Skip to main content

Energy Efficiency of 5G Multimedia Communications

  • Chapter
  • First Online:
Book cover 5G Green Mobile Communication Networks

Abstract

As the rapid development of the information and communication technology (ICT), the energy consumption problem of ICT industry, which causes about 2% of worldwide CO2 emissions yearly and burdens the electrical bill of network operators [1], has drawn universal attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Humar, I., X. Ge, X. Lin, M. Jo, and M. Chen. 2011. Rethinking energy efficiency models of cellular networks with embodied energy. IEEE Network Magazine 25 (2): 40–49.

    Article  Google Scholar 

  2. Wang, C.-X., F. Haider, X. Gao, X.-H. You, Y. Yang, D. Yuan, H. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir. 2014. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine 52 (2): 122–130.

    Article  Google Scholar 

  3. Raghavendra, S., and B. Daneshrad. 2012. Performance analysis of energy efficient power allocation for MIMO-MRC systems. IEEE Transactions on Communications 60 (8): 2048–2053.

    Article  Google Scholar 

  4. Liu, J., Y.T. Hou, Y. Shi, and D.S. Hanif. 2008. Cross-layer optimization for MIMO-based wireless ad hoc networks: Routing, power allocation, and bandwidth allocation. IEEE Journal on Selected Areas in Communications 26 (6): 913–926.

    Article  Google Scholar 

  5. Ding, J., D. Deng, T. Wu, and H. Chen. 2010. Quality-aware bandwidth allocation for scalable on-demand streaming in wireless networks. IEEE Journal on Selected Areas in Communications 28 (3): 366–376.

    Article  Google Scholar 

  6. Su, X., S. Chan, and J.H. Manton. 2010. Bandwidth allocation in wireless ad hoc networks: Challenges and prospects. IEEE Communications Magazine 48 (1): 80–85.

    Article  Google Scholar 

  7. Helonde, D., V. Wadhai, V.S. Deshpande, and H.S. Ohal. 2011. Performance analysis of hybrid channel allocation scheme for mobile cellular network. In Proceedings of IEEE ICRTIT 2011, 245–250, June 2011.

    Google Scholar 

  8. Wang, C.-X., M. Patzold, and D. Yuan. 2007. Accurate and efficient simulation of multiple uncorrelated Rayleigh fading waveforms. IEEE Transactions on Wireless Communications 6 (3): 833–839.

    Article  Google Scholar 

  9. Xiang, L., X. Ge, C.-X. Wang, F. Li, and F. Reichert. 2013. Energy efficiency evaluation of cellular networks based on spatial distributions of traffic load and power consumption. IEEE Transactions on Wireless Communications 12 (3): 961–973.

    Article  Google Scholar 

  10. Chen, C., W. Stark, and S. Chen. 2011. Energy-bandwidth efficiency tradeoff in MIMO multi-hop wireless networks. IEEE Journal on Selected Areas in Communications 29 (8): 1537–1546.

    Article  Google Scholar 

  11. Heliot, F., M.A. Imran, and R. Tafazolli. 2012. On the energy efficiencyspectral efficiency trade-off over the MIMO Rayleigh fading channel. IEEE Transactions on Communications 60 (5): 1345–1356.

    Article  Google Scholar 

  12. Ku, I., C. Wang, and J.S. Thompson. 2013. Spectral-energy efficiency tradeoff in relay-aided cellular networks. IEEE Transactions on Wireless Communications 12 (10): 4970–4982.

    Article  Google Scholar 

  13. Hong, X., Y. Jie, C. Wang, J. Shi, and X. Ge. 2013. Energy-spectral efficiency trade-off in virtual MIMO cellular systems. IEEE Journal on Selected Areas in Communications 31 (10): 2128–2140.

    Article  Google Scholar 

  14. Ku, I., C. Wang, and J.S. Thompson. 2013. Spectral, energy and economic efficiency of relay-aided cellular networks. IET Communications 7 (14): 1476–1487.

