabla d_{i} (x_{ 2i} ),x_{1i} - x_{2i} } \right\rangle } \hfill \\ { \ge \mu_{1} \sigma_{i} \left\| {x_{1i} - x_{2i} } \right\|^{2} } \hfill \\ \end{array} , $$
(5.64)

where we use the convexity of \( f_{i} (\cdot) \) and strong convexity of \( d_{i} (\cdot) \) in the second inequality. Next, the following inequality is considered

$$ \begin{array}{*{20}l} {\left\langle {\left. {\sum\limits_{j}^{m} {u_{2j} \nabla g_{ij} (x_{2i} ) + \mu_{1} \nabla d_{i} (x_{2i} ),x_{1i} - x_{2i} } } \right\rangle } \right.} \hfill \\ { - \sum\limits_{j = 1}^{m} {[g_{ij} (x_{1i} ) - g_{ij} (x_{2i} )]} (u_{2j} - u_{1j} )} \hfill \\ { = \sum\limits_{j = 1}^{m} {u_{1j} [g_{ij} (x_{1i} ) - g_{ij} (x_{2i} )]} + \left\langle {\nabla g_{ij} (x_{1i} ),x_{2i} - x_{1i} } \right\rangle } \hfill \\ { + \sum\limits_{j = 1}^{m} {u_{2j} [g_{ij} (x_{2i} ) - g_{ij} (x_{1i} )]} + \left\langle {\nabla g_{ij} (x_{2i} ),x_{1i} - x_{2i} } \right\rangle } \hfill \\ { \le 0} \hfill \\ \end{array} . $$
(5.65)

The inequality of (5.65) is derived from the convexity of \( g_{ij} (\cdot) \), and it indicates a relationship as follows

$$ \begin{array}{*{20}l} {\left\langle {\left. {\sum\limits_{j = 1}^{m} {u_{2j} \nabla g_{ij} (x_{2i} ) + \sum\limits_{j = 1}^{m} {u_{1j} } \nabla g_{ij} (x_{1i} ),x_{1i} - x_{2i} } } \right\rangle } \right.} \hfill \\ { \le \sum\limits_{j = 1}^{m} {\left[ {g_{{i{\text{j}}}} (x_{1i} ) - g_{ij} (x_{2i} )} \right]} (u_{2j} - u_{1j} )} \hfill \\ \end{array} . $$
(5.66)

The right hand of (5.66) suggests

$$ \begin{array}{*{20}l} {\sum\limits_{j = 1}^{m} {\left[ {g_{{i{\text{j}}}} (x_{1i} ) - g_{ij} (x_{2i} )} \right]} (u_{2j} - u_{1j} )} \hfill \\ { \le \sqrt {\sum\limits_{j = 1}^{m} {[g_{ij} (x_{1j} ) - g_{ij} (x_{2i} )]^{2} } } \left\| {u_{2} - u_{ 1} } \right\|} \hfill \\ { \le \sqrt {\sum\limits_{j = 1}^{m} {M_{ij}^{2} (g)} } \left\| {x_{1i} - x_{2i} } \right\|\left\| {u_{2} - u_{ 1} } \right\|,} \hfill \\ \end{array} , $$
(5.67)

where the first inequality adopts the Hölder’s inequality. By applying (5.66), (5.67) to (5.64), we have

$$ \left\| {x_{1i} - x_{2i} } \right\| \le \frac{1}{{\mu_{1} \sigma_{i} }}\sqrt {\sum\limits_{j = 1}^{m} {M_{ij}^{2} (g)} } \left\| {u_{2} - u_{ 1} } \right\|. $$
(5.68)

And after substituting (5.68) into (5.61), we obtain

$$ \begin{array}{*{20}l} {\left\| {\nabla_{u} \phi } \right.(u_{1} ;\mu_{1} ) - \left. {\nabla_{u} \phi (u_{2} ;\mu_{1} )} \right\|} \hfill \\ { \le \sum\limits_{i = 1}^{N} {\sum\limits_{j = 1}^{m} {\frac{{{\text{M}}_{ij} (g)}}{{\mu_{1} \sigma_{i} }}} } \sqrt {\sum\limits_{j = 1}^{m} {M_{ij}^{2} (g)} } \left\| {u_{2} - u_{ 1} } \right\|} \hfill \\ \end{array} . $$
(5.69)

Then, the Lipschitz constant \( L_{i}^{d} \left( {\mu_{1} } \right) \) can be obtained from (5.69).

Appendix 2

First, we recall the projection inequality [27], i.e., \( \left\langle {v - P_{\Omega } (v),y - P_{\Omega } (v)} \right\rangle \le 0,\forall y \in\Omega \). Then, we consider \( \Phi (\overline{u} ;\mu_{1} ) \) in light of (5.21)

$$ \begin{array}{*{20}l} {\phi (\overline{u} ;\mu_{1} ) = \sum\limits_{i = 1}^{N} {\mathop {\text{min} }\limits_{{x_{i} \in X_{i} }} \{ f_{i} (x_{i} ) + \left\langle {\overline{u} ,g_{i} (x_{i} )} \right\rangle + \mu_{1} d_{i} (x_{i} )\} } } \hfill \\ { \le \sum\limits_{i = 1}^{N} {\mathop {\text{min} }\limits_{{x_{i} \in X_{i} }} \{ f_{i} (x_{i} ) + \left\langle {\overline{u} ,g_{i} (x_{i} )} \right\rangle \} + } \mu_{1} \sum\limits_{i = 1}^{N} {D_{i} } } \hfill \\ { = \phi (\overline{u} ) + \mu_{1} \sum\limits_{i = 1}^{N} {D_{i,} } } \hfill \\ \end{array} $$
(5.70)

where the inequality follows the definition of \( D_{i} \). After that, we consider the function

$$ \begin{array}{*{20}l} {f(\overline{x} ;\mu_{2} )} \hfill \\ { = f(\overline{x} ) + \text{max} \{ \left\langle {u,\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i} )} } \right\rangle - \frac{1}{2}\mu_{2} \left\| u \right\|^{2} \} } \hfill \\ { = f(\overline{x} ) + \mathop {\text{max} }\limits_{{\theta \in \left[ {0,\pi } \right],\left\| u \right\| \le M_{u} }} \{ \cos \theta \left\| u \right\|\left\| {\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i} )} } \right\| - \frac{1}{2}\mu_{2} \left\| u \right\|^{2} \} } \hfill \\ { = f(\overline{x} ) + \mathop {\text{max} }\limits_{{\left\| u \right\| \le M_{u} }} \{ \left\| u \right\|\left\| {\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i} )} } \right\| - \frac{1}{2}\mu_{2} \left\| u \right\|^{2} \} } \hfill \\ { \ge f(\overline{x} ) + \mathop {\text{max} }\limits_{{\left\| u \right\| \le M_{u} }} \{ \left\| u \right\|\left\| {\left[ {\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i} )} } \right]^{ + } } \right\| - \frac{1}{2}\mu_{2} \left\| u \right\|^{2} \} }, \hfill \\ \end{array} $$
(5.71)

where we use the geometric definition of dot product in the second equality, and the inequality is based on the non-expansive property of \( [\cdot]^{ + } \). The last term \( \{ \cdot\}_{1} \) in (5.71) is nonnegative

$$ \left\{ \cdot \right\}_{1} = \left\{ {\begin{array}{*{20}c} {M_{u} \left\| {\left[ {\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i} )} } \right]^{ + } } \right\| - \frac{1}{2}\mu_{2} M_{u}^{2} ,\left\| {\left[ {\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i} )} } \right]^{ + } } \right\| \ge \mu_{2} M_{u} } \\ {\left\| {\left[ {\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i} )} } \right]^{ + } } \right\|^{2} /2\mu_{2} ,\left\| {\left[ {\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i} )} } \right]^{ + } } \right\| \le \mu_{2} M_{u} }. \\ \end{array} } \right. $$
(5.72)

Through combining (5.70) and (5.71) together, we obtain the right hand of (5.72). Then, we consider

$$ \begin{array}{*{20}l} {\phi (\overline{u} ) \le \phi (u^{ * } )} \hfill \\ { = \mathop {\text{min} }\limits_{x \in X} \left\{ {\sum\limits_{i = 1}^{N} {f_{i} (x_{i} )} + \left\langle {u^{ * } ,\sum\limits_{i = 1}^{N} {g_{i} (x_{i} )} } \right\rangle } \right\}} \hfill \\ { \le f(\overline{x} ) + \left\langle {u^{ * } ,\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i} )} } \right\rangle } \hfill \\ { \le f(\overline{x} ) + \left\langle {u^{ * } ,\left[ {\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i} )} } \right]^{ + } } \right\rangle + \left\langle {\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i} )} - \left[ {\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i} )} } \right]^{ + } ,\left[ {\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i} )} } \right]^{ + } } \right\rangle } \hfill \\ { \le f(\overline{x} ) + \left\| {u^{ * } } \right\|\left\| {\left[ {\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i} )} } \right]} \right\|} \hfill \\ \end{array} , $$
(5.73)

where the third inequality adopts the projection inequality with \( \Omega = [ \cdot ]^{ + } \), and the fourth inequality follows the fact that the term \( \left\langle {\sum\nolimits_{i = 1}^{N} {g_{i} (\overline{x}_{i} ) - } \left[ {\sum\nolimits_{i = 1}^{N} {g_{i} (\overline{x}_{i} )} } \right]^{ + } ,\left[ {\sum\nolimits_{i = 1}^{N} {g_{i} (\overline{x}_{i} )} } \right]^{ + } } \right\rangle \) negative. Thus the left hand of (5.22) is proved. Furthermore, the following inequality can be obtained by taking (5.70), (5.71), (5.72) into consideration

$$ - \left\| {u^{ * } } \right\|\left\| {\left[ {\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i} )} } \right]^{ + } } \right\| \le \sigma + \mu_{1} \sum\limits_{i = 1}^{N} {D_{i} - \{ \cdot \}_{1} } . $$
(5.74)

The inequality (5.23) follows from (5.73) and the specific expression of \( \{ \cdot \}_{1} \) after a few simple calculations.

Appendix 3

Because the Bregman projection is taken into consideration, the proof is different from the corresponding contents in [12] that a special mapping is considered. For brevity, we denote \( x_{i}^{ * } = x_{i}^{ * } (0^{m} ;\mu_{1} ) \) and \( \overline{x}_{i}^{0} = \overline{x}_{i}^{ * } (0^{m} ;\mu_{1} ) \). After that, the following equalities are defined

$$ \begin{array}{*{20}l} {\tilde{\phi }(0^{m} ;\mu_{1} ) = \sum\limits_{i = 1}^{N} {f_{i} (\overline{x}_{i}^{0} )} + \left\langle {0^{m} ,\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i}^{0} )} } \right\rangle + \mu_{1} \sum\limits_{i = 1}^{N} {d_{i} (\overline{x}_{i}^{0} )} ,} \hfill \\ {\phi (0^{m} ;\mu_{1} ) = \sum\limits_{i = 1}^{N} {f_{i} (x_{i}^{ * } )} + \left\langle {0^{m} ,\sum\limits_{i = 1}^{N} {g_{i} (x_{i}^{ * } )} } \right\rangle + \mu_{1} \sum\limits_{i = 1}^{N} {d_{i} (x_{i}^{ * } )} .} \hfill \\ \end{array} $$
(5.75)

By considering the inexactness inequality in (5.24), the following equalities can be obtained

$$ \tilde{\phi }(0^{m} ;\mu_{1} ) - \phi (0^{m} ;\mu_{1} ) \le \frac{{\mu_{1} }}{2}\sum\limits_{i = 1}^{N} {\sigma_{i} \varepsilon_{i}^{2} } . $$
(5.76)

Now we consider the following inequalities

$$ \begin{array}{*{20}l} {\phi (\overline{u}^{0} ;\mu_{1} )} \hfill \\ { \ge \phi (0^{m} ;\mu_{1} ) + \left\langle {\nabla \phi (0^{m} ;\mu_{1} ),\overline{u}^{0} - 0^{m} } \right\rangle - \frac{1}{2}L^{d} (\mu_{1} )\left\| {\overline{u}^{0} - 0^{m} } \right\|^{2} } \hfill \\ { \ge \tilde{\phi }(0^{m} ;\mu_{1} ) + \left\langle {\sum\limits_{i = 1}^{N} {g_{i} (x_{i}^{ * } )} ,\overline{u}^{0} } \right\rangle - \frac{1}{2}L^{d} (\mu_{1} )\left\| {\overline{u}^{0} } \right\|^{2} - \frac{{\mu_{2} }}{2}\sum\limits_{i = 1}^{N} {\sigma_{i} \varepsilon_{i}^{2} } } \hfill \\ { = \left[ {\tilde{\phi }(0^{m} ;\mu_{1} ) + \left\langle {\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i}^{0} )} ,\overline{u}^{0} } \right\rangle - \frac{1}{2}L^{d} (\mu_{1} )\left\| {\overline{u}^{0} } \right\|^{2} } \right]_{1} } \hfill \\ { + \left[ {\left\langle {\sum\limits_{i = 1}^{N} {g_{i} (x_{i}^{ * } )} - \sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i}^{0} )} ,\overline{u}^{0} } \right\rangle - \frac{{\mu_{2} }}{2}\sum\limits_{i = 1}^{N} {\sigma_{i} \varepsilon_{i}^{2} } } \right]_{2} ,} \hfill \\ \end{array} $$
(5.77)

where we use the concavity of \( \varphi (\cdot;\mu_{1} ) \) in the first inequality, and the second inequality follows (5.74). First, the term \( [\cdot]_{1} \) of (5.75) is considered

$$ \begin{array}{*{20}l} {\left[ \cdot \right]_{1} = \tilde{\phi }(0^{m} ;\mu_{1} ) - \frac{1}{\gamma }\left[ {\left\langle { - \gamma \sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i}^{0} ),\overline{u}^{0} } } \right\rangle + \frac{1}{2}\left\| {\overline{u}^{0} } \right\|^{2} } \right]} \hfill \\ { \ge \tilde{\phi }(0^{m} ;\mu_{1} ) - \frac{1}{\gamma }\left[ {\left\langle { - \gamma \sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i}^{0} ),\overline{u}^{0} } } \right\rangle + B_{u} (0^{m} ;\overline{u}^{0} )} \right]} \hfill \\ { = \tilde{\phi }(0^{m} ;\mu_{1} ) - \frac{1}{\gamma }\mathop {\text{min} }\limits_{u \in U} \left[ { - \left\langle {\gamma \sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i}^{0} ),u} } \right\rangle + B_{u} (0^{m} ;\overline{u}^{0} )} \right]} \hfill \\ { \ge \mathop {\text{max} }\limits_{u \in U} \left[ {\tilde{\phi }(0^{m} ;\mu_{1} ) - \left\langle {\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i}^{0} ),u - 0^{m} } } \right\rangle - \frac{1}{2\gamma }\left\| u \right\|^{2} } \right]} \hfill \\ { = \mathop {\text{max} }\limits_{u \in U} \left[ {\sum\limits_{i = 1}^{N} {f_{i} (\overline{x}_{i}^{0} )} + \left\langle {\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i}^{0} ),u} } \right\rangle - \frac{1}{2\gamma }\left\| u \right\|^{2} } \right] + \mu_{1} \sum\limits_{i = 1}^{N} {d_{i} (\overline{x}_{i}^{0} )} } \hfill \\ { \ge f(\overline{x}^{0} ;\mu_{2} ) + \mu_{1} \sum\limits_{i = 1}^{N} {d_{i} (\overline{x}_{i}^{0} )} ,} \hfill \\ \end{array} $$
(5.78)

where the first equality uses the fact that \( \gamma = 1/L^{d} (\mu_{1} ) \), the first inequality follows (5.28), the second equality is based on the definition of Bregman projection (5.29), the second inequality follows (5.27) and \( u^{c} = 0^{m} \), and the third inequality uses \( \mu_{2} \ge L^{d} (\mu_{1} ) \) in (5.31).

Furthermore, \( [ \cdot ]_{2} \) is taken into account

$$ \begin{array}{*{20}l} {[ \cdot ]_{2} \ge - \sum\limits_{i = 1}^{N} {\sum\limits_{j = 1}^{m} {\left\| {g_{ij} (x_{i}^{ * } ) - g_{ij} (\overline{x}^{0} )} \right\|} \left\| {\overline{u}^{0} } \right\|} - \frac{{\mu_{1} }}{2}\sum\limits_{i = 1}^{N} {\sigma_{i} \varepsilon_{i}^{2} } } \hfill \\ { \ge - \left\| {\overline{u}^{0} } \right\|\sum\limits_{i = 1}^{N} {\sum\limits_{j = 1}^{m} {M_{ij} (g)\left\| {x_{i}^{ * } - \overline{x}^{0} } \right\|} } - \frac{{\mu_{1} }}{2}\sum\limits_{i = 1}^{N} {\sigma_{i} \varepsilon_{i}^{2} } } \hfill \\ { \ge - \left\| {\overline{u}^{0} } \right\|\sum\limits_{i = 1}^{N} {\sum\limits_{j = 1}^{m} {M_{ij} (g)\varepsilon_{i} } } - \frac{{\mu_{1} }}{2}\sum\limits_{i = 1}^{N} {\sigma_{i} \varepsilon_{i}^{2} } } \hfill \\ { \ge - \left\| {\overline{u}^{0} } \right\|M\varepsilon_{\left[ 1 \right]} - \frac{{\mu_{1} }}{2}\varepsilon_{\left[ \sigma \right]}^{2} ,} \hfill \\ \end{array} $$
(5.79)

where the second inequality uses the boundness of the gradient, the third inequality follows the fact \( \left\| {x_{i}^{ * } - \overline{x}^{0} } \right\| \le \varepsilon_{i} \), and the last inequality adopts Hölder’s inequality. Now we consider the following inequalities about \( \left\| {\overline{u}^{0} } \right\| \)

$$ \begin{array}{*{20}l} {\left\| {\overline{u}^{0} } \right\| = \left\| {P_{U} \left[ {\frac{{\mu_{1} }}{{L^{d} }}\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i}^{0} )} } \right]} \right\|} \hfill \\ { \le \left\| {\frac{{\mu_{1} }}{{L^{d} }}\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i}^{0} )} } \right\|} \hfill \\ { \le \frac{{\mu_{1} }}{{L^{d} }}\left[ {\left\| {\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i}^{0} ) - \sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i}^{c} )} } } \right\| + \left\| {\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i}^{c} )} } \right\|} \right]} \hfill \\ { \le \frac{{\mu_{1} }}{{L^{d} }}\left[ {MD_{\sigma } + \left\| {\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i}^{c} )} } \right\|} \right],} \hfill \\ \end{array} , $$
(5.80)

where the first equality uses the definition of Bregman projection (5.21), the second inequality follows the non-expansive property of the norm operator, and the third inequality adopts the boundness of the gradient and Hölder’s inequality. By combining (5.76), (5.77) and (5.78), we complete the proof

$$ \begin{array}{*{20}l} {\phi (\overline{u}^{0} ;\mu_{1} )} \hfill \\ { \ge f(\overline{u}^{0} ;\mu_{2} ) + \mu_{1} \sum\limits_{i = 1}^{N} {d_{i} (\overline{x}_{i}^{0} )} } \hfill \\ { - \frac{{\mu_{1} }}{{L^{d} }}\left[ {M^{2} D_{\sigma } + M\left\| {\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i}^{c} )} } \right\|} \right]\varepsilon_{[1]} - \frac{{\mu_{1} }}{2}\varepsilon_{[\sigma ]}^{2} } \hfill \\ { \ge f(\overline{x}^{0} ;\mu_{2} ) - \sigma_{0.} } \hfill \\ \end{array} $$
(5.81)

Appendix 4

For the clarity of the exposition, the following equalities are denoted, \( u_{2} = u^{ * } (\overline{x} ;\mu_{2} ) \), \( \tilde{x}_{i} = \tilde{x}_{i}^{ * } (\widehat{u};\mu_{1} ) \), \( \widehat{x}_{i} = x_{i}^{ * } (\widehat{x};\mu_{1} ) \). According to the definition of \( f( \cdot ;\mu_{1} ) \) and \( \mu_{ 2}^{ + } { = (1 - }\tau )\mu_{2} \), we have

$$ \begin{array}{*{20}l} {f(\bar{x}^{ + } ;\mu _{2}^{ + } )} \hfill \\ { = \mathop {{\text{max}}}\limits_{{u \in U}} \left\{ {\sum\limits_{{i = 1}}^{N} {f_{i} (\bar{x}^{ + } ) + \left\langle {u,\sum\limits_{i}^{N} {g_{i} (\bar{x}^{ + } )} } \right\rangle - \frac{1}{2}\mu _{2}^{ + } \left\| u \right\|^{2} } } \right\}} \hfill \\ { = \mathop {{\text{max}}}\limits_{{u \in U}} \left\{ {\sum\limits_{{i = 1}}^{N} {f_{i} [(1 - \tau )\bar{x}_{i} + \tau \tilde{x}_{i} ] + \left\langle {u,\sum\limits_{i}^{N} {f_{i} [(1 - \tau )\bar{x}_{i} + \tau \tilde{x}_{i} ]} } \right\rangle - \frac{{(1 - \tau )\mu _{2} }}{2}\left\| u \right\|^{2} } } \right\}} \hfill \\ \begin{gathered} \le \mathop {{\text{max}}}\limits_{{u \in U}} \left\{ {(1 - \tau )\left[ {\sum\limits_{{i = 1}}^{N} {f_{i} (\bar{x}_{i} ) + \left\langle {u,\sum\limits_{i}^{N} {g_{i} (\bar{x}_{i} )} } \right\rangle - \frac{{\mu _{2} }}{2}\left\| u \right\|^{2} } } \right]_{1} } \right. \hfill \\ \left. \quad + \, {\tau \left[ {\sum\limits_{{i = 1}}^{N} {f_{i} (\tilde{x}_{i} )} + \left\langle {u,\sum\limits_{i}^{N} {g_{i} (\tilde{x}_{i} )} } \right\rangle } \right]_{2} } \right\}, \hfill \\ \end{gathered} \hfill \\ \end{array} $$
(5.82)

where the first inequality follows the convexities of \( f_{i} ( \cdot ) \) and \( {\text{g}}_{ij} ( \cdot ) \). The first term \( [ \cdot ]_{1} \) of (5.82) can be denoted as

$$ [ \cdot ]_{1} { = } - \mu_{ 2} \left[ {B(u_{2} ,u) + \frac{1}{2}\left\| {u_{2} } \right\|^{2} + \left\langle {u_{2} ,u - u_{2} } \right\rangle } \right] + \sum\limits_{i = 1}^{N} {f_{i} (\overline{x}_{i} )} { + }\left\langle {u,\sum\limits_{i = 1}^{N} {g_{i} (\overline{x}_{i} )} } \right\rangle . $$
(5.83)

The first order optimality condition is

$$ \left\langle {\sum\limits_{i}^{N} {g_{i} (\overline{x}_{i} )} - \mu_{2} u_{2} ,u - u_{2} } \right\rangle \le 0,\quad \forall {\text{u}} \in U. $$
(5.84)

Therefore, the term \( [ \cdot ]_{1} \) can be further estimated as

$$ \begin{array}{*{20}l} {[ \cdot ]_{1} \le - \mu _{2} B(u_{2} ,u) + \sum\limits_{{i = 1}}^{N} {f_{i} (\bar{x}_{i} )} + \left\langle {u_{2} ,\sum\limits_{{i = 1}}^{N} {g_{i} (\bar{x}_{i} )} } \right\rangle - \frac{1}{2}\mu _{2} \left\| {u_{2} } \right\|^{2} } \hfill \\ { = - \mu _{2} B(u_{2} ,u) + f(\bar{x};u_{2} )} \hfill \\ { \le - \mu _{2} B(u_{2} ,u) + \phi (\bar{u};\mu _{1} ) + \sigma } \hfill \\ { \le - \mu _{2} B(u_{2} ,u) + \phi (\hat{u};\mu _{1} ) + \left\langle {\nabla \phi (\hat{u};\mu _{1} ),\bar{u} - \hat{u}} \right\rangle + \sigma } \hfill \\ \begin{gathered} = - \mu _{2} B(u_{2} ,u) + \phi (\hat{u};\mu _{1} ) + \left\langle {\sum\limits_{{i = 1}}^{N} {g_{i} (\tilde{x}_{i} )} ,\bar{u} - \hat{u}} \right\rangle \hfill \\ \quad + \, \left\langle {\sum\limits_{{i = 1}}^{N} {g_{i} (\hat{x}_{i} ) - \sum\limits_{{i = 1}}^{N} {g_{i} (\tilde{x}_{i} )} ,\bar{u} - \hat{u}} } \right\rangle + \sigma , \hfill \\ \end{gathered} \hfill \\ \end{array} $$
(5.85)

where we use the definition of δ-excessive gap condition in the second inequality, the third inequality is based on the concavity of \( \phi ( \cdot \mu_{1} ) \), and the second equality follows the definition of \( \tilde{\nabla }\phi (u;\mu_{1} ) \). Meanwhile, the estimation about the term \( [ \cdot ]_{ 2} \) of (5.82) may lead to

$$ \begin{aligned} [ \cdot ]_{ 2} \, & { = }\sum\limits_{i = 1}^{N} {f_{i} (\tilde{x}_{i} )} + \left\langle {\hat{u},\sum\limits_{i = 1}^{N} {g_{i} (\tilde{x}_{i} )} } \right\rangle + \mu_{1} \sum\limits_{i = 1}^{N} {d_{i} (\tilde{x}_{i} )} + \left\langle {u - \hat{u},\sum\limits_{i = 1}^{N} {g_{i} (\tilde{x}_{i} )} } \right\rangle \\ & \quad - \mu_{1} \sum\limits_{i = 1}^{N} {d_{i} (\tilde{x}_{i} )} \le \sum\limits_{i = 1}^{N} {f_{i} (\hat{x}_{i} )} + \left\langle {\hat{u},\sum\limits_{i = 1}^{N} {g_{i} (\hat{x}_{i} )} } \right\rangle + \mu_{1} \sum\limits_{i = 1}^{N} {d_{i} (\hat{x}_{i} )} \\ & \quad + \frac{{\mu_{2} }}{2}\sum\limits_{i = 1}^{N} {\sigma_{i} \varepsilon_{i}^{2} } + \left\langle {u - \hat{u},\sum\limits_{i = 1}^{N} {g_{i} (\tilde{x}_{i} )} } \right\rangle - \mu_{1} \sum\limits_{i = 1}^{N} {d_{i} (\tilde{x}_{i} )} \\ & = \phi (\hat{u};\mu_{1} ) + \left\langle {u - \hat{u},\sum\limits_{i = 1}^{N} {g_{i} (\tilde{x}_{i} )} } \right\rangle - \mu_{1} \sum\limits_{i = 1}^{N} {d_{i} (\tilde{x}_{i} )} + \frac{{\mu_{2} }}{2}\sum\limits_{i = 1}^{N} {\sigma_{i} \varepsilon_{i}^{2} } . \\ \end{aligned} $$
(5.86)

Through substituting \( [ \cdot ]_{ 1} \) and \( [ \cdot ]_{ 2} \) into (5.82), we can demonstrate

$$ \begin{aligned} & f(\bar{x}^{ + } ;\mu _{2}^{ + } ) \\ & \le \mathop {{\text{max}}}\limits_{{u \in U}} \left[ { - \mu _{2} (1 - \tau )B(u_{2} ,u) + \phi (\hat{u};\mu _{1} ) + \left\langle {\sum\limits_{{i = 1}}^{N} {g_{i} (\tilde{x}_{i} )} ,(1 - \tau )(\bar{u} - \hat{u}) + \tau (\bar{u} - \hat{u})} \right\rangle } \right]_{3} \\ & + \left[ {(1 - \tau )\sigma + (1 - \tau )\left\langle {\sum\limits_{{i = 1}}^{N} {g_{i} (\hat{x}_{i} )} - \sum\limits_{{i = 1}}^{N} {g_{i} (\tilde{x}_{i} )} ,\bar{u} - \hat{u}} \right\rangle - \mu _{1} \tau \sum\limits_{{i = 1}}^{N} {d_{i} (\tilde{x}_{i} )} + \frac{{\mu _{1} \tau }}{2}\sum\limits_{{i = 1}}^{N} {\sigma _{i} \varepsilon _{i}^{2} } } \right] \\ \end{aligned} $$
(5.87)

Furthermore, in order to explore (5.87), the term \( [ \cdot ]_{ 3} \) is analyzed as follows

$$ \begin{array}{*{20}l} {[ \cdot ]_{ 3} = \mathop { \text{max} }\limits_{u \in U} \left[ { - \mu_{2} (1 - \tau )B(u_{2} ,u){ + }\phi (\hat{u};\mu_{1} ) + \tau \left\langle {\sum\limits_{i = 1}^{N} {g_{i} (\tilde{x}_{i} )} ,u - u_{2} } \right\rangle } \right]} \hfill \\ { = \phi (\hat{u};\mu_{1} ) - \mu_{2} (1 - \tau )\mathop {\text{min} }\limits_{u \in U} \left[ { - \frac{\tau }{{\mu_{2} (1 - \tau )}}\left\langle {\sum\limits_{i = 1}^{N} {g_{i} (\tilde{x}_{i} )} ,u - u_{2} } \right\rangle + B(u_{2} ,u)} \right]} \hfill \\ {{ = }\phi (\hat{u};\mu_{1} ) + \tau \left\langle {\sum\limits_{i = 1}^{N} {g_{i} (\tilde{x}_{i} )} ,u - u_{2} } \right\rangle - \mu_{2} (1 - \tau )B(u_{2} ,\mathop u\limits^{\sim} )} \hfill \\ { \le \phi (\hat{u};\mu_{1} ) + \tau \left\langle {\sum\limits_{i = 1}^{N} {g_{i} (\tilde{x}_{i} )} ,\tilde{u} - u_{2} } \right\rangle - \frac{{\mu_{2} (1 - \tau )}}{ 2}\left\| {u_{2} - \tilde{u}} \right\|^{ 2} } \hfill \\ { \le \phi (\hat{u};\mu_{1} ) + \left\langle {\sum\limits_{i = 1}^{N} {g_{i} (\tilde{x}_{i} )} ,\overline{u}^{ + } - \hat{u}} \right\rangle - \frac{1}{2}L^{d} (\mu_{1} )\left\| {\overline{u}^{ + } - \hat{u}} \right\|^{ 2} } \hfill \\ { = \phi (\hat{u};\mu_{1} ) + \left\langle {\sum\limits_{i = 1}^{N} {g_{i} (\tilde{x}_{i} )} ,\overline{u}^{ + } - \hat{u}} \right\rangle - \frac{1}{2}L^{d} (\mu_{1} )\left\| {\overline{u}^{ + } - \hat{u}} \right\|^{ 2} } \hfill \\ { + \left\langle {\sum\limits_{i = 1}^{N} {g_{i} (\tilde{x}_{i} ) - \sum\limits_{i = 1}^{N} {g_{i} (\hat{x}_{i} )} } ,\overline{u}^{ + } - \hat{u}} \right\rangle } \hfill \\ { \le \phi (\overline{u}^{ + } ;\mu_{1} ) + \left\langle {\sum\limits_{i = 1}^{N} {g_{i} (\tilde{x}_{i} ) - \sum\limits_{i = 1}^{N} {g_{i} (\hat{x}_{i} ),\overline{u}^{ + } - \hat{u}} } } \right\rangle } \hfill \\ { \le \phi (\overline{u}^{ + } ;\mu_{1}^{ + } ) + (\mu_{1} - \mu_{1}^{ + } )\sum\limits_{i = 1}^{N} {d_{i} (x_{i}^{ * } (\overline{u}^{ + } ;\mu_{1}^{ + } ))} } \hfill \\ { + \left\langle {\sum\limits_{i = 1}^{N} {g_{i} (\tilde{x}_{i} ) - \sum\limits_{i = 1}^{N} {g_{i} (\hat{x}_{i} ),\overline{u}^{ + } - \hat{u}} } } \right\rangle }, \hfill \\ \end{array} $$
(5.88)

where the second inequality follows the fact \( \overline{u}^{ + } - \hat{u}{ = }\tau (\tilde{u} - u_{2} ) \), the third inequality derives from the concavity of \( \phi ( \cdot ;\mu_{1} ) \), and the fourth inequality uses the concavity of \( \phi (u; \cdot ) \). In order to analyze the term \( [ \cdot ]_{ 3} \) + \( [ \cdot ]_{ 4} \), we need to take underlying inequalities into consideration respectively (5.89)–(5.92).

$$ \begin{array}{*{20}l} {\left\langle {\sum\limits_{i = 1}^{N} {g_{i} (\tilde{x}_{i} )} - \sum\limits_{i = 1}^{N} {g_{i} (\hat{x}_{i} )} ,\overline{u}^{ + } - \hat{u}} \right\rangle + (1 - \tau )\left\langle {\sum\limits_{i = 1}^{N} {g_{i} (\hat{x}_{i} )} - \sum\limits_{i = 1}^{N} {g_{i} (\hat{x}_{i} )} ,\overline{u} - \hat{u}} \right\rangle } \hfill \\ { = \tau \left\langle {\sum\limits_{i = 1}^{N} {g_{i} (\tilde{x}_{i} )} - \sum\limits_{i = 1}^{N} {g_{i} (\hat{x}_{i} )} ,\tilde{u} - \hat{u}} \right\rangle } \hfill \\ { \le \tau \left\| {\tilde{u} - \hat{u}} \right\|\sum\limits_{i = 1}^{N} {\sum\limits_{j = 1}^{m} {M_{ij} (g)\left\| {\tilde{x}_{i} - \hat{x}_{i} } \right\|} } } \hfill \\ { \le \tau \left\| {\tilde{u} - \hat{u}} \right\|\sum\limits_{i = 1}^{N} {\sum\limits_{j = 1}^{m} {M_{ij} (g)\varepsilon_{i} } } } \hfill \\ { \le \tau \left\| {\tilde{u} - \hat{u}} \right\|M\varepsilon_{[1]} }, \hfill \\ \end{array} $$
(5.89)

where the first equality follows line 1 and line 4 in the recursion, the first inequality is based on the boundness of the gradient, and the second inequality follows \( \left\| {\tilde{x}_{i}^{*} (\hat{u};\mu_{1} ) - x_{i}^{*} (\hat{u};\mu_{1} )} \right\| \le \varepsilon_{i} \). Actually, the term \( \tau \left\| {\tilde{u} - \hat{u}} \right\| \) is bounded by

$$ \begin{array}{*{20}l} {\tau \left\| {\tilde{u} - \hat{u}} \right\|} \hfill \\ {{ = }\tau \left\| {Pu\left( {u_{2} + \frac{\tau }{{\mu_{2} (1 - \tau )}}\sum\limits_{i = 1}^{N} {g_{i} (\tilde{x}_{i} )} } \right) - (1 - \tau )\bar{u} - \tau u_{2} } \right\|} \hfill \\ { \le \tau \left\| {\frac{\tau }{{\mu_{2} (1 - \tau )}}\sum\limits_{i = 1}^{N} {g_{i} (\tilde{x}_{i} )} - (1 - \tau )\bar{u} - (1 - \tau )u_{2} } \right\|} \hfill \\ { \le \frac{{\tau^{2} }}{{\mu_{2} (1 - \tau )}}\left\| {\sum\limits_{i = 1}^{N} {g_{i} (\tilde{x}_{i} )} } \right\| + \tau (1 - \tau )\left\| {\frac{1}{{\mu_{2} }}\sum\limits_{i = 1}^{N} {g_{i} (\bar{x}_{i} )} - \bar{u}} \right\|} \hfill \\ { \le \frac{1}{{L^{d} (\mu_{1} )}}\left( {\left\| {\sum\limits_{i = 1}^{N} {[g_{i} (\tilde{x}_{i} ) - g_{i} (x_{i}^{c} )]} } \right\| + \sum\limits_{i = 1}^{N} {g_{i} (x_{i}^{c} )} } \right)} \hfill \\ { + \frac{\tau (1 - \tau )}{{\mu_{2} }}\left( {\left\| {\sum\limits_{i = 1}^{N} {[g_{i} (\bar{x}_{i} ) - g_{i} (x_{i}^{c} )]} } \right\| + \sum\limits_{i = 1}^{N} {g_{i} (x_{i}^{c} )} } \right)} \hfill \\ { + \tau (1 - \tau )\left\| {\overline{u} } \right\|} \hfill \\ { \le \left( {\frac{1}{{L^{d} (\mu_{1} )}} + \frac{\tau (1 - \tau )}{{\mu_{2} }}} \right)\left( {D_{\sigma } M + \left\| {\sum\limits_{i = 1}^{N} {g_{i} (x_{i}^{c} )} } \right\|} \right)} \hfill \\ { + \tau (1 - \tau )\left\| {\bar{u}} \right\|}, \hfill \\ \end{array} $$
(5.90)

where the first equality is based on the definition of Bregman projection, the first and the second inequality follow the projection inequality and the nonexpansive property of norm, the third inequality uses, and the fourth inequality adopts the boundness of the gradient and Hölder’s inequality. We combine (5.89) and (5.90) to obtain

$$ \begin{array}{*{20}l} {\left\langle {\sum\limits_{i = 1}^{N} {g_{i} (\tilde{x}_{i} )} { - }\sum\limits_{i = 1}^{N} {g_{i} (\hat{x}_{i} )} ,\overline{u}^{ + } - \hat{u}} \right\rangle } \hfill \\ { + (1 - \tau )\left\langle {\sum\limits_{i = 1}^{N} {g_{i} (\hat{x}_{i} )} { - }\sum\limits_{i = 1}^{N} {g_{i} (\tilde{x}_{i} )} ,\overline{u} - \hat{u}} \right\rangle } \hfill \\ { \le \left[ {\frac{{\mu_{1} }}{{L^{d} }}C_{d} + \tau (1 - \tau )\left( {\frac{{C_{d} }}{{L^{d} }} + M\left\| {\overline{u} } \right\|} \right)} \right]\varepsilon_{[1]} } \hfill \\ \end{array} . $$
(5.91)

With the definition of \( \alpha \), the following inequality is available

$$ \begin{array}{*{20}l} {\left( {\mu_{1} - \mu_{1}^{ + } } \right)\sum\limits_{i = 1}^{N} {d_{i} (x_{i}^{*} (\overline{u}^{ + } ;\mu_{1}^{ + } ))} - \mu_{1} \tau \sum\limits_{i = 1}^{N} {d_{i} (\tilde{x}_{i} )} } \hfill \\ { \le \mu_{1} \tau \left( {\alpha \sum\limits_{i = 1}^{N} {D_{i} } - \sum\limits_{i = 1}^{N} {d_{i} (\tilde{x}_{i} )} } \right)} \hfill \\ { = 0}. \hfill \\ \end{array} $$
(5.92)

Therefore, the conclusion of Lemma 4 can be elucidated by combining (5.87)–(5.92) together

$$ \begin{array}{*{20}l} {f(\overline{x}^{ + } ;\mu_{2}^{ + } )} \hfill \\ { \le \phi (\overline{u}^{ + } ;\mu_{1}^{ + } ) + (1 - \tau )\sigma } \hfill \\ { + \left[ {\frac{{\mu_{1} }}{{L^{d} }}C_{d} + \tau (1 - \tau )\left( {\frac{{C_{d} }}{{L^{d} }} + M\left\| {\overline{u} } \right\|} \right)\varepsilon_{[1]} + \frac{{\mu_{1} \tau }}{2}\varepsilon_{[\sigma ]}^{2} } \right]} \hfill \\ { = \phi (\overline{u}^{ + } ;\mu_{1}^{ + } ) + (1 - \tau )\sigma + \eta (\tau ,\mu_{1} ,\mu_{2} ,\overline{u} ,\varepsilon )} \hfill \\ { = \phi (\overline{u}^{ + } ;\mu_{1}^{ + } ) + \sigma_{ + } .} \hfill \\ \end{array} . $$
(5.93)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Publishing House of Electronics Industry, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ge, X., Zhang, W. (2019). Wireless Resource Management for Green Communications. In: 5G Green Mobile Communication Networks. Springer, Singapore. https://doi.org/10.1007/978-981-13-6252-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6252-1_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6251-4

  • Online ISBN: 978-981-13-6252-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics