Skip to main content

Part of the book series: Unmanned System Technologies ((UST))

  • 616 Accesses

Abstract

The knowledge of road terrain-type vehicles drive through plays a crucial role in vehicle driving safety. It also provides important information for the driving manoeuvre.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ishigami G, Kewlani G, Iagnemma K (2010) Statistical mobility prediction for planetary surface exploration rovers in uncertain terrain. In: IEEE international conference on robotics and automation (ICRA), Anchorage, US, 3–7 May 2010, pp 588–593

    Google Scholar 

  2. Setterfield TP, Ellery A (2012) Terrain response estimation using an instrumented rocker-bogie mobility system. IEEE Trans Rob 29(1):172–188

    Article  Google Scholar 

  3. Gingras D, Lamarche T, Bedwani J, Dupuis E (2010) Rough terrain reconstruction for rover motion planning. In: Canadian conference on computer and robot vision (CRV), Ottawa, Canada, 31 May–2 June 2010, pp 191–198

    Google Scholar 

  4. Xu H, Zhang Z, Wu Y (2010) Contact angle estimation based on kinematics modeling analyses for rover with caster and camber. In: IEEE international conference on robotics and biomimetics (ROBIO), Tianjin, China, 14–18 Dec 2010, pp 137–142

    Google Scholar 

  5. Iagnemma K (2002) On-line terrain parameter estimation for planetary rovers. In: IEEE international conference on robotics and automation, Washington DC, US, 11–15 May 2002, vol 3, pp 3142–3147

    Google Scholar 

  6. Iagnemma K, Kang S, Shibly H, Dubowsky S (2004) Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers. IEEE Trans Robot 20(5):921–927 (Leuven, Belgium)

    Google Scholar 

  7. Jitpakdee R, Thonburi B, Maneewarn T (2008) Neural networks terrain classification using inertial measurement unit for an autonomous vehicle. In: SICE annual conference, Tokyo, Japan, 20–22 Aug 2008, pp 554–558

    Google Scholar 

  8. Gonthier Y, Papadopoulos E (1998) On the development of a real-time simulator for an electro-hydraulic forestry machine. In: IEEE international conference on robotics and automation, 16–20 May 1998, vol 1, pp 127–132

    Google Scholar 

  9. González A, Eugene JO, Li Y, Cashell K (2008) The use of vehicle acceleration measurements to estimate road roughness. Veh Syst Dyn 46(6):483–499

    Google Scholar 

  10. Ward CC, Iagnemma K (2009) Speed-independent vibration-based terrain classification for passenger vehicles. Veh Syst Dyn 47(9):1095–1113

    Google Scholar 

  11. Weiss C, Fröhlich H, Zell A (2006) Vibration-based terrain classification using support vector machines. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), Beijing, China, 9–15 Oct 2006, pp 4429–4434

    Google Scholar 

  12. Sadhukhan D (2004) Autonomous ground vehicle terrain classification using internal sensors. Master thesis, Florida State University, Tallahassee, US, 16th March 2004

    Google Scholar 

  13. Sadhukhan D, Moore C (2003) Online terrain estimation using internal sensors. In: Florida conference on recent advances in robotics, Boca Raton, US

    Google Scholar 

  14. Ojeda L, Borenstein J, Witus G, Karlsen R (2006) Terrain characterization and classification with a mobile robot. J Field Robot 23(2):103–122

    Google Scholar 

  15. DuPont EM, Robers RG, Moore CA (2006) The identification of terrains for mobile robots using eigenspace and neural network methods. In: Florida conference on recent advances in robotics (FCRAR), Miami, US, 25–26 May 2006

    Google Scholar 

  16. Weiss C, Stark M, Zell A (2007) SVMs for vibration-based terrain classification. In: Autonomoe Mobile System (AMS), Fachgespräch, Germany, 18–19 Oct 2007, pp 1–7

    Google Scholar 

  17. Olson CF, Matthies LH, Schoppers M, Maimone MW (2000) Robust stereo ego-motion for long distance navigation. In: IEEE conference on computer vision and pattern recognition, Hilton Head Island, US, 13–15 June 2000, vol 2, pp 453–458

    Google Scholar 

  18. Howard A, Seraji H (2001) Vision-based terrain characterization and traversability assessment. J Robot Syst 18(10):577–587

    Google Scholar 

  19. Thompson D, Smith T, Wettergreen D (2005) Data mining during rover traverse: from images to geologic signatures. In: 8th international symposium on artificial intelligence robotics and automation in space (ISAIRAS), Sep 2005

    Google Scholar 

  20. Castano R, Manduchi R, Fox J (2001) Classification experiments on real-world textures. In: Workshop on empirical evaluation in computer vision, Kauai, USA, 10 Dec 2001, pp 1–6

    Google Scholar 

  21. Karlsen RE, Witus G (2007) Terrain understanding for robot navigation. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), San Diego, USA, 29 Oct–2 Nov 2007, pp 895–900

    Google Scholar 

  22. Chetan J, Krishna KM, Jawahar CV (2010) An adaptive outdoor terrain classification methodology using monocular. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), Taipei, China, 18–22 Oct 2010, pp 766–771

    Google Scholar 

  23. Song D, Yi C, Suh IH, Choi B (2011) Self-supervised terrain classification based on moving objects using monocular camera. In: IEEE international conference on robotics and biomimetics (ROBIO), Phuket, Thailand, 7–11 Dec 2011, pp 527–533

    Google Scholar 

  24. Willians S, Howard AM (2010) Towards visual arctic terrain assessment. In: Springer tracts in advanced robotics, vol 62, pp 91–100

    Google Scholar 

  25. Nishiwaki K, Chestnutt J, Kagami S (2012) Autonomous navigation of a humanoid robot over unknown rough terrain using a laser range sensor. Int J Robot Res 31(11):1251–1262

    Google Scholar 

  26. Macedo J, Manduchi R, Matthies L (2000) Lada-based discrimination of grass from obstacles for autonomous navigation. In: ISER, Honolulu, US

    Google Scholar 

  27. Montemerlo M, Thrun S (2004) Multi-resolution pyramid for outdoor robot terrain perception. In: 19th national conference on artificial intelligence, San Jose, US, 25–29 July 2004, pp 464–469

    Google Scholar 

  28. Andersen JC, Blas MR, Ravn O, Andersen NA, Blanke M (2006) Traversable terrain classification for outdoor autonomous robots using single 2D laser. In: Integrated computer-aided engineering, vol 13, pp 223–232

    Google Scholar 

  29. Vandapel N, Huber DF, Kapuria A, Hebert M (2004) Natural terrain classification using 3D lidar data. In: IEEE International conference on robotics and automation, 26 Apr–1 May 2004, vol 5, pp 5117–5122

    Google Scholar 

  30. Lalonde J, Vandapel N, Huber D, Hebert M (2006) Natural terrain classification using three-dimensional ladar data for ground robot mobility. J Field Robot 23(10):839–861

    Google Scholar 

  31. Urmson C, Anhalt J, Clark M, Galatali T, Gonzalez JP, Gowdy J, Gutierrez A, Harbaugh S, Johnson-Roberson M, Kato H, Koon P, Peterson K, Smith B, Spiker S, Tryzelaar E, Whittaker W (2004) High speed navigation of unrehearsed terrain: red team technology for grand challenge 2004. Technical Report CMU-RI-TR-04-37), Robotics Institute, Carnegie Mellon University, Pettsburgh, PA

    Google Scholar 

  32. Golberg S, Maimone M, Matthies L (2002) Stereo vision and rover navigation software for planetary exploration. In: IEEE aerospace conference, 9–16 Mar 2002, vol 5, pp 2025–2036

    Google Scholar 

  33. Urmson C, Dias M, Simmons R (2002) Stereo vision based navigation for sun-synchronous exploration. In: Conference on intelligent robots and systems (IROS), Lausanne, Switzerland (2002)

    Google Scholar 

  34. Stavens D, Thrun S (2006) A self-supervised terrain roughness estimator for off-road autonomous driving. In: 22nd conference on uncertainty in artificial intelligence (UAI2006), Cambridge, US, 13–16 July 2006

    Google Scholar 

  35. Iagnemma K, Kang S, Brooks C, Dubowsky S (2003) Multi-sensor terrain estimation for planetary rovers. In: International symposium on artificial intelligence, robotics, and automation in space, Nara, Japan

    Google Scholar 

  36. Halacti I, Brooks CA, Iagnemma K (2007) Terrain classification and classier fusion for planetary exploration rovers. In: IEEE aerospace conference, Big Sky, US, 3–10 Mar 2007, pp 1–9

    Google Scholar 

  37. Brooks CA, Iagnemma K (2007) Self-supervised terrain classification for planetary rovers. In: IEEE aerospace conference, Big Sky, US, 3–10 Mar 2007, pp 1–9

    Google Scholar 

  38. Weiss C, Tamimi H, Zell A (2008) A combination of vision and vibration-based terrain classification. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), Nice, Frence, 19–23 May 2008, pp 2204–2209

    Google Scholar 

  39. Gollins EG, Coyle EJ (2008) Vibration-based terrain classification using surface profile input frequency responses. In: IEEE international conference on robotics and automation, Pasadena, US, 19–23 May 2008, pp 3276–3283

    Google Scholar 

  40. Lu L, Ordonez C, Collins EG, Jr. DuPont EM (2009) Terrain surface classification for autonomous ground vehicles using a 2D laser stripe-based structured light sensor. In: IEEE/RSJ international conference on intelligent robots and systems, St. Louis, US, 10–15 Oct 2009, pp 2174–2181

    Google Scholar 

  41. Manduchi R (2005) Obstacle detection and terrain classification for autonomous off-road navigation. J Auton Robot 18(1):81–102

    Google Scholar 

  42. Posner I, Schroeter D, Newman P (2007) Describing composite urban workspaces. In: IEEE international conference on robotics and automation, Roma, Italy, 10–14 Apr 2007, pp 4962–4968

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifeng Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 China Machine Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, S. (2019). Review of Related Work. In: Road Terrain Classification Technology for Autonomous Vehicle. Unmanned System Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-6155-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6155-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6154-8

  • Online ISBN: 978-981-13-6155-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics