Skip to main content

Energy Efficiency of Cellular Networks

  • Chapter
  • First Online:
5G Green Mobile Communication Networks
  • 791 Accesses

Abstract

Ultra-dense deployment of small cell base stations (BSs), relay nodes, and distributed antennas is considered as a de facto solution for realizing the significant performance improvements needed to accommodate the overwhelming future mobile traffic demand (Ge et al. in IEEE Wirel Commun 23(1):72–79 (2016), [1]). Traditional network expansion techniques like cell splitting are often utilized by telecom operators to achieve the expected throughput, which is less efficient and proven not to keep up with the pace of traffic proliferation in the near future. Heterogeneous networks (HetNets) then become a promising and attractive network architecture to alleviate the problem. “HetNets” is a broad term that refers to the coexistence of different networks (e.g., traditional macrocells and small cell networks like femtocells and picocells), each of them constituting a network tier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ge, X., S. Tu, G. Mao, C.X. Wang, and T. Han. 2016. 5G ultra-dense cellular networks. IEEE Wireless Communications 23 (1): 72–79.

    Article  Google Scholar 

  2. Lopez-Perez, D., M. Ding, H. Claussen, and A.H. Jafari. 2015. Towards 1 Gbps/UE in cellular systems: Understanding ultra-dense small cell deployments. IEEE Communications Surveys Tutorials 17 (4): 2078–2101.

    Article  Google Scholar 

  3. Andrews, J.G., F. Baccelli, and R.K. Ganti. 2011. A tractable approach to coverage and rate in cellular networks. IEEE Transactions on Communications 59 (11): 3122–3134.

    Article  Google Scholar 

  4. Liu, D., L. Wang, Y. Chen, M. Elkashlan, K.K. Wong, R. Schober, and L. Hanzo. 2016. User association in 5G networks: A survey and an outlook. IEEE Communications Surveys & Tutorials 18 (2): 1018–1044.

    Article  Google Scholar 

  5. Bethanabhotla, D., O.Y. Bursalioglu, H.C. Papadopoulos, and G. Caire. 2016. Optimal user-cell association for massive MIMO wireless networks. IEEE Transactions on Wireless Communications 15 (3): 1835–1850.

    Article  Google Scholar 

  6. Wang, N., E. Hossain, and V.K. Bhargava. 2016. Joint downlink cell association and bandwidth allocation for wireless backhauling in two-tier HetNets with large-scale antenna arrays. IEEE Transactions on Wireless Communications 15 (5): 3251–3268.

    Article  Google Scholar 

  7. Yang, C., Y. Yao, Z. Chen, and B. Xia. 2016. Analysis on cache-enabled wireless heterogeneous networks. IEEE Transactions on Wireless Communications 15 (1): 131–145.

    Article  Google Scholar 

  8. Wang, H.M., T.X. Zheng, J. Yuan, D. Towsley, and M.H. Lee. 2016. Physical layer security in heterogeneous cellular networks. IEEE Transactions on Communications 64 (3): 1204–1219.

    Article  Google Scholar 

  9. Humar, I., X. Ge, L. Xiang, M. Jo, M. Chen, and J. Zhang. 2011. Rethinking energy efficiency models of cellular networks with embodied energy. IEEE Network 25 (2): 40–49.

    Article  Google Scholar 

  10. Shojaeifard, A., K.K. Wong, K. Hamdi, E. Alsusa, D.K.C. So, and J. Tang. 2016. Stochastic geometric analysis of energy-efficient dense cellular networks. IEEE Access 5: 455–469.

    Article  Google Scholar 

  11. Niu, Y., C. Gao, Y. Li, L. Su, D. Jin, Y. Zhu, and D.O. Wu. 2017. Energy-efficient scheduling for mmWave backhauling of small cells in heterogeneous cellular networks. IEEE Transactions on Vehicular Technology 66 (3): 2674–2687.

    Article  Google Scholar 

  12. Shahid, A., K.S. Kim, E.D. Poorter, and I. Moerman. 2017. Self-organized energy-efficient cross-layer optimization for device to device communication in heterogeneous cellular networks. IEEE Access 5: 1117–1128.

    Article  Google Scholar 

  13. Wu, J., B. Cheng, M. Wang, and J. Chen. 2017. Energy-efficient bandwidth aggregation for delay-constrained video over heterogeneous wireless networks. IEEE Journal on Selected Areas in Communications 35 (1): 30–49.

    Google Scholar 

  14. Yang, K., S. Martin, D. Quadri, J. Wu, and G. Feng. 2017. Energy-efficient downlink resource allocation in heterogeneous OFDMA networks. IEEE Transactions on Vehicular Technology 66 (6): 5086–5098.

    Article  Google Scholar 

  15. Zhang, K., Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan, S. Maharjan, and Y. Zhang. 2016. Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks. IEEE Access 4: 5896–5907.

    Article  Google Scholar 

  16. Ding, M., P. Wang, D. Lopez-Perez, G. Mao, and Z. Lin. 2016. Performance impact of LoS and NLoS transmissions in dense cellular networks. IEEE Transactions on Wireless Communications 15 (3): 2365–2380.

    Article  Google Scholar 

  17. Renzo, M.D. 2015. Stochastic geometry modeling and analysis of multitier millimeter wave cellular networks. IEEE Transactions on Wireless Communications 14 (9): 5038–5057.

    Article  Google Scholar 

  18. Singh, S., M.N. Kulkarni, A. Ghosh, and J.G. Andrews. 2015. Tractable model for rate in self-backhauled millimeter wave cellular networks. IEEE Journal on Selected Areas in Communications 33 (10): 2196–2211.

    Article  Google Scholar 

  19. Bai, T., and R.W. Heath. 2015. Coverage and rate analysis for millimeter-wave cellular networks. IEEE Transactions on Wireless Communications 14 (2): 1100–1114.

    Article  Google Scholar 

  20. Haenggi, M. 2012. Stochastic geometry for wireless networks. Cambridge University Press.

    Google Scholar 

  21. Blaunstein, N., and M. Levin. 1998. Parametric model of UHF/L-wave propagation in city with randomly distributed buildings. In Proceedings of IEEE Antennas and Propagation Society International Symposium, vol. 3, 1684–1687.

    Google Scholar 

  22. Bai, T., R. Vaze, and R.W. Heath. 2014. Analysis of blockage effects on urban cellular networks. IEEE Transactions on Wireless Communications 13 (9): 5070–5083.

    Article  Google Scholar 

  23. Liu, J., M. Sheng, L. Liu, and J. Li. 2017. Effect of densification on cellular network performance with bounded path loss model. IEEE Communications Letters 21 (2): 346–349.

    Article  Google Scholar 

  24. AlAmmouri, A., J.G. Andrews, and F. Baccelli. 2017. SINR and throughput of dense cellular networks with stretched exponential path loss. Available at: https://arxiv.org/abs/1703.08246.

  25. Ding, M., D. Lopez-Perez, G. Mao, and Z. Lin. 2017. Performance impact of idle mode capability on dense small cell networks. Available at: https://arxiv.org/abs/1609.07710v4.

  26. Yang, B., G. Mao, X. Ge, and T. Han. 2015. A new cell association scheme in heterogeneous networks. In Proceedings of IEEE ICC 2015, June 2015, 5627–5632.

    Google Scholar 

  27. Chiu, S.N., D. Stoyan, W.S. Kendall, and J. Mecke. 2013. Stochastic geometry and its applications. Wiley.

    Google Scholar 

  28. Wei, B., and L. Ben. 2014. Structured spectrum allocation and user association in heterogeneous cellular networks. In Proceedings of IEEE INFOCOM 2014, 1069–1077.

    Google Scholar 

  29. Peng, J., P. Hong, and K. Xue. 2015. Energy-aware cellular deployment strategy under coverage performance constraints. IEEE Transactions on Wireless Communications 14 (1): 69–80.

    Article  Google Scholar 

  30. ElSawy, H., A. Sultan-Salem, M.S. Alouini, and M.Z. Win. 2017. Modeling and analysis of cellular networks using stochastic geometry: A tutorial. IEEE Communications Surveys & Tutorials 19 (1): 167–203.

    Article  Google Scholar 

  31. Yang, B., G. Mao, M. Ding, X. Ge, and X. Tao. 2018. Dense small cell networks: From noise-limited to dense interference-limited. IEEE Transactions on Vehicular Technology 67 (5): 4262–4277.

    Article  Google Scholar 

  32. Ge, X., B. Yang, J. Ye, G. Mao, C.X. Wang, and T. Han. 2015. Spatial spectrum and energy efficiency of random cellular networks. IEEE Transactions on Communications 63 (3): 1019–1030.

    Article  Google Scholar 

  33. Cao, D., S. Zhou, and Z. Niu. 2013. Optimal combination of base station densities for energy-efficient two-tier heterogeneous cellular networks. IEEE Transactions on Wireless Communications 12 (9): 4350–4362.

    Article  Google Scholar 

  34. Ge, X., B. Yang, J. Ye, G. Mao, and Q. Li. 2014. Performance analysis of Poisson-Voronoi tessellated random cellular networks using markov chains. In Proceedings of IEEE Globecom 2014, 4635–4640.

    Google Scholar 

  35. Brent, R.P. 1973. Algorithms for minimization without derivatives. Englewood Cliffs, NJ, USA: Prentice-Hall.

    MATH  Google Scholar 

  36. Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. 2007. Numerical recipes: The art of scientific computing, 3rd ed. Cambridge, U.K.: Cambridge University Press.

    MATH  Google Scholar 

  37. GPP. 2012. Tr 36.828 (v11.0.0): Further enhancements to LTE time division duplex (TDD) for downlink-uplink (DL-UL) interference management and traffic adaptation.

    Google Scholar 

  38. Yang, B., G. Mao, X. Ge, H.H. Chen, T. Han, and X. Zhang. 2016. Coverage analysis of heterogeneous cellular networks in urban areas. In Proceedings of IEEE ICC, May 2016, 1–6.

    Google Scholar 

  39. Ge, X., L. Pan, Q. Li, G. Mao, and S. Tu. 2017. Multipath cooperative communications networks for augmented and virtual reality transmission. IEEE Transactions on Multimedia 19 (10): 2345–2358.

    Article  Google Scholar 

  40. Ge, X., J. Ye, Y. Yang, and Q. Li. 2016. User mobility evaluation for 5G small cell networks based on individual mobility model. IEEE Journal on Selected Areas in Communications 34 (3): 528–541.

    Article  Google Scholar 

  41. Ge, X., J. Martínez-Bauset, V. Casares-Giner, B. Yang, J. Ye, and M. Chen. 2013. Modelling and performance analysis of different access schemes in two-tier wireless networks. In Proceedings of IEEE Globecom 2013, 4402–4407.

    Google Scholar 

  42. Dhillon, H.S., R.K. Ganti, F. Baccelli, and J.G. Andrews. 2012. Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications 30 (3): 550–560.

    Article  Google Scholar 

  43. Hasan, Z., H. Boostanimehr, and V.K. Bhargava. 2011. Green cellular networks: A survey, some research issues and challenges. IEEE Communications Surveys & Tutorials 13 (4): 524–540.

    Article  Google Scholar 

  44. Fehske, A., G. Fettweis, J. Malmodin, and G. Biczok. 2011. The global footprint of mobile communications: The ecological and economic perspective. IEEE Communications Magazine 49 (8): 55–62.

    Article  Google Scholar 

  45. Ge, X., X. Huang, Y. Wang, M. Chen, Q. Li, T. Han, and C.-X. Wang. 2014. Energy efficiency optimization for MIMO-OFDM mobile multimedia communication systems with QoS constraints. IEEE Transactions on Vehicular Technology 63 (5): 2127–2138.

    Article  Google Scholar 

  46. Ku, I., C.-X. Wang, and J.S. Thompson. 2013. Spectral-energy efficiency tradeoff in relay-aided cellular networks. IEEE Transactions on Wireless Communications 12 (10): 4970–4982.

    Article  Google Scholar 

  47. Hong, X., Y. Jie, C.-X. Wang, J. Shi, and X. Ge. 2013. Energy-spectral efficiency trade-off in virtual MIMO cellular systems. IEEE Journal on Selected Areas in Communications 31 (10): 2128–2140.

    Article  Google Scholar 

  48. Gilbert, E.N. 1960. Capacity of a burst-noise channel. Bell System Technical Journal 39 (9): 1253–1265.

    Article  MathSciNet  Google Scholar 

  49. Elliott, E.O. 1963. Estimates of error rates for codes on burst-noise channels. Bell System Technical Journal 42 (9): 1977–1997.

    Article  Google Scholar 

  50. Jayaparvathy, R., S. Anand, and S. Srikanth. 2005. Performance analysis of dynamic packet assignment in cellular systems with OFDMA. IEEE Proceedings 152 (1): 45–52.

    Article  Google Scholar 

  51. Anand, S., A. Sridharan, and K.N. Sivarajan. 2003. Performance analysis of channelized cellular systems with dynamic channel allocation. IEEE Transactions on Vehicular Technology 52 (4): 847–859.

    Article  Google Scholar 

  52. Sadeghi, P., R.A. Kennedy, P.B. Rapajic, and R. Shams. 2008. Finite state Markov modeling of fading channels—A survey of principle sand applications. IEEE Signal Processing Magazine 25 (5): 57–80.

    Article  Google Scholar 

  53. Park, J.M., and G.U. Hwang. 2009. Mathematical modeling of Rayleigh fading channels based on finite state Markov chains. IEEE Communications Letters 13 (10): 764–766.

    Article  Google Scholar 

  54. Bhattacharya, S., B.R. Qazi, and J.M.H. Elmirghani. 2010. A 3-D Markov chain model for a multi-dimensional indoor environment. In Proceedings of IEEE GLOBECOM 2010.

    Google Scholar 

  55. Ozmen, M., and M.C. Gursoy. 2014. Energy efficiency of fixed-rate transmissions with Markov arrivals under queueing constraints. IEEE Communications Letters 18 (4): 608–611.

    Article  Google Scholar 

  56. Ge, X.H., T. Han, Y. Zhang, G.Q. Mao, C.-X. Wang, J. Zhang, B. Yang, and S. Pan. 2014. Spectrum and energy efficiency evaluation of two-tier femtocell networks with partially open channels. IEEE Transactions on Vehicular Technology 63 (3): 1306–1319.

    Article  Google Scholar 

  57. Lee, W.C.Y. 1986. Elements of cellular mobile radio systems. IEEE Transactions on Vehicular Technology 35 (2): 48–56.

    Article  Google Scholar 

  58. Baccelli, F., M. Klein, M. Lebourges, and S. Zuyev. 1997. Stochastic geometry and architecture of communication networks. Telecommunication Systems.

    Google Scholar 

  59. Guo, A., and M. Haenggi. 2013. Spatial stochastic models and metrics for the structure of base stations in cellular networks. IEEE Transactions on Wireless Communications 12 (11): 5800–5812.

    Article  Google Scholar 

  60. Win, M., P. Pinto, and L. Shepp. 2009. A mathematical theory of network interference and its applications. Proceedings of the IEEE 97 (2): 205–230.

    Article  Google Scholar 

  61. Mukherjee, S. 2012. Distribution of downlink SINR in heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications 30 (3): 575–585.

    Article  Google Scholar 

  62. Jing, T., X. Chen, Y. Huo, and X. Cheng. 2012. Achievable transmission capacity of cognitive mesh networks with different media access control. In Proceedings of IEEE INFOCOM, 1764–1772.

    Google Scholar 

  63. Soh, Y., T. Quek, M. Kountouris, and H. Shin. 2013. Energy efficient heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications 31 (5): 840–850.

    Article  Google Scholar 

  64. Deng, N., S.H. Zhang, W.Y. Zhou, and J.K. Zhu. 2012. A stochastic geometry approach to energy efficiency in relay-assisted cellular networks. In Proceedings of IEEE GLOBECOM 2012.

    Google Scholar 

  65. Rappaport, T.S. 1996. Wireless communications: Principles and practice. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  66. Qualcomm. 2010. LTE Advance: Heterogeneous networks. White Section.

    Google Scholar 

  67. Novlan, T.D., R.K. Ganti, A. Ghosh, and J.G. Andrews. 2011. Analytical evaluation of fractional frequency reuse for OFDMA cellular networks. IEEE Transactions on Wireless Communications 10 (12): 4294–4305.

    Article  Google Scholar 

  68. Dhillon, H.S., R.K. Ganti, F. Baccelli, and J.G. Andrews. 2011. Coverage and ergodic rate in K-tier downlink heterogeneous cellular networks. In Proceedings of 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, Sept 2011.

    Google Scholar 

  69. Ali, T., and M. Saquib. 2011. Performance evaluation of WLAN/cellular media access for mobile voice users under random mobility models. IEEE Transactions on Wireless Communications 10 (10): 3241–3255.

    Article  Google Scholar 

  70. Jo, H.S., Y.J. Sang, P. Xia, and J.G. Andrews. 2012. Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis. IEEE Transactions on Wireless Communications 11 (10): 3484–3495.

    Article  Google Scholar 

  71. de Lima, C.H.M., M. Bennis, and M. Latva-Aho. 2013. Statistical analysis of self-organizing networks with biased cell association and interference avoidance. IEEE Transactions on Vehicular Technology 62 (5): 1950–1961.

    Article  Google Scholar 

  72. Fooladivanda, D., and C. Rosenberg. 2013. Joint resource allocation and user association for heterogeneous wireless cellular networks. IEEE Transactions on Wireless Communications 12 (1): 248–257.

    Article  Google Scholar 

  73. Singh, S., H.S. Dhillon, and J.G. Andrews. 2013. Offloading in heterogeneous networks: Modeling, analysis, and design insights. IEEE Transactions on Wireless Communications 12 (5): 2484–2497.

    Article  Google Scholar 

  74. Xiang, L., X.H. Ge, C.-X. Wang, F.Y. Li, and F. Reichert. 2013. Energye ffciency evaluation of cellular networks based on spatial distributions of traffic load and power consumption. IEEE Transactions on Wireless Communications 12 (3): 961–973.

    Article  Google Scholar 

  75. Stoyan, D., W.S. Kendall, and J. Mecke. 1996. Stochastic geometry and its applications, 2nd ed. Wiley.

    Google Scholar 

  76. Kelly, F.P. 1979. Reversibility and stochastic network. Wiley.

    Google Scholar 

  77. Sousa, E.S., and J.A. Silvester. 1990. Optimum transmission ranges in a direct-sequence spread-spectrum multihop packet radio network. IEEE Journal on Selected Areas in Communications 8 (5): 762–771.

    Article  Google Scholar 

  78. Jeffrey, A., and D. Zwillinger. 2007. Table of integrals, series, and products, 7th ed. New York: Academic.

    Google Scholar 

  79. Zhang, X., W. Cheng, and H. Zhang. 2015. Full-duplex transmission in PHY and MAC layers for 5G mobile wireless networks. IEEE Wireless Communications 22 (5): 112–121.

    Article  Google Scholar 

  80. Richter, F., A.J. Fehske, and G.P. Fettweis. 2009. Energy efficiency aspects of base station deployment strategies for cellular networks. In Proceedings of IEEE VTC 2009-Fall.

    Google Scholar 

  81. Thompson, J., X. Ge, H.-C. Wu, et al. 2014. 5G wireless communication systems: Prospects and challenges. IEEE Communications Magazine 52 (2): 122–130.

    Article  Google Scholar 

  82. Zhang, Z., Z. Ma, M. Xiao, et al. 2016. Two-timeslot two-way full-duplex relaying for 5G wireless communication networks. IEEE Transactions on Wireless Communications 64 (7): 2873–2887.

    Article  Google Scholar 

  83. Li, Q., S. Feng, X. Ge, et al. 2017. On the performance of full-duplex multi-relay channels with DF relays. IEEE Transactions on Vehicular Technology 66 (10): 9550–9554.

    Article  Google Scholar 

  84. Yadav, A., O.A. Dobre, and N. Ansari. 2017. Energy and traffic aware full-duplex communications for 5G Systems. IEEE Access 5: 11278–11290.

    Article  Google Scholar 

  85. Ozel, O., K. Tutuncuoglu, J. Yang, et al. 2011. Transmission with energy harvesting nodes in fading wireless channels: Optimal policies. IEEE Journal on Selected Areas in Commun. 29 (8): 1732–1743.

    Article  Google Scholar 

  86. Cheng, W., X. Zhang, and H. Zhang. 2016. Statistical-QoS driven energy-efficiency optimization over green 5G mobile wireless networks. IEEE Journal on Selected Areas in Communications 34 (12): 3092–3107.

    Google Scholar 

  87. Duarte, M., C. Dick, and A. Sabharwal. 2012. Experiment-driven characterization of full-duplex wireless systems. IEEE Transactions on Wireless Communications 11 (12): 4296–4307.

    Article  Google Scholar 

  88. Huang, Y., S. Ma, and Y. Wang. 2015. Uplink achievable rate of full-duplex multi-cell massive MIMO systems. In 2015 IEEE International Conference on Communication Workshop (ICCW), London, 1131–1136.

    Google Scholar 

  89. Zhang, Z., K. Long, A.V. Vasilakos, et al. 2016. Full-duplex wireless communications: Challenges, solutions, and future research directions. Proceedings of the IEEE 104 (7): 1369–1409.

    Article  Google Scholar 

  90. Zhang, Z., X. Chai, K. Long, et al. 2015. Full duplex techniques for 5G networks: Self-interference cancellation, protocol design, and relay selection. IEEE Communications Magazine 53 (5): 128–137.

    Article  Google Scholar 

  91. Sim, M.S., M. Chung, D. Kim, et al. 2017. Nonlinear self-interference cancellation for full-duplex radios: From link-level and system-level performance perspectives. IEEE Communications Magazine 55 (9): 158–167.

    Article  Google Scholar 

  92. Liu, Y., P. Roblin, X. Quan, et al. 2017. A full-duplex transceiver with two-stage analog cancellations for multipath self-interference. IEEE Transactions on Microwave Theory and Techniques 65 (12): 5263–5273.

    Article  Google Scholar 

  93. Li, Y., P. Fan, A. Leukhin, et al. 2017. On the spectral and energy efficiency of full-duplex small-cell wireless systems with massive MIMO. IEEE Transactions on Vehicular Technology 66 (3): 2339–2353.

    Article  Google Scholar 

  94. Nguyen, V.D., T.Q. Duong, H.D. Tuan, et al. 2017. Spectral and energy efficiencies in full-duplex wireless information and power transfer. IEEE Transactions on Communications 65 (5): 2220–2233.

    Article  Google Scholar 

  95. Wen, D., G. Yu, R. Li, et al. 2017. Results on energy- and spectral-efficiency tradeoff in cellular networks with full-duplex enabled base stations. IEEE Transactions on Wireless Communications 16 (3): 1494–1507.

    Article  Google Scholar 

  96. Mao, Y., Y. Luo, J. Zhang, et al. 2015. Energy harvesting small cell networks: Feasibility, deployment, and operation. IEEE Communications Magazine 53 (6): 94–101.

    Article  Google Scholar 

  97. Thuc, T.K., E. Hossain, and H. Tabassum. 2015. Downlink power control in two-tier cellular networks with energy-harvesting small cells as stochastic games. IEEE Transactions on Communications 63 (12): 5267–5282.

    Article  Google Scholar 

  98. Maghsudi, S., and E. Hossain. 2017. Distributed user association in energy harvesting small cell networks: A probabilistic bandit model. IEEE Transactions on Wireless Communications 16 (3): 1549–1563.

    Article  Google Scholar 

  99. Reyhanian, N., B. Maham, V. Shah-Mansouri, et al. 2017. Game-theoretic approaches for energy cooperation in energy harvesting small cell networks. IEEE Transactions on Vehicular Technology 66 (8): 7178–7194.

    Article  Google Scholar 

  100. Chen, L., F.R. Yu, H. Ji, et al. 2016. Green full-duplex self-backhaul and energy harvesting small cell networks with massive MIMO. IEEE Journal on Selected Areas in Communications 34 (12): 3709–3724.

    Article  Google Scholar 

  101. Yu, P.S., J. Lee, T.Q.S. Quek, et al. 2016. Traffic offloading in heterogeneous networks with energy harvesting personal cells-network throughput and energy efficiency. IEEE Transactions on Wireless Communication 15 (2): 1146–1161.

    Article  Google Scholar 

  102. Ge, X., S. Tu, T. Han, et al. 2015. Energy efficiency of small cell backhaul networks based on Gauss-Markov mobile models. IET Networks 4 (2): 158–167.

    Article  Google Scholar 

  103. Pitaval, R.A., O. Tirkkonen, R. Wichman, et al. 2015. Full-duplex self-backhauling for small-cell 5G networks. IEEE Wireless Communications 22 (5): 83–89.

    Article  Google Scholar 

  104. Zhang, H., Y. Dong, J. Cheng, et al. 2016. Fronthauling for 5G LTE-U ultra-dense cloud small cell networks. IEEE Wireless Communications 23 (6): 48–53.

    Article  Google Scholar 

  105. Lin, Y.D., H.T. Chien, H.W. Chang, et al. 2017. Transparent RAN sharing of 5G small cells and macrocells. IEEE Wireless Communications 24 (6): 104–111.

    Article  Google Scholar 

  106. Lasry, J.M., and P.-L. Lions. 2007. Mean field games. Japanese Journal of Mathematics 2: 229–260.

    Article  MathSciNet  MATH  Google Scholar 

  107. Huang, M., P.E. Caines, and R.P. Malhame. 2007. Large-population cost-coupled LQG problems with nonuniform agents: Individual mass behavior and decentralized ε-Nash equilibria. IEEE Transactions on Automatic Control 52 (9): 1560–1570.

    Article  MathSciNet  MATH  Google Scholar 

  108. Huang, M., R.P. Malhame, and P.E. Caines. 2006. Large population stochastic dynamic games: Closed-loop Mckean-Vlasov systems and the Nash certainty equivalence principle. Communications in Information & Systems 6: 221–252.

    Article  MathSciNet  MATH  Google Scholar 

  109. Tembine, H., R. Tempone, and P. Vilanova. 2012. Mean field games for cognitive radio networks. In Proceedings of American Control Conference, 6388–6393.

    Google Scholar 

  110. Meriaux, F., V. Varma, and S. Lasaulce. 2012. Mean field energy games in wireless networks. In Proceedings of 46th Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 671–675.

    Google Scholar 

  111. Meriaux, F., and S. Lasaulce. 2011. Mean-field games and green power control. In Proceedings of 5th International Conference on Network Games, Control and Optimization (NetGCooP), 1–5.

    Google Scholar 

  112. Samarakoon, S., M. Bennis, W. Saad, et al. 2016. Ultra dense small cell networks: Turning density into energy efficiency. IEEE Journal on Selected Areas in Communication 34 (5): 1267–1280.

    Article  Google Scholar 

  113. Yang, C., J. Li, P. Semasinghe, et al. 2017. Distributed interference and energy-aware power control for ultra-dense D2D networks: A mean field game. IEEE Transactions on Wireless Communications 16 (2): 1205–1217.

    Article  Google Scholar 

  114. Zhong, Y., T.Q.S. Quek, and X. Ge. 2017. Heterogeneous cellular networks with spatio-temporal traffic: Delay analysis and scheduling. IEEE Journal on Selected Areas in Communications 35 (9): 1373–1386.

    Article  Google Scholar 

  115. Zhong, Y., M. Haenggi, F.C. Zheng, et al. 2017. Toward a tractable delay analysis in ultra-dense networks. IEEE Communication Magazine 55 (12): 103–109.

    Article  Google Scholar 

  116. Basar, T., G.J. Olsder, G. Clsder, et al. 1995. Dynamic noncooperative game theory, vol. 200. Philadelphia, PA, USA: SIAM.

    Google Scholar 

  117. Bellman, R. 1956. Dynamic programming and lagrange multipliers. Proceedings of the National Academy of Sciences 42 (10): 767.

    Article  MathSciNet  MATH  Google Scholar 

  118. Han, Z. 2012. Game theory in wireless and communication networks: Theory, models, and applications. UK: Cambridge University Press.

    MATH  Google Scholar 

  119. Soner, H. 1997. Controlled Markov processes, viscosity solutions and applications to mathematical finance. In Viscosity solutions and application, vol. 1660, 134–185. Lecture Notes in Mathematics.

    Google Scholar 

  120. Evans, L.C. 1998. Partial differential equations. American Mathematical Society.

    Google Scholar 

  121. Semasingh, P., and E. Hossain. 2016. Downlink power control in self-organizing dense small cells underlaying macrocells: A mean field game. IEEE Transactions on Mobile Computing 15 (2): 350–363.

    Article  Google Scholar 

  122. Haenggi, M., J.G. Andrews, F. Baccelli, et al. 2009. Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE Journal on Selected Areas in Communications 27 (7): 1029–1046.

    Article  Google Scholar 

  123. Al-Zahrani, A.Y., F.R. Yu, and M. Huang. 2013. A mean-field game approach for distributed interference and resource management in heterogeneous cellular networks. In 2013 IEEE Global Communication Conference (GLOBECOM), Atlanta, GA, 4964–4969.

    Google Scholar 

  124. Gueant, O., J.M. Lasry, P.-L. Lions. 2011. Mean field games and applications. In Paris-Princeton Lectures on Mathematical Finance, 205–266. New York, NY, USA: Springer.

    Chapter  Google Scholar 

  125. Schulte, J.M. 2010. Adjoint methods for Hamilton-Jacobi-Bellman equations. Diploma Thesis, University of Munster, Germany.

    Google Scholar 

  126. Ahmed, R. 2004. Numerical schemes applied to the burgers and Buckley-Leverett equations. Ph.D. dissertation, Department of Mathematics, University of Reading, England.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Publishing House of Electronics Industry, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ge, X., Zhang, W. (2019). Energy Efficiency of Cellular Networks. In: 5G Green Mobile Communication Networks. Springer, Singapore. https://doi.org/10.1007/978-981-13-6252-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6252-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6251-4

  • Online ISBN: 978-981-13-6252-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics