Skip to main content

Method for Identification of Optical Resonances of Metal Films

  • Conference paper
  • First Online:
Advances in Thin Films, Nanostructured Materials, and Coatings

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

In this paper, the properties of thin