Skip to main content

Artificial Intelligence for Photovoltaic Systems

  • Chapter
  • First Online:
Solar Photovoltaic Power Plants

Part of the book series: Power Systems ((POWSYS))

Abstract

Photovoltaic systems have gained an extraordinary popularity in the energy generation industry. Despite the benefits, photovoltaic systems still suffer from four main drawbacks, which include low conversion efficiency, intermittent power supply, high fabrication costs and the nonlinearity of the PV system output power. To overcome these issues, various optimization and control techniques have been proposed. However, many authors relied on classical techniques, which were based on intuitive, numerical or analytical methods. More efficient optimization strategies would enhance the performance of the PV systems and decrease the cost of the energy generated. In this chapter, we provide an overview of how Artificial Intelligence (AI) techniques can provide value to photovoltaic systems. Particular attention is devoted to three main areas: (1) Forecasting and modelling of meteorological data, (2) Basic modelling of solar cells and (3) Sizing of photovoltaic systems. This chapter will aim to provide a comparison between conventional techniques and the added benefits of using machine learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. US Senate Committee on Energy and Natural Resources, Transcript of the Testimony of Richard E. Smalley to the US Senate Committee on Energy and Natural Resources, US Government Publishing Office, 27 April 2004. https://www.gpo.gov/fdsys/pkg/CHRG-108shrg95239/html/CHRG-108shrg95239.htm. Accessed 23 Sept 2018

  2. Bar A, Feigenbaum E (1981) The handbook of artificial intelligence. Morgan Kaufmann, San Francisco

    Google Scholar 

  3. Samuel A (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev 3(3):210–229

    Article  MathSciNet  Google Scholar 

  4. Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning. Springer, New York

    MATH  Google Scholar 

  5. Haykin S (1994) Neural networks: a comprehensive foundation. Macmillan Publishing Company, New York

    MATH  Google Scholar 

  6. da Silva I, Spatti DH, Flauzino RA, Liboni L, dos Reis Alves S (2017) Artificial neural networks: a practical course. Springer, Switzerland

    Book  Google Scholar 

  7. Yadav AK, Chandel SS (2014) Solar radiation prediction using artificial neural network techniques: a review. Renew Sustain Energy Rev 33:772–781

    Article  Google Scholar 

  8. Khatib T, Mohamed A, Sopian K, Mahmoud M (2012) Assessment of artificial neural networks for hourly solar radiation prediction. Int J Photoenergy 2012:7 pp

    Google Scholar 

  9. Al-Daoud E (2009) A comparison between three neural network models for classification problems. J Artif Intell 2(2):56–64

    Article  Google Scholar 

  10. Sutton R, Barto A (1998) Reinforcement learning: an introduction. MIT press, Cambridge

    Google Scholar 

  11. Nwigbo S, Madhu B (2016) Expert system: a catalyst in educational development in Nigeria. IOSR J Mob Comput Appl 3(2):8–11

    Google Scholar 

  12. Darlington K (2010) The essence of expert systems. Pearson Education, England

    Google Scholar 

  13. Holland J (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence. MIT Press, Cambridge

    Book  Google Scholar 

  14. Sivanandam S, Deepa S (2007) Introduction to genetic algorithms. Springer, Berlin

    MATH  Google Scholar 

  15. Dorigo M (1992) The metaphor of the ant colony and its application to combinatorial optimization. PhD thesis, Politecnico di Milano, Italy

    Google Scholar 

  16. Dorigo M, StÃijtzle T (2003) The ant colony optimization metaheuristic: algorithms, applications, and advances. Handbook of metaheuristics. International series in operations research and management science. Springer, Boston

    Google Scholar 

  17. Youssef A, El-Telbany M, Zekry A (2017) The role of artificial intelligence in photo-voltaic systems design and control: a review. Renew Sustain Energy Rev 78:72–79

    Article  Google Scholar 

  18. Marini F, Walczak B (2015) Particle swarm optimization (PSO). A tutorial. Chemom Intell Lab Syst 149:153–165

    Article  Google Scholar 

  19. Poli R (2008) Analysis of the publications on the applications of particle swarm optimisation. J Artif Evol Appl 2008:10 pp

    Google Scholar 

  20. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: Proceedings of IEEE international conference on evolutionary computation

    Google Scholar 

  21. Zadeh L (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

  22. Bose B (1994) Expert system, fuzzy logic, and neural network applications in power electronics and motion control. Proc IEEE 82(8):1303–1323

    Article  Google Scholar 

  23. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state calculation by fast computing machines. J Chem Phys 21:1087–1091

    Article  Google Scholar 

  24. Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  Google Scholar 

  25. Hu C, White R (1983) Solar cells: from basics to advanced systems. McGraw-Hill, New York

    Google Scholar 

  26. Meinel A, Meinel M (1976) Applied solar energy. Addison-Wesley, Reading

    Google Scholar 

  27. Kasap S (2018) Principles of electronic materials and devices. McGraw-Hill Education, New York

    Google Scholar 

  28. Mohandes M, Rehman S, Halawani T (1998) Estimation of global solar radiation using artificial neural networks. Renew Energy 14:179–184

    Article  Google Scholar 

  29. Rehman S, Mohandes M (2009) Estimation of diffuse fraction of global solar radiation using artificial neural networks. Energy Sources 31:974–984

    Article  Google Scholar 

  30. Lazzús J, Ponce A, Marín J (2011) Estimation of global solar radiation over the city of La Serena using a neural network. Appl Sol Energy 47(1):66–73

    Article  Google Scholar 

  31. Khatib T, Mohamed A, Sopian K, Mahmoud M (2012) Solar energy prediction for Malaysia using artificial neural networks. Int J Photoenergy 2012:1–16

    Google Scholar 

  32. Mellit A, Pavan A (2010) A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy. Sol Energy 84:807–821

    Article  Google Scholar 

  33. Mellit A (2008) Artificial intelligence techniques for modelling and forecasting of solar radiation data: a review. Int J Artif Intell Soft Comput 1:52–76

    Article  Google Scholar 

  34. SUNDA, Beijing Sunda Solar Energy Technology Company, Ltd. http://www.sundasolar.com/. Accessed 18 June 2018

  35. Tsai H, Tu C, Su Y (2008) Development of generalized photovoltaic model using MATLAB/SIMULINK. In: Proceedings of the World congress on engineering and computer science, WCECS 2008, San Francisco, USA, 22–24 October 2008

    Google Scholar 

  36. The German Energy Society (Deutsche Gesellshaft fur Sonnenenergie) (2008) Photovoltaic systems: a guide for installers, architects and engineers. Routledge, Abingdon

    Google Scholar 

  37. Easwarakhanthan T, Bottin J, Bouhouch I, Boutrit C (1986) Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers. Int J Sol Energy 4:1–12

    Article  Google Scholar 

  38. Al-Rashidi M, El-Naggar K, AlHajri M, Al-Othman A (2011) A new estimation approach for determining the I-V characteristics of solar cells. Sol Energy 85(7):1543–1550

    Article  Google Scholar 

  39. Karatepe E, Boztepe M, Colak M (2006) Neural network based solar cell model. Energy Convers Manag 47:1159–1178

    Article  Google Scholar 

  40. King D, Boyson W, Kratochvill J (2004) Photovoltaic array performance model. Sandia National Laboratories, Albuquerque, New Mexico

    Google Scholar 

  41. Townsend T (1989) A method for estimating the long-term performance of direct-coupled photovoltaic systems. Masters thesis, University of Wisconsin-Madison, Madison, WI, USA

    Google Scholar 

  42. Vergura S (2016) A complete and simplified datasheet-based model of PV cells in variable environmental conditions for circuit simulation. Energies 9:326

    Article  Google Scholar 

  43. El-Naggar K, AlRashidi M, AlHajri M, Al-Othman A (2012) Simulated annealing algorithm for photovoltaic parameters identification. Sol Energy 86:266–274

    Article  Google Scholar 

  44. Askarzadeh A, Rezazadeh A (2012) Parameter identification for solar cell models using harmony search-based algorithms. Sol Energy 86:3241–3249

    Article  Google Scholar 

  45. Sharma V, Colangelo A, Spagna G (1995) Photovoltaic technology: basic concepts, sizing of a stand alone photovoltaic system for domestic applications and preliminary economic analysis. Energy Convers Manag 36(3):161–174

    Article  Google Scholar 

  46. Tiwari G, Dubey S (2010) Fundamentals of photovoltaic modules and their applications. Royal Society of Chemistry Publishing, London

    Google Scholar 

  47. Lorenzo M, Egido E (1992) The sizing of stand alone PV-systems: a review and a proposed new method. Sol Energy Mater Sol Cells 26:51–69

    Article  Google Scholar 

  48. Ahmad G (2002) Photovoltaic powered rural zone family house in Egypt. Renew Energy 6:379–390

    Article  Google Scholar 

  49. Bhuiyan M, Asgar M (2003) Sizing of a stand-alone photovoltaic power system at Dhaka. Renew Energy 28:929–938

    Article  Google Scholar 

  50. Committee National Electric Code (2017) Article 690: Solar Photovoltaic (PV) Systems, NFPA 70. National Electric Code, National Fire Protection Association (NFPA)

    Google Scholar 

  51. Nikhil P, Subhakar D (2013) Sizing and parametric analysis of a stand-alone photovoltaic power plant. IEEE J Photovolt 3:776–784

    Article  Google Scholar 

  52. Hontoria L, Aguilera J, Zufiria P (2005) A new approach for sizing stand alone photovoltaic systems based in neural networks. Sol Energy 78:313–319

    Article  Google Scholar 

  53. Almonacid F, Rus C, Pérez-Higueras P, Hontoria L (2011) Calculation of the energy provided by a PV generator. Comparative study: conventional methods versus artificial neural networks. Energy 36:375–384

    Article  Google Scholar 

  54. Mellit A, Benghanem M, HadjArab A, Guessoume A (2005) An adaptive artificial neural network model for sizing stand-alone photovoltaic systems: application for isolated sites in Algeria. Renew Energy 30(10):1501–1524

    Article  Google Scholar 

  55. Mellit A, Benghanem M, Arab AH, Guessoum A (2003) Modeling of sizing the photovoltaic system parameters using artificial neural network. In: Proceedings of IEEE, Conference on Control Application, vol 1, pp 353–357

    Google Scholar 

  56. Mellit A, Kalogirou S (2008) Artificial intelligence techniques for photovoltaic applications: a review. Prog Energy Combust Sci 34:574–632

    Article  Google Scholar 

  57. Salah C, Lamamra K, Fatnassi A (2015) New optimally technical sizing procedure of domestic photovoltaic panel/battery system. J Renew Sustain Energy 7:1–14

    Article  Google Scholar 

  58. Mellit A (2010) ANN-based GA for generating the sizing curve of stand-alone photovoltaic systems. Adv Eng Softw 41:687–693

    Article  Google Scholar 

  59. Mellit A, Kalogirou S, Drif M (2010) Application of neural networks and genetic algorithms for sizing of photovoltaic systems. Renew Energy 35:2881–2893

    Article  Google Scholar 

  60. Khatib T, Ibrahim I, Mohamed A (2016) A review on sizing methodologies of photovoltaic array and storage battery in a standalone photovoltaic system. Energy Conversion and Management 120:430–448

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ghannam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghannam, R., Klaine, P.V., Imran, M. (2019). Artificial Intelligence for Photovoltaic Systems. In: Precup, RE., Kamal, T., Zulqadar Hassan, S. (eds) Solar Photovoltaic Power Plants. Power Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-6151-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6151-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6150-0

  • Online ISBN: 978-981-13-6151-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics