Skip to main content

On the Possibility of Training Demonstration of the Giant Magnetoresistance Effect in Higher School

  • Conference paper
  • First Online:
Advances in Thin Films, Nanostructured Materials, and Coatings

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 872 Accesses

Abstract

The method and technique of training demonstration of the giant magnetoresistance effect on the example of film samples (single layer Co film and three-layer film Co/Cu/Co) in CIP-geometry with the help of simple experimental equipment are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meisell L, Gleng R (1977) Tehnologiya tonkih plenok: spravochnik, vol 1. Sow. Radio, Moskow

    Google Scholar 

  2. Meisell L, Gleng R (1977) Tehnologiya tonkih plenok: spravochnik, vol 2. Sow. Radio, Moskow

    Google Scholar 

  3. Pogrebnjak AD, Lebed AG, Ivanov YuF (2001) Modifcation of single crystal stainless steel structure (Fe–Cr–Ni–Mn) by high-power ion beam. Vacuum 63(4):483–486. https://doi.org/10.1016/S0042-207X(01)00225-1

    Article  CAS  Google Scholar 

  4. Pogrebnjak AD, Bazyl EA (2001) Modification of wear and fatigue characteristics of Ti–V–Al alloy by Cu and Ni ion implantation and high-current electron beam treatment. Vacuum 64(1):1–7. https://doi.org/10.1016/S0042-207X(01)00160-9

    Article  CAS  Google Scholar 

  5. Pogrebnjak AD, Isakov IF, Opekunov MS et al (1987) Increased wear resistance and positron annihilation in Cu exposed to high power ion beam. Phys Lett A 123(8):410–412. https://doi.org/10.1016/0375-9601(87)90043-0

    Article  Google Scholar 

  6. Goncharov AA, Yunda AN, Komsta H et al (2017) Effect of structure on physicomechanical properties of transition metals diboride films. Acta Phys Pol A 132(2):270–273

    Article  CAS  Google Scholar 

  7. Yakovin S, Zykov A, Dudin S et al (2017) Plasma assisted deposition of TaB2 coatings by magnetron sputtering system. Probl At Sci Technol 107(1):187–190

    Google Scholar 

  8. Bazhin AI, Goncharov AA, Pogrebnyak AD et al (2016) Superhardness effect in transition metal diborides films. Phys Met Metall 117(6):594–601

    Article  CAS  Google Scholar 

  9. Goncharov AA, Yunda AN, Shelest IV et al (2017) Effect of the magnetron sputtering parameters on the structure and substructural characteristics of tantalum diboride films. J Nano- Electron Phys 9(4):04014

    Article  Google Scholar 

  10. Pogrebnjak AD, Bondar OV, Abadias G et al (2016) Structural and mechanical properties of NbN and Nb–Si–N films: experiment and molecular dynamics simmulations. Ceram Int 42(10):11743–11756. https://doi.org/10.1016/j.ceramint.2016.04.095

    Article  CAS  Google Scholar 

  11. Baibich MN, Broto JM, Fert A et al (1988) Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett 61(21):2472–2475

    Article  CAS  Google Scholar 

  12. Binasch G, Grünberg P, Saurenbach F et al (1989) Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B 39(7):4828–4830

    Article  CAS  Google Scholar 

  13. Fert A (2008) Proischojdenie, razwitie i perspektiwi spintroniki. Usp Phys Nauk 178(12):1336–1348

    Article  Google Scholar 

  14. Shkurdoda YuO, Chornous AM, Shabelnyk YuM et al (2017) The influence of the concentration of components in magnetic layers on the magnetoresistive properties of three-layer film systems based on FexNi1−x and Cu. J Magn Magn Mater 443:190–194. https://doi.org/10.1016/j.jmmm.2017.07.078

    Article  CAS  Google Scholar 

  15. Loboda VB, Protsenko IE (1981) Structure and electrical resistance of thin scandium films (III). Study on electrical properties. Kristall Tech 16(4):489–494

    Google Scholar 

  16. Loboda VB, Shkurdoda YuO, Kravchenko VO et al (2011) Structure and magnetoresistive properties of polycrystalline Co/Cu/Co films. Metallofiz Noveishie Tekhnol 33(2):161–169

    CAS  Google Scholar 

  17. Loboda VB, Kolomiets VM, Shkurdoda YuO et al (2012) Structure and magnetoresistive properties of nanocrystalline film systems based on Co, Fe, Ag, and Cu. Metallofiz Noveishie Tekhnol 34(8):1043–1055

    CAS  Google Scholar 

  18. Loboda VB, Khursenko SN (2006) Structure and electrical conductivity of ultrathin Ni–Cu films. JETP 103(5):790–794

    Article  CAS  Google Scholar 

  19. Shkurdoda YO, Chornous AM, Loboda VB et al (2016) Structure and magnetoresistive properties of three-layer film systems based on permalloy and copper. J Nano- Electron Phys 8(2):02056

    Article  Google Scholar 

  20. Loboda VB, Kolomiets VM, Khursenko SM et al (2014) The electrical conductivity of the three-layer polycrystalline films Co/Ag(Cu)/Fe in the conditions of atoms interdiffusion. J Nano- Electron Phys 6(1):04032

    CAS  Google Scholar 

  21. Protsenko IY, Mehta PK, Odnodvorets LV et al (2014) Magnetoresistive properties of quasi granular film alloys FexPt1−x at the low concentrations of Pt atoms. J Nano- Electron Phys 6:01031

    CAS  Google Scholar 

  22. Synashenko OV, Tkach OP, Buryk IP et al (2009) Magnetoresistive properties of multilayer nanodimensional film systems. Probl At Sci Technol 18:169

    CAS  Google Scholar 

  23. Protsenko I, Odnodvoretz L, Chornous A (1998) Electroconductivity and tensosensibility of multilayer films. Metallofiz Noveishie Tekhnol 20:36

    CAS  Google Scholar 

  24. Lytvynenko IM, Pazukha IM, Pylypenko OV et al (2015) Structural, magnetic and magnetoresistive properties of ternary film Ni–Fe–Co alloy. Metallofiz Noveishie Tekhnol 37(10):1377

    Article  CAS  Google Scholar 

  25. Pogorily AM, Ryabchenko SM, Tovstolytkin AI (2010) Spintronika. Osnovni javisza. Tendenzii rozvitku. Ukr Phys J 6(1):37–97 [In Ukrainian]

    Google Scholar 

  26. Lukashevich MG (2003) Vvedenie v magnitoelektroniku. BGU, Minsk [In Russian]

    Google Scholar 

  27. Sisoeva S (2005) Avtomobilnie datchiki polozenija. Komponenty technol 4(5):60–68

    Google Scholar 

  28. Romanova I (2014) Magnitoresistivnaya pamyat’ MRAM. Elektron-nauka-technol-biznes 8(00140):72–77

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. O. Shkurdoda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loboda, V.B., Dovzhyk, M.Y., Kravchenko, V.O., Khursenko, S.M., Shkurdoda, Y.O. (2019). On the Possibility of Training Demonstration of the Giant Magnetoresistance Effect in Higher School. In: Pogrebnjak, A.D., Novosad, V. (eds) Advances in Thin Films, Nanostructured Materials, and Coatings. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-6133-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6133-3_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6132-6

  • Online ISBN: 978-981-13-6133-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics