Skip to main content

Nanostructures and Nanomaterials for Lithium Metal Batteries

  • Chapter
  • First Online:
Nanostructures and Nanomaterials for Batteries
  • 1551 Accesses

Abstract

Lithium metal batteries consist of a high-capacity cathode (such as oxygen and sulfur) and a Li metal anode and can deliver extremely high theoretical energy densities. The Li metal batteries were proposed earlier than the Li-ion batteries, but the Li metal anode was considered unsafe and the cathodes were hardly reversible. To meet the ever-increasing demand for the high energy density in batteries, Li metal batteries have been recently revisited and gained great interest. The nanotechnology plays a critical role in improving the performance and safety of the Li metal batteries. This chapter introduces the nano engineering in Li metal batteries, including nanostructures and nanomaterials utilized in oxygen cathodes, sulfur cathodes, and Li metal anodes. Rationally designed nanostructures with micropores, mesopores, or macropores are essential to host, constrain, protect, and improve the electrodes per electrode material properties. The nanomaterials, such as porous carbon, carbon nanotubes, graphene, polymer nanofilms, and inorganic nanomaterials, all show different functions such as constructing 3D conductive networks, interface protection, catalysis, and so on. This chapter reviews the nanostructures and nanomaterials in promoting the Li metal batteries, as well as their drawbacks, to provide insights to the nanotechnology in boosting the development of high-energy-density Li metal batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Li–S battery:

Lithium-sulfur battery

Li-air battery:

Lithium-air battery

Li–O2 battery:

Lithium–oxygen battery

LISICON:

Lithium Super Ionic Conductor

IUPAC:

International Union of Pure and Applied Chemistry

ORR:

Oxygen reduction reaction

OER:

Oxygen evolution reaction

LiTFSI:

Bis(trifluoromethylsulfonyl)amine lithium salt

DOL:

1,3-dioxolane

DME:

Dimethoxymethane

TEGDME:

Tetraethylene glycol dimethyl ether

FEC:

Fluoroethylene carbonate

PAN:

Polyacrylonitrile

PMMA:

Poly(methyl methacrylate)

CNT:

Carbon nanotube

CNF:

Carbon nanofiber

CVD:

Chemical vapor deposition

AAO:

Anodic aluminum oxide

MWCNT:

Multiwall carbon nanotube

GO:

Graphene oxide

rGO:

Reduced graphene oxide

ALD:

Atomic layer deposition

MOF:

Metal-organic framework

SEI:

Solid electrolyte interphase

MAG:

Massive artificial graphite

SEM:

Scanning electron microscopy

PPA:

Polyphosphoric acid

PEDOT:

Poly(3,4-ethylenedioxythiophene)

PEG:

Polyethylene glycol

PDMS:

Poly(dimethylsiloxane)

PVdF-co-HFP:

Poly(vinylidene fluoride-co-hexafluoropropylene)

CPL:

Composite protective layer

References

  1. Abraham, K. M., & Jiang, Z. (1996). A polymer electrolyte-based rechargeable lithium/oxygen battery. Journal of the Electrochemical Society, 143, 1–5.

    Article  CAS  Google Scholar 

  2. Hasegawa, S., Imanishi, N., Zhang, T., et al. (2009). Study on lithium/air secondary batteries—Stability of NASICON-type lithium ion conducting glass-ceramics with water. Journal of Power Sources, 189, 371–377.

    Article  CAS  Google Scholar 

  3. Shao, Y., Ding, F., Xiao, J., et al. (2013). Making Li-air batteries rechargeable: Material challenges. Advanced Functional Materials, 23, 987–1004.

    Article  CAS  Google Scholar 

  4. Wang, J., Li, Y., & Sun, X. (2013). Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries. Nano Energy, 2, 443–467.

    Article  CAS  Google Scholar 

  5. Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z., et al. (2013). The carbon electrode in nonaqueous Li–O2 cells. Journal of the American Chemical Society, 135, 494–500.

    Article  CAS  Google Scholar 

  6. Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z., et al. (2013). A stable cathode for the aprotic Li–O2 battery. Nature Materials, 12, 1050–1056.

    Article  CAS  Google Scholar 

  7. Peng, Z., Freunberger, S. A., Chen, Y., et al. (2012). A reversible and higher-rate Li-O2 battery. Science, 337, 563–566.

    Article  CAS  Google Scholar 

  8. Yin, Y.-X., Xin, S., Guo, Y.-G., et al. (2013). Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angewandte Chemie International Edition, 52, 13186–13200.

    Article  CAS  Google Scholar 

  9. Evers, S., & Nazar, L. F. (2012). New approaches for high energy density lithium-sulfur battery cathodes. Accounts of Chemical Research, 46, 1135–1143.

    Article  CAS  Google Scholar 

  10. Ji, X., Lee, K., & Nazar, L. F. (2009). A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature Materials, 8, 500–506.

    Article  CAS  Google Scholar 

  11. Xin, S., Gu, L., Zhao, N.-H., et al. (2012). Smaller sulfur molecules promise better lithium-sulfur batteries. Journal of the American Chemical Society, 134, 18510–18513.

    Article  CAS  Google Scholar 

  12. Gao, J., Lowe, M. A., Kiya, Y., et al. (2011). Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: Electrochemical and in-situ X-ray absorption spectroscopic studies. The Journal of Physical Chemistry C, 115, 25132–25137.

    Article  CAS  Google Scholar 

  13. Li, Z., Jiang, Y., Yuan, L., et al. (2014). A highly ordered meso@ microporous carbon-supported sulfur@ smaller sulfur core–shell structured cathode for Li–S batteries. ACS Nano, 8, 9295–9303.

    Article  CAS  Google Scholar 

  14. Xin, S., Yin, Y. X., Wan, L. J., et al. (2013). Encapsulation of sulfur in a hollow porous carbon substrate for superior Li-S batteries with long lifespan. Particle & Particle Systems Characterization, 30, 321–325.

    Article  CAS  Google Scholar 

  15. Ye, H., Yin, Y.-X., Xin, S., et al. (2013). Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li–S batteries. Journal of Materials Chemistry A, 1, 6602–6608.

    Article  CAS  Google Scholar 

  16. Zheng, G., Yang, Y., Cha, J. J., et al. (2011). Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Letters, 11, 4462–4467.

    Article  CAS  Google Scholar 

  17. Lee, J. T., Zhao, Y., Thieme, S., et al. (2013). Sulfur-infiltrated micro- and mesoporous silicon carbide-derived carbon cathode for high-performance lithium sulfur batteries. Advanced Materials, 25, 4573–4579.

    Article  CAS  Google Scholar 

  18. Liang, C., Dudney, N. J., & Howe, J. Y. (2009). Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chemistry of Materials, 21, 4724–4730.

    Article  CAS  Google Scholar 

  19. He, G., Ji, X., & Nazar, L. (2011). High “C” rate Li-S cathodes: Sulfur imbibed bimodal porous carbons. Energy & Environmental Science, 4, 2878–2883.

    Article  CAS  Google Scholar 

  20. Rybarczyk, M. K., Peng, H.-J., Tang, C., et al. (2016). Porous carbon derived from rice husks as sustainable bioresources: Insights into the role of micro-/mesoporous hierarchy in hosting active species for lithium–sulphur batteries. Green Chemistry, 18, 5169–5179.

    Article  CAS  Google Scholar 

  21. Sun, Q., He, B., Zhang, X.-Q., et al. (2015). Engineering of hollow core-shell interlinked carbon spheres for highly stable lithium-sulfur batteries. ACS Nano, 9, 8504–8513.

    Article  CAS  Google Scholar 

  22. Zhang, B., Qin, X., Li, G. R., et al. (2010). Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy & Environmental Science, 3, 1531–1537.

    Article  CAS  Google Scholar 

  23. Wang, J., Chew, S. Y., Zhao, Z. W., et al. (2008). Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon, 46, 229–235.

    Article  CAS  Google Scholar 

  24. Schuster, J., He, G., Mandlmeier, B., et al. (2012). Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angewandte Chemie International Edition, 51, 3591–3595.

    Article  CAS  Google Scholar 

  25. Jayaprakash, N., Shen, J., Moganty, S. S., et al. (2011). Porous hollow Carbon@Sulfur composites for high-power lithium-sulfur batteries. Angewandte Chemie International Edition, 50, 5904–5908.

    Article  CAS  Google Scholar 

  26. Su, Y.-S., Fu, Y., & Manthiram, A. (2012). Self-weaving sulfur–carbon composite cathodes for high rate lithium–sulfur batteries. Physical Chemistry Chemical Physics, 14, 14495–14499.

    Article  CAS  Google Scholar 

  27. Guo, J., Xu, Y., & Wang, C. (2011). Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Letters, 11, 4288–4294.

    Article  CAS  Google Scholar 

  28. Ji, L., Rao, M., Aloni, S., et al. (2011). Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells. Energy & Environmental Science, 4, 5053–5059.

    Article  CAS  Google Scholar 

  29. He, G., Mandlmeier, B., Schuster, J., et al. (2014). Bimodal mesoporous carbon nanofibers with high porosity: Freestanding and embedded in membranes for lithium-sulfur batteries. Chemistry of Materials, 26, 3879–3886.

    Article  CAS  Google Scholar 

  30. Dörfler, S., Hagen, M., Althues, H., et al. (2012). High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium–sulfur batteries. Chemical Communications, 48, 4097–4099.

    Article  CAS  Google Scholar 

  31. Cheng, X.-B., Huang, J.-Q., Zhang, Q., et al. (2014). Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries. Nano Energy, 4, 65–72.

    Article  CAS  Google Scholar 

  32. Mkhoyan, K. A., Contryman, A. W., Silcox, J., et al. (2009). Atomic and electronic structure of graphene-oxide. Nano Letters, 9, 1058–1063.

    Article  CAS  Google Scholar 

  33. Wang, H., Yang, Y., Liang, Y., et al. (2011). Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Letters, 11, 2644–2647.

    Article  CAS  Google Scholar 

  34. Ji, L., Rao, M., Zheng, H., et al. (2011). Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. Journal of the American Chemical Society, 133, 18522–18525.

    Article  CAS  Google Scholar 

  35. Xu, H., Deng, Y., Shi, Z., et al. (2013). Graphene-encapsulated sulfur (GES) composites with a core–shell structure as superior cathode materials for lithium–sulfur batteries. Journal of Materials Chemistry A, 1, 15142–15149.

    Article  CAS  Google Scholar 

  36. Wang, J.-Z., Lu, L., Choucair, M., et al. (2011). Sulfur-graphene composite for rechargeable lithium batteries. Journal of Power Sources, 196, 7030–7034.

    Article  CAS  Google Scholar 

  37. Wei, Z.-K., Chen, J.-J., Qin, L.-L., et al. (2012). Two-step hydrothermal method for synthesis of sulfur-graphene hybrid and its application in lithium sulfur batteries. Journal of the Electrochemical Society, 159, A1236–A1239.

    Article  CAS  Google Scholar 

  38. Xu, J., Shui, J., Wang, J., et al. (2014). Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries. ACS Nano, 8, 10920–10930.

    Article  CAS  Google Scholar 

  39. Zhou, G., Yin, L.-C., Wang, D.-W., et al. (2013). Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. ACS Nano, 7, 5367–5375.

    Article  CAS  Google Scholar 

  40. Zu, C., & Manthiram, A. (2013). Hydroxylated graphene-sulfur nanocomposites for high-rate lithium-sulfur batteries. Advanced Energy Materials, 3, 1008–1012.

    Article  CAS  Google Scholar 

  41. Hou, Y., Li, J., Gao, X., et al. (2016). 3D dual-confined sulfur encapsulated in porous carbon nanosheets and wrapped with graphene aerogels as a cathode for advanced lithium sulfur batteries. Nanoscale, 8, 8228–8235.

    Article  CAS  Google Scholar 

  42. Li, H., Yang, X., Wang, X., et al. (2015). Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode. Nano Energy, 12, 468–475.

    Article  CAS  Google Scholar 

  43. Zhang, C., Liu, D.-H., Lv, W., et al. (2015). A high-density graphene–sulfur assembly: A promising cathode for compact Li–S batteries. Nanoscale, 7, 5592–5597.

    Article  CAS  Google Scholar 

  44. Lu, S., Cheng, Y., Wu, X., et al. (2013). Significantly improved long-cycle stability in high-rate Li–S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers. Nano Letters, 13, 2485–2489.

    Article  CAS  Google Scholar 

  45. Xi, K., Kidambi, P. R., Chen, R., et al. (2014). Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries. Nanoscale, 6, 5746–5753.

    Article  CAS  Google Scholar 

  46. Zhou, G., Li, L., Ma, C., et al. (2015). A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries. Nano Energy, 11, 356–365.

    Article  CAS  Google Scholar 

  47. Deng, W., Zhou, X., Fang, Q., et al. (2016). Graphene/sulfur composites with a foam-like porous architecture and controllable pore size for high performance lithium-sulfur batteries. ChemNanoMat, 2, 952–958.

    Article  CAS  Google Scholar 

  48. Zhang, K., Xie, K., Yuan, K., et al. (2017). Enabling effective polysulfide trapping and high sulfur loading via a pyrrole modified graphene foam host for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 5, 7309–7315.

    Article  CAS  Google Scholar 

  49. Li, N., Zheng, M., Lu, H., et al. (2012). High-rate lithium–sulfur batteries promoted by reduced graphene oxide coating. Chemical Communications, 48, 4106–4108.

    Article  CAS  Google Scholar 

  50. Moon, J., Park, J., Jeon, C., et al. (2015). An electrochemical approach to graphene oxide coated sulfur for long cycle life. Nanoscale, 7, 13249–13255.

    Article  CAS  Google Scholar 

  51. Ding, B., Yuan, C., Shen, L., et al. (2013). Chemically tailoring the nanostructure of graphene nanosheets to confine sulfur for high-performance lithium-sulfur batteries. Journal of Materials Chemistry A, 1, 1096–1101.

    Article  CAS  Google Scholar 

  52. Zhao, M.-Q., Liu, X.-F., Zhang, Q., et al. (2012). Graphene/single-walled carbon nanotube hybrids: One-step catalytic growth and applications for high-rate Li–S batteries. ACS Nano, 6, 10759–10769.

    Article  CAS  Google Scholar 

  53. Du, W.-C., Yin, Y.-X., Zeng, X.-X., et al. (2016). Wet chemistry synthesis of multidimensional nanocarbon-sulfur hybrid materials with ultrahigh sulfur loading for lithium-sulfur batteries. ACS Applied Materials & Interfaces, 8, 3584–3590.

    Article  CAS  Google Scholar 

  54. Song, J., Gordin, M. L., Xu, T., et al. (2015). Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. Angewandte Chemie International Edition, 54, 4325–4329.

    Article  CAS  Google Scholar 

  55. Yang, C.-P., Yin, Y.-X., Ye, H., et al. (2014). Insight into the effect of boron doping on sulfur/carbon cathode in lithium–sulfur batteries. ACS Applied Materials & Interfaces, 6, 8789–8795.

    Article  CAS  Google Scholar 

  56. Balach, J., Singh, H. K., Gomoll, S., et al. (2016). Synergistically enhanced polysulfide chemisorption using a flexible hybrid separator with N and S dual-doped mesoporous carbon coating for advanced lithium-sulfur batteries. ACS Applied Materials & Interfaces, 8, 14586–14595.

    Article  CAS  Google Scholar 

  57. Evers, S., Yim, T., & Nazar, L. F. (2012). Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li–S battery. The Journal of Physical Chemistry C, 116, 19653–19658.

    Article  CAS  Google Scholar 

  58. Wei Seh, Z., Li, W., Cha, J. J., et al. (2013). Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nature Communications, 4, 1331.

    Article  CAS  Google Scholar 

  59. Pang, Q., Kundu, D., Cuisinier, M., et al. (2014). Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nature Communications, 5, 4759.

    Article  CAS  Google Scholar 

  60. Tao, X., Wang, J., Ying, Z., et al. (2014). Strong sulfur binding with conducting magnéli-phase TinO2n–1 nanomaterials for improving lithium-sulfur batteries. Nano Letters, 14, 5288–5294.

    Article  CAS  Google Scholar 

  61. Ji, X., Evers, S., Black, R., et al. (2011). Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nature Communications, 2, 325.

    Article  CAS  Google Scholar 

  62. Han, X., Xu, Y., Chen, X., et al. (2013). Reactivation of dissolved polysulfides in Li–S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth. Nano Energy, 2, 1197–1206.

    Article  CAS  Google Scholar 

  63. Zhao, T., Ye, Y., Peng, X., et al. (2016). Advanced lithium-sulfur batteries enabled by a bio-inspired polysulfide adsorptive brush. Advanced Functional Materials, 26, 8418–8426.

    Article  CAS  Google Scholar 

  64. He, J., Luo, L., Chen, Y., et al. (2017). Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries. Advanced Materials, 29, 1702707.

    Article  CAS  Google Scholar 

  65. Liang, X., Kwok, C. Y., Lodi-Marzano, F., et al. (2016). Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: The “Goldilocks” principle. Advanced Energy Materials, 6, 1501636.

    Article  CAS  Google Scholar 

  66. Kim, H., Lee, J. T., Lee, D.-C., et al. (2013). Plasma-enhanced atomic layer deposition of ultrathin oxide coatings for stabilized lithium-sulfur batteries. Advanced Energy Materials, 3, 1308–1315.

    Article  CAS  Google Scholar 

  67. Liu, X., Huang, J.-Q., Zhang, Q., et al. (2017). Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Advanced Materials, 29, 1601759.

    Article  CAS  Google Scholar 

  68. Seh, Z. W., Yu, J. H., Li, W., et al. (2014). Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nature Communications, 5, 5017.

    Article  CAS  Google Scholar 

  69. Ma, L., Wei, S., Zhuang, H. L., et al. (2015). Hybrid cathode architectures for lithium batteries based on TiS2 and sulfur. Journal of Materials Chemistry A, 3, 19857–19866.

    Article  CAS  Google Scholar 

  70. Xu, H., & Manthiram, A. (2017). Hollow cobalt sulfide polyhedra-enabled long-life, high areal-capacity lithium-sulfur batteries. Nano Energy, 33, 124–129.

    Article  CAS  Google Scholar 

  71. Pang, Q., Kundu, D., & Nazar, L. F. (2016). A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries. Materials Horizons, 3, 130–136.

    Article  CAS  Google Scholar 

  72. Yuan, Z., Peng, H.-J., Hou, T.-Z., et al. (2016). Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Letters, 16, 519–527.

    Article  CAS  Google Scholar 

  73. Zhang, S. S., & Tran, D. T. (2016). Pyrite FeS2 as an efficient adsorbent of lithium polysulphide for improved lithium–sulphur batteries. Journal of Materials Chemistry A, 4, 4371–4374.

    Article  CAS  Google Scholar 

  74. Tang, W., Chen, Z., Tian, B., et al. (2017). In situ observation and electrochemical study of encapsulated sulfur nanoparticles by MoS2 flakes. Journal of the American Chemical Society, 139, 10133–10141.

    Article  CAS  Google Scholar 

  75. Liang, X., Garsuch, A., & Nazar, L. F. (2015). Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angewandte Chemie International Edition, 54, 3907–3911.

    Article  CAS  Google Scholar 

  76. Cui, Z., Zu, C., Zhou, W., et al. (2016). Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Advanced Materials, 28, 6926–6931.

    Article  CAS  Google Scholar 

  77. Zhou, J., Li, R., Fan, X., et al. (2014). Rational design of a metal–organic framework host for sulfur storage in fast, long-cycle Li–S batteries. Energy & Environmental Science, 7, 2715–2724.

    Article  CAS  Google Scholar 

  78. Li, Z., Zhang, J., & Lou, X. W. (2015). Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angewandte Chemie International Edition, 54, 12886–12890.

    Article  CAS  Google Scholar 

  79. Chung, S.-H., & Manthiram, A. (2013). Nano-cellular carbon current collectors with stable cyclability for Li–S batteries. Journal of Materials Chemistry A, 1, 9590–9596.

    Article  CAS  Google Scholar 

  80. Zhang, S. S., & Tran, D. T. (2012). A proof-of-concept lithium/sulfur liquid battery with exceptionally high capacity density. Journal of Power Sources, 211, 169–172.

    Article  CAS  Google Scholar 

  81. Fu, Y., Su, Y.-S., & Manthiram, A. (2013). Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes. Angewandte Chemie International Edition, 52, 6930–6935.

    Article  CAS  Google Scholar 

  82. Barchasz, C., Mesguich, F., Dijon, J., et al. (2012). Novel positive electrode architecture for rechargeable lithium/sulfur batteries. Journal of Power Sources, 211, 19–26.

    Article  CAS  Google Scholar 

  83. Chung, S.-H., & Manthiram, A. (2014). Carbonized eggshell membrane as a natural polysulfide reservoir for highly reversible Li-S batteries. Advanced Materials, 26, 1360–1365.

    Article  CAS  Google Scholar 

  84. Huang, X., Sun, B., Li, K., et al. (2013). Mesoporous graphene paper immobilised sulfur as a flexible electrode for lithium–sulfur batteries. Journal of Materials Chemistry A, 1, 13484–13489.

    Article  CAS  Google Scholar 

  85. Sun, L., Kong, W., Jiang, Y., et al. (2015). Super-aligned carbon nanotube/graphene hybrid materials as a framework for sulfur cathodes in high performance lithium sulfur batteries. Journal of Materials Chemistry A, 3, 5305–5312.

    Article  CAS  Google Scholar 

  86. Chen, Y., Lu, S., Wu, X., et al. (2015). Flexible carbon nanotube–graphene/sulfur composite film: Free-standing cathode for high-performance lithium/sulfur batteries. The Journal of Physical Chemistry C, 119, 10288–10294.

    Article  CAS  Google Scholar 

  87. Zhu, L., Peng, H.-J., Liang, J., et al. (2015). Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium–sulfur batteries. Nano Energy, 11, 746–755.

    Article  CAS  Google Scholar 

  88. Su, Y.-S., & Manthiram, A. (2012). Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nature Communications, 3, 1166.

    Article  Google Scholar 

  89. Su, Y.-S., Fu, Y., Cochell, T., et al. (2013). A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nature Communications, 4, 2985.

    Article  CAS  Google Scholar 

  90. Su, J., Wu, X.-L., Yang, C.-P., et al. (2012). Self-assembled LiFePO4/C nano/microspheres by using phytic acid as phosphorus source. The Journal of Physical Chemistry C, 116, 5019–5024.

    Article  CAS  Google Scholar 

  91. Zu, C., Su, Y.-S., Fu, Y., et al. (2013). Improved lithium-sulfur cells with a treated carbon paper interlayer. Physical Chemistry Chemical Physics, 15, 2291–2297.

    Article  CAS  Google Scholar 

  92. Manthiram, A., Fu, Y., Chung, S.-H., et al. (2014). Rechargeable lithium-sulfur batteries. Chemical Reviews, 114, 11751–11787.

    Article  CAS  Google Scholar 

  93. Zhou, G., Pei, S., Li, L., et al. (2014). A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Advanced Materials, 26, 625–631.

    Article  CAS  Google Scholar 

  94. Bai, S., Liu, X., Zhu, K., et al. (2016). Metal–organic framework-based separator for lithium–sulfur batteries. Nature Energy, 1, 16094.

    Article  CAS  Google Scholar 

  95. Xu, Z.-L., Kim, J.-K., & Kang, K. (2018). Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today, 19, 84–107.

    Article  CAS  Google Scholar 

  96. Yang, C. P., Yin, Y. X., Zhang, S. F., et al. (2015). Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nature Communications, 6, 8058.

    Article  CAS  Google Scholar 

  97. Yun, Q., He, Y.-B., Lv, W., et al. (2016). Chemical dealloying derived 3D porous current collector for Li metal anodes. Advanced Materials, 28, 6932–6939.

    Article  CAS  Google Scholar 

  98. Lu, L.-L., Ge, J., Yang, J.-N., et al. (2016). Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Letters, 16, 4431–4437.

    Article  CAS  Google Scholar 

  99. Ke, X., Cheng, Y., Liu, J., et al. (2018). Hierarchically bicontinuous porous copper as advanced 3D skeleton for stable lithium storage. ACS Applied Materials & Interfaces, 10, 13552–13561.

    Article  CAS  Google Scholar 

  100. Wang, S.-H., Yin, Y.-X., Zuo, T.-T., et al. (2017). Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Advanced Materials, 29, 1703729.

    Article  CAS  Google Scholar 

  101. Sun, Y., Zheng, G., Seh, Zhi W., et al. (2016). Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries. Chem, 1, 287–297.

    Article  CAS  Google Scholar 

  102. Mukherjee, R., Thomas, A. V., Datta, D., et al. (2014). Defect-induced plating of lithium metal within porous graphene networks. Nature Communications, 5, 3710.

    Article  CAS  Google Scholar 

  103. Cheng, X.-B., Peng, H.-J., Huang, J.-Q., et al. (2015). Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium-sulfur batteries. ACS Nano, 9, 6373–6382.

    Article  CAS  Google Scholar 

  104. Zhang, R., Cheng, X.-B., Zhao, C.-Z., et al. (2016). Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Advanced Materials, 28, 2155–2162.

    Article  CAS  Google Scholar 

  105. Xie, K., Wei, W., Yuan, K., et al. (2016). Toward dendrite-free lithium deposition via structural and interfacial synergistic effects of 3D Graphene@Ni scaffold. ACS Applied Materials & Interfaces, 8, 26091–26097.

    Article  CAS  Google Scholar 

  106. Liu, L., Yin, Y.-X., Li, J.-Y., et al. (2017). Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes. Joule, 1, 563–575.

    Article  CAS  Google Scholar 

  107. Zuo, T. T., Wu, X. W., Yang, C. P., et al. (2017). Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Advanced Materials, 29, 1700389.

    Article  CAS  Google Scholar 

  108. Jin, C., Sheng, O., Lu, Y., et al. (2018). Metal oxide nanoparticles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15 mA cm−2. Nano Energy, 45, 203–209.

    Article  CAS  Google Scholar 

  109. Cheng, X.-B., Hou, T.-Z., Zhang, R., et al. (2016). Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Advanced Materials, 28, 2888–2895.

    Article  CAS  Google Scholar 

  110. Bai, P., Li, J., Brushett, F. R., et al. (2016). Transition of lithium growth mechanisms in liquid electrolytes. Energy & Environmental Science, 9, 3221–3229.

    Article  CAS  Google Scholar 

  111. Zuo, T.-T., Yin, Y.-X., Wang, S.-H., et al. (2018). Trapping lithium into hollow silica microspheres with a carbon nanotube core for dendrite-free lithium metal anodes. Nano Letters, 18, 297–301.

    Article  CAS  Google Scholar 

  112. Yan, K., Lu, Z., Lee, H.-W., et al. (2016). Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nature Energy, 1, 16010.

    Article  CAS  Google Scholar 

  113. Deng, W., Zhu, W., Zhou, X., et al. (2018). Highly reversible Li plating confined in three-dimensional interconnected microchannels toward high-rate and stable metallic lithium anodes. ACS Applied Materials & Interfaces, 10, 20387–20395.

    Article  CAS  Google Scholar 

  114. Jin, C., Sheng, O., Luo, J., et al. (2017). 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy, 37, 177–186.

    Article  CAS  Google Scholar 

  115. Zhang, Y., Luo, W., Wang, C., et al. (2017). High capacity, low tortuosity and channel-guided lithium metal anode. Proceedings of the National Academy of Sciences, 114, 3584–3589.

    Article  CAS  Google Scholar 

  116. Zhang, Y., Wang, C., Pastel, G., et al. (2018). 3D wettable framework for dendrite-free alkali metal anodes. Advanced Energy Materials, 8, 1800635.

    Article  CAS  Google Scholar 

  117. Zhang, R., Chen, X.-R., Chen, X., et al. (2017). Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angewandte Chemie International Edition, 56, 7764–7768.

    Article  CAS  Google Scholar 

  118. Liang, Z., Lin, D., Zhao, J., et al. (2016). Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proceedings of the National Academy of Sciences, 113, 2862–2867.

    Article  CAS  Google Scholar 

  119. Liu, Y., Lin, D., Liang, Z., et al. (2016). Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nature Communications, 7, 10992.

    Article  CAS  Google Scholar 

  120. Lin, D., Liu, Y., Liang, Z., et al. (2016). Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nature Nanotechnology, 11, 626–632.

    Article  CAS  Google Scholar 

  121. Liu, W., Lin, D., Pei, A., et al. (2016). Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. Journal of the American Chemical Society, 138, 15443–15450.

    Article  CAS  Google Scholar 

  122. Lu, D., Shao, Y., Lozano, T., et al. (2015). Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Advanced Energy Materials, 5, 1400993.

    Article  CAS  Google Scholar 

  123. Wood, K. N., Kazyak, E., Chadwick, A. F., et al. (2016). Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Central Science, 2, 790–801.

    Article  CAS  Google Scholar 

  124. Kim, H., Jeong, G., Kim, Y.-U., et al. (2013). Metallic anodes for next generation secondary batteries. Chemical Society Reviews, 42, 9011–9034.

    Article  CAS  Google Scholar 

  125. Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews, 104, 4303–4418.

    Article  CAS  Google Scholar 

  126. Xu, D., Wang, Z. L., Xu, J. J., et al. (2012). Novel DMSO-based electrolyte for high performance rechargeable Li-O2 batteries. Chemical Communications, 48, 6948–6950.

    Article  CAS  Google Scholar 

  127. Johnson, L., Li, C., Liu, Z., et al. (2014). The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nature Chemistry, 6, 1091–1099.

    Article  CAS  Google Scholar 

  128. MacFarlane, D. R., Forsyth, M., Howlett, P. C., et al. (2007). Ionic liquids in electrochemical devices and processes: Managing interfacial electrochemistry. Accounts of Chemical Research, 40, 1165–1173.

    Article  CAS  Google Scholar 

  129. Armand, M., Endres, F., MacFarlane, D. R., et al. (2009). Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials, 8, 621–629.

    Article  CAS  Google Scholar 

  130. Lu, Y., Das, S. K., Moganty, S. S., et al. (2012). Ionic liquid-nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries. Advanced Materials, 24, 4430–4435.

    Article  CAS  Google Scholar 

  131. Hu, J. J., Long, G. K., Liu, S., et al. (2014). A LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for a Li-S battery. Chemical Communications, 50, 14647–14650.

    Article  CAS  Google Scholar 

  132. Miao, R., Yang, J., Feng, X., et al. (2014). Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. Journal of Power Sources, 271, 291–297.

    Article  CAS  Google Scholar 

  133. Aurbach, D., & Zaban, A. (1993). Impedance spectroscopy of lithium electrodes: Part 1. General behavior in propylene carbonate solutions and the correlation to surface chemistry and cycling efficiency. Journal of Electroanalytical Chemistry, 348, 155–179.

    Article  CAS  Google Scholar 

  134. Qian, J., Henderson, W. A., Xu, W., et al. (2015). High rate and stable cycling of lithium metal anode. Nature Communications, 6, 6362.

    Article  CAS  Google Scholar 

  135. Suo, L., Hu, Y.-S. S., Li, H., et al. (2013). A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nature Communications, 4, 1481.

    Article  CAS  Google Scholar 

  136. Xiong, S., Xie, K., Diao, Y., et al. (2014). Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries. Journal of Power Sources, 246, 840–845.

    Article  CAS  Google Scholar 

  137. Li, W., Yao, H., Yan, K., et al. (2015). The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nature Communications, 6, 7436.

    Article  CAS  Google Scholar 

  138. Yan, C., Cheng, X.-B., Zhao, C.-Z., et al. (2016). Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode. Journal of Power Sources, 327, 212–220.

    Article  CAS  Google Scholar 

  139. Ding, F., Xu, W., Graff, G. L., et al. (2013). Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. Journal of the American Chemical Society, 135, 4450–4456.

    Article  CAS  Google Scholar 

  140. Wu, F., Qian, J., Chen, R., et al. (2014). An effective approach to protect lithium anode and improve cycle performance for Li-S batteries. ACS Applied Materials & Interfaces, 6, 15542–15549.

    Article  CAS  Google Scholar 

  141. Jia, W., Fan, C., Wang, L., et al. (2016). Extremely accessible potassium nitrate (KNO3) as the highly efficient electrolyte additive in lithium battery. ACS Applied Materials & Interfaces, 8, 15399–15405.

    Article  CAS  Google Scholar 

  142. Zhang, S. S. (2012). Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochimica Acta, 70, 344–348.

    Article  CAS  Google Scholar 

  143. Zhao, C.-Z., Cheng, X.-B., Zhang, R., et al. (2016). Li2S5-based ternary-salt electrolyte for robust lithium metal anode. Energy Storage Materials, 3, 77–84.

    Article  Google Scholar 

  144. Liu, Q. C., Xu, J. J., Yuan, S., et al. (2015). Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Advanced Materials, 27, 5241–5247.

    Article  CAS  Google Scholar 

  145. Cheng, X.-B., Yan, C., Chen, X., et al. (2017). Implantable solid electrolyte interphase in lithium-metal batteries. Chem, 2, 258–270.

    Article  CAS  Google Scholar 

  146. Li, N. W., Yin, Y. X., Yang, C. P., et al. (2016). An artificial solid electrolyte interphase layer for stable lithium metal anodes. Advanced Materials, 28, 1853–1858.

    Article  CAS  Google Scholar 

  147. Monroe, C., & Newman, J. (2005). The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. Journal of the Electrochemical Society, 152, A396–A404.

    Article  CAS  Google Scholar 

  148. Stone, G. M., Mullin, S. A., Teran, A. A., et al. (2012). Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. Journal of the Electrochemical Society, 159, A222–A227.

    Article  CAS  Google Scholar 

  149. Basile, A., Bhatt, A. I., & O’Mullane, A. P. (2016). Stabilizing lithium metal using ionic liquids for long-lived batteries. Nature Communications, 7, 11794.

    Article  CAS  Google Scholar 

  150. Umeda, G. A., Menke, E., Richard, M., et al. (2011). Protection of lithium metal surfaces using tetraethoxysilane. Journal of Materials Chemistry, 21, 1593–1599.

    Article  CAS  Google Scholar 

  151. Wu, M., Wen, Z., Liu, Y., et al. (2011). Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries. Journal of Power Sources, 196, 8091–8097.

    Article  CAS  Google Scholar 

  152. Ma, G., Wen, Z., Wu, M., et al. (2014). A lithium anode protection guided highly-stable lithium-sulfur battery. Chemical Communications, 50, 14209–14212.

    Article  CAS  Google Scholar 

  153. Wu, M., Wen, Z., Jin, J., et al. (2016). Trimethylsilyl chloride-modified Li anode for enhanced performance of Li–S cells. ACS Applied Materials & Interfaces, 8, 16386–16395.

    Article  CAS  Google Scholar 

  154. Kozen, A. C., Lin, C. F., Pearse, A. J., et al. (2015). Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano, 9, 5884–5892.

    Article  CAS  Google Scholar 

  155. Kazyak, E., Wood, K. N., & Dasgupta, N. P. (2015). Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments. Chemistry of Materials, 27, 6457–6462.

    Article  CAS  Google Scholar 

  156. Cao, Y., Meng, X., & Elam, J. W. (2016). Atomic layer deposition of LixAlyS solid-state electrolytes for stabilizing lithium-metal anodes. ChemElectroChem, 3, 858–863.

    Article  CAS  Google Scholar 

  157. Chen, L., Chen, K.-S., Chen, X., et al. (2018). Novel ALD chemistry enabled low-temperature synthesis of lithium fluoride coatings for durable lithium anodes. ACS Applied Materials & Interfaces, 10, 26972–26981.

    Article  CAS  Google Scholar 

  158. Wang, L., Wang, Q., Jia, W., et al. (2017). Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries. Journal of Power Sources, 342, 175–182.

    Article  CAS  Google Scholar 

  159. Zheng, G., Lee, S., Liang, Z., et al. (2014). Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nature Nanotechnology, 9, 618–623.

    Article  CAS  Google Scholar 

  160. Yan, K., Lee, H.-W., Gao, T., et al. (2014). Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Letters, 14, 6016–6022.

    Article  CAS  Google Scholar 

  161. Tian, H., Seh, Z. W., Yan, K., et al. (2017). Theoretical investigation of 2D layered materials as protective films for lithium and sodium metal anodes. Advanced Energy Materials, 7, 1602528.

    Article  CAS  Google Scholar 

  162. Zheng, G., Wang, C., Pei, A., et al. (2016). High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Letters, 1, 1247–1255.

    Article  CAS  Google Scholar 

  163. Liang, Z., Zheng, G., Liu, C., et al. (2015). Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Letters, 15, 2910–2916.

    Article  CAS  Google Scholar 

  164. Wang, Y., He, P., & Zhou, H. (2011). A lithium–air capacitor–battery based on a hybrid electrolyte. Energy & Environmental Science, 4, 4994–4999.

    Article  CAS  Google Scholar 

  165. Wang, X., Hou, Y., Zhu, Y., et al. (2013). An aqueous rechargeable lithium battery using coated Li metal as anode. Scientific Reports, 3, 1401.

    Article  CAS  Google Scholar 

  166. Lee, H., Lee, D. J., Kim, Y.-J., et al. (2015). A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. Journal of Power Sources, 284, 103–108.

    Article  CAS  Google Scholar 

  167. Liu, Y., Lin, D., Yuen, P. Y., et al. (2017). An artificial solid electrolyte interphase with high Li-Ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Advanced Materials, 29, 1605531.

    Article  CAS  Google Scholar 

  168. Yang, C., Liu, B., Jiang, F., et al. (2017). Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode. Nano Research, 10, 4256–4265.

    Article  CAS  Google Scholar 

  169. Choi, J., & Aurbach, D. (2016). Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials, 1, 16013.

    Article  CAS  Google Scholar 

  170. Busche, M., Adelhelm, P., Sommer, H., et al. (2014). Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates. Journal of Power Sources, 259, 289–299.

    Article  CAS  Google Scholar 

  171. Zhu, B., Jin, Y., Hu, X., et al. (2016). Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Advanced Materials, 29, 1603755.

    Article  CAS  Google Scholar 

  172. Lim, H.-D., Park, K.-Y., Song, H., et al. (2013). Enhanced power and rechargeability of a Li−O2 battery based on a hierarchical-fibril CNT electrode. Advanced Materials, 25, 1348–1352.

    Article  CAS  Google Scholar 

  173. Mitchell, R. R., Gallant, B. M., Thompson, C. V., et al. (2011). All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries. Energy & Environmental Science, 4, 2952–2958.

    Article  CAS  Google Scholar 

  174. Sun, B., Wang, B., Su, D., et al. (2012). Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance. Carbon, 50, 727–733.

    Article  CAS  Google Scholar 

  175. Xiao, J., Mei, D., Li, X., et al. (2011). Hierarchically porous graphene as a lithium-air battery electrode. Nano Letters, 11, 5071–5078.

    Article  CAS  Google Scholar 

  176. Guo, Z., Zhou, D., Dong, X., et al. (2013). Ordered hierarchical mesoporous/macroporous carbon: A high-performance catalyst for rechargeable Li–O2 batteries. Advanced Materials, 25, 5668–5672.

    Article  CAS  Google Scholar 

  177. Zhao, G., Zhang, L., Lv, J., et al. (2016). A graphitic foam framework with hierarchical pore structure as self-supported electrodes of Li–O2 batteries and Li ion batteries. Journal of Materials Chemistry A, 4, 1399–1407.

    Article  CAS  Google Scholar 

  178. Shen, Y., Sun, D., Yu, L., et al. (2013). A high-capacity lithium–air battery with Pd modified carbon nanotube sponge cathode working in regular air. Carbon, 62, 288–295.

    Article  CAS  Google Scholar 

  179. Shui, J., Du, F., Xue, C., et al. (2014). Vertically aligned N-doped coral-like carbon fiber arrays as efficient air electrodes for high-performance nonaqueous Li–O2 batteries. ACS Nano, 8, 3015–3022.

    Article  CAS  Google Scholar 

  180. Han, J., Guo, X., Ito, Y., et al. (2016). Effect of chemical doping on cathodic performance of bicontinuous nanoporous graphene for Li-O2 batteries. Advanced Energy Materials, 6, 1501870.

    Article  CAS  Google Scholar 

  181. Zhao, C., Yu, C., Liu, S., et al. (2015). 3D porous N-doped graphene frameworks made of interconnected nanocages for ultrahigh-rate and long-life Li–O2 batteries. Advanced Functional Materials, 25, 6913–6920.

    Article  CAS  Google Scholar 

  182. Li, Y., Wang, J., Li, X., et al. (2011). Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries. Electrochemistry Communications, 13, 668–672.

    Article  CAS  Google Scholar 

  183. Ding, N., Chien, S. W., Hor, T. S. A., et al. (2014). Influence of carbon pore size on the discharge capacity of Li–O2 batteries. Journal of Materials Chemistry A, 2, 12433–12441.

    Article  CAS  Google Scholar 

  184. Su, D., Dou, S., & Wang, G. (2015). Gold nanocrystals with variable index facets as highly effective cathode catalysts for lithium–oxygen batteries. NPG Asia Materials, 7, e155.

    Article  CAS  Google Scholar 

  185. Lu, Y.-C., Xu, Z., Gasteiger, H. A., et al. (2010). Platinum−gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium−air batteries. Journal of the American Chemical Society, 132, 12170–12171.

    Article  CAS  Google Scholar 

  186. Luo, W.-B., Gao, X.-W., Chou, S.-L., et al. (2015). Porous AgPd–Pd composite nanotubes as highly efficient electrocatalysts for lithium-oxygen batteries. Advanced Materials, 27, 6862–6869.

    Article  CAS  Google Scholar 

  187. Liao, K., Wang, X., Sun, Y., et al. (2015). An oxygen cathode with stable full discharge–charge capability based on 2D conducting oxide. Energy & Environmental Science, 8, 1992–1997.

    Article  CAS  Google Scholar 

  188. Tong, S., Zheng, M., Lu, Y., et al. (2015). Mesoporous NiO with a single-crystalline structure utilized as a noble metal-free catalyst for non-aqueous Li–O2 batteries. Journal of Materials Chemistry A, 3, 16177–16182.

    Article  CAS  Google Scholar 

  189. Hu, X., Cheng, F., Han, X., et al. (2015). Oxygen bubble-templated hierarchical porous ε-MnO2 as a superior catalyst for rechargeable Li–O2 batteries. Small (Weinheim an der Bergstrasse, Germany), 11, 809–813.

    Article  CAS  Google Scholar 

  190. Wu, F., Zhang, X., Zhao, T., et al. (2015). Hierarchical mesoporous/macroporous Co3O4 ultrathin nanosheets as free-standing catalysts for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 3, 17620–17626.

    Article  CAS  Google Scholar 

  191. Zhang, Z., Zhou, G., Chen, W., et al. (2014). Facile synthesis of Fe2O3 nanoflakes and their electrochemical properties for Li-air batteries. ECS Electrochemistry Letters, 3, A8–A10.

    Article  CAS  Google Scholar 

  192. Mohamed, S. G., Tsai, Y.-Q., Chen, C.-J., et al. (2015). Ternary spinel MCo2O4 (M = Mn, Fe, Ni, and Zn) porous nanorods as bifunctional cathode materials for lithium–O2 batteries. ACS Applied Materials & Interfaces, 7, 12038–12046.

    Article  CAS  Google Scholar 

  193. Zhang, J., Zhao, Y., Zhao, X., et al. (2014). Porous perovskite LaNiO3 nanocubes as cathode catalysts for Li-O2 batteries with low charge potential. Scientific reports, 4, 6005.

    Article  CAS  Google Scholar 

  194. Liu, L., Wang, J., Hou, Y., et al. (2016). Self-assembled 3D foam-like NiCo2O4 as efficient catalyst for lithium oxygen batteries. Small (Weinheim an der Bergstrasse, Germany), 12, 602–611.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guo Guo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, CP., Guo, YG. (2019). Nanostructures and Nanomaterials for Lithium Metal Batteries. In: Nanostructures and Nanomaterials for Batteries. Springer, Singapore. https://doi.org/10.1007/978-981-13-6233-0_4

Download citation

Publish with us

Policies and ethics