    Article  Google Scholar 

  15. Fisher, R.A. 1915. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10: 507–521.

    Google Scholar 

  16. Wishart, J. 1928. The generalized product moment distribution in samples from a normal multivariate population. Biometrika 20A: 32–52.

    Article  Google Scholar 

  17. Wishart, J. 1948. Proofs of the distribution law of the second order moment statistics. Biometrika 35: 55–57.

    Article  MathSciNet  Google Scholar 

  18. Matthaiou, M., D.I. Laurenson, and C.-X. Wang. 2009. On analytical derivations of the condition number distributions of dual non-central Wishart matrices. IEEE Transactions on Wireless Communications 8 (3): 1212–1217.

    Article  Google Scholar 

  19. Zanella, A., M. Chiani, and M.Z. Win. 2008. A general framework for the distribution of the eigenvalues of Wishart matrices. In Proceedings of IEEE ICC 2008, 1271–1276, May 2008.

    Google Scholar 

  20. Jin, S., X. Gao, and R.M. Matthew. 2006. Ordered eigenvalues of complex noncentral Wishart matrices and performance analysis of SVD MIMO systems. In Proceedings of IEEE ISIT 2006, 1564–1568, July 2006.

    Google Scholar 

  21. Zanella, A., M. Chiani, and M.Z. Win. 2005. MMSE reception and successive interference cancellation for MIMO systems with high spectral efficiency. IEEE Transactions on Wireless Communications 4 (3): 1244–1253.

    Article  Google Scholar 

  22. Zanella, A., M. Chiani, and M. Z. Win. 2005. Performance of MIMO MRC in correlated Rayleigh fading environments. In Proceedings of IEEE VTC 2005-Spring, 1633–1637, May 2005.

    Google Scholar 

  23. McKay, M.R., A.J. Grant, and I.B. Collings. 2007. Performance analysis of MIMO-MRC in double-correlated Rayleigh environments. IEEE Transactions on Communications 55 (3): 497–507.

    Article  Google Scholar 

  24. Kang, M., and M.S. Alouini. 2003. Largest eigenvalue of complex Wishart matrices and performance analysis of MIMO MRC systems. IEEE Journal on Selected Areas in Communications 21 (3): 418–426.

    Article  Google Scholar 

  25. Kang, M., and M.S. Alouini. 2004. A comparative study on the performance of MIMO MRC systems with and without cochannel interference. IEEE Transactions on Communications 52 (8): 1417–1425.

    Article  Google Scholar 

  26. Park, C.S., and K.B. Lee. 2006. Statistical transmit antenna subset selection for limited feedback MIMO systems. In Proceedings of IEEE APCC 2006, 1–5, Aug 2006.

    Google Scholar 

  27. Niyato, D., E. Hossain, and K. Dong. 2010. Jiont admission control and antenna assignment for multiclass QoS in spatial multiplexing MIMO wireless networks. IEEE Communications Magazine 8 (9): 4855–4865.

    Google Scholar 

  28. Karray, M.K. 2010. Analytical evaluation of QoS in the downlink of OFDMA wireless cellular networks serving streaming and elastic traffic. IEEE Transactions on Communications 9 (5): 1799–1807.

    MathSciNet  Google Scholar 

  29. Wu, D., and R. Negi. 2003. Effective capacity: a wireless link model for support of quality of service. IEEE Transactions on Wireless Communications 2 (4): 630–643.

    Google Scholar 

  30. Gursoy, M.C., D. Qiao, and S. Velipasalar. 2009. Analysis of energy efficiency in fading channels under QoS constraints. IEEE Transactions on Wireless Communications 8 (8): 4252–4263.

    Article  Google Scholar 

  31. Tang, J., and X. Zhang. 2007. Quality-of-service driven power and rate adaptation over wireless links. IEEE Transactions on Wireless Communications 6 (8): 3058–3068.

    Article  Google Scholar 

  32. Tang, J., and X. Zhang. 2007. Quality-of-service driven power and rate adaptation for multichannel communications over wireless links. IEEE Transactions on Wireless Communications 6 (12): 4349–4360.

    Article  Google Scholar 

  33. Bogucka, H., and A. Conti. 2011. Degrees of freedom for energy savings in practical adaptive wireless systems. IEEE Communications Magazine 49 (6): 38–45.

    Article  Google Scholar 

  34. Chiani, M., M.Z. Win, and A. Zanella. 2003. On the capacity of spatially correlated MIMO Rayleigh fading channels. IEEE Transactions on Information Theory 49 (10): 2363–2371.

    Article  MathSciNet  Google Scholar 

  35. Telatar, E. 1999. Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications 10: 585–595.

    Article  MathSciNet  Google Scholar 

  36. Kang, M., and M.S. Alouini. 2006. Capacity of MIMO Rician channels. IEEE Transactions on Wireless Communications 5 (1): 112–122.

    Article  Google Scholar 

  37. Edelman, A. 1989. Eigenvalues and condition numbers of random matrices. Ph.D. dissertation, MIT, Cambridge, MA, May 1989.

    Google Scholar 

  38. Zhihua, Z., X. He, and W. Jianhua. 2008. Average power control algorithm with dynamic channel assignment for TDD-CDMA systems. In Proceedings of IEEE ICAIT 2008, July 2008.

    Google Scholar 

  39. Qualcomm. Whitepaper: Making immersive virtual reality possible in mobile. Apr 2016 [Online]. Available: https://www.qualcomm.com/media/documents/files/making-immersive-virtual-reality-possible-in-mobile.pdf.

  40. Huawei. Whitepaper on the VR-oriented bearer network requirement. Sep 2016 [Online]. Available: http://wwwfile.huawei.com/~/media/CORPORATE/PDF/white%20paper/whitepaper-on-the-vr-oriented-bearer-network-requirementen.pdf.

  41. Huawei. Whitepaper: 5G opening up new business opportunities. Aug 2016 [Online]. Available: http://www.huawei.com/minisite/hwmbbf16/insights/5g-opening-up-new-business-opportunities-en.pdf.

  42. Bhushan, N., J. Li, D. Malladi, and R. Gilmore. 2014. Network densification: The dominant theme for wireless evolution into 5G. IEEE Communications Magazine 52 (2): 82–89.

    Article  Google Scholar 

  43. Larsson, E.G., O. Edfors, F. Tufvesson, and T.L. Marzetta. 2014. Massive MIMO for next generation wireless systems. IEEE Communications Magazine 52 (2): 186–195.

    Article  Google Scholar 

  44. Bai, T., and R.W. Heath. 2015. Coverage and rate analysis for millimeter-wave cellular networks. IEEE Transactions on Wireless Communications 14 (2): 1100–1114.

    Article  Google Scholar 

  45. Rappaport, T.S., et al. 2013. Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access 1: 335–349.

    Article  Google Scholar 

  46. Walravens, C., and B. Gaidioz. 2008. Breaking up gigabit ethernet’s VoIP bottlenecks. IEEE Potentials 27(1): 12–17.

    Article  Google Scholar 

  47. Laoutaris, N., G. Smaragdakis, R. Stanojevic, P. Rodriguez, and R. Sundaram. 2013. Delay-tolerant bulk data transfers on the internet. IEEE/ACM Transactions on Networking 21 (6): 1852–1865.

    Article  Google Scholar 

  48. Villari, M., M. Fazio, S. Dustdar, O. Rana, and R. Ranjan. 2016. Osmotic computing: A new paradigm for edge/cloud integration. IEEE Cloud Computing 3(6): 76–83.

    Article  Google Scholar 

  49. Bobrovs, V., S. Spolitis, and G. Ivanovs. 2014. Latency causes and reduction in optical metro networks. Proceeding of SPIE 9008: 117–124.

    Google Scholar 

  50. Tsai, J.-C. 2005. Rate control for low-delay video coding using a dynamic rate table. IEEE Transactions on Circuits and Systems for Video Technology 15 (1): 133–137.

    Article  Google Scholar 

  51. Razavi, R., M. Fleury, and M. Ghanbari. 2008. Low-delay video control in a personal area network for augmented reality. IET Image Processing 2 (3): 150–162.

    Article  Google Scholar 

  52. Hartl, A.D., C. Arth, J. Grubert, and D. Schmalstieg. 2016. Efficient verification of holograms using mobile augmented reality. IEEE Transactions on Visualization and Computer Graphics 22 (7): 1843–1851.

    Article  Google Scholar 

  53. Sekhavat, Y.A. Privacy preserving cloth try-on using mobile augmented reality. IEEE Transactions on Multimedia, to be published, https://doi.org/10.1109/tmm.2016.2639380.

    Article  Google Scholar 

  54. Li, X., N. Jolani, T.T. Dao, and H. Jimison. 2016. Serenity: A low-cost and patient-guided mobile virtual reality intervention for cancer coping. In Proceedings of IEEE ICHI 2016, Chicago, IL, 504–510.

    Google Scholar 

  55. Muñoz, J.E., T. Paulino, H. Vasanth, and K. Baras. 2016. PhysioVR: A novel mobile virtual reality framework for physiological computing. In Proceedings of IEEE Healthcom 2016, Munich, 1–6.

    Google Scholar 

  56. Choi, S.W., M.W. Seo, and S.J. Kang. 2016. Prediction-based latency compensation technique for head mounted display. In Proceedings of IEEE ISOCC 2016, Jeju, South Korea, 9–10.

    Google Scholar 

  57. Langlotz, T., M. Cook, and H. Regenbrecht. 2016. Real-time radiometric compensation for optical see-through head-mounted displays. IEEE Transactions on Visualization and Computer Graphics 22 (11): 2385–2394.

    Article  Google Scholar 

  58. Li, J., J. Sun, Y. Qian, F. Shu, M. Xiao, and W. Xiang. 2016. A commercial video-caching system for small-cell cellular networks using game theory. IEEE Access 4: 7519–7531.

    Article  Google Scholar 

  59. Liu, J., H. Nishiyama, N. Kato, and J. Guo. 2016. On the outage probability of device-to-device-communication-enabled multichannel cellular networks: An RSS-threshold-based perspective. IEEE Journal on Selected Areas in Communications 34 (1): 163–175.

    Article  Google Scholar 

  60. Ge, X., H. Cheng, G. Mao, Y. Yang, and S. Tu. 2016. Vehicular communications for 5G cooperative small-cell networks. IEEE Transactions on Vehicular Technology 65 (10): 7882–7894.

    Article  Google Scholar 

  61. Hu, D., J. Wu, and P. Fan. 2016. Minimizing end-to-end delays in linear multihop networks. IEEE Transactions on Vehicular Technology 65 (8): 6487–6496.

    Article  Google Scholar 

  62. Singh, S., M.N. Kulkarni, A. Ghosh, and J.G. Andrews. 2015. Tractable model for rate in self-backhauled millimeter wave cellular networks. IEEE Journal on Selected Areas in Communications 33 (10): 2196–2211.

    Article  Google Scholar 

  63. Banerjee, I., I. Roy, A.R. Choudhury, B.D. Sharma, and T. Samanta. 2012. Shortest path based geographical routing algorithm in wireless sensor network. In Proceedings of IEEE CODIS 2012, Kolkata, 262–265, Dec 2012.

    Google Scholar 

  64. Zhang, G., T.Q.S. Quek, M. Kountouris, A. Huang, and H. Shan. 2016. Fundamentals of heterogeneous backhaul design-analysis and optimization. IEEE Transactions on Communications 64 (2): 876–889.

    Article  Google Scholar 

  65. Ge, X., B. Yang, J. Ye, G. Mao, C.-X. Wang, and T. Han. 2015. Spatial spectrum and energy efficiency of random cellular networks. IEEE Transactions on Communications 63 (3): 1019–1030.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Publishing House of Electronics Industry, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ge, X., Zhang, W. (2019). Energy Efficiency of 5G Multimedia Communications. In: 5G Green Mobile Communication Networks. Springer, Singapore. https://doi.org/10.1007/978-981-13-6252-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6252-1_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6251-4

  • Online ISBN: 978-981-13-6252-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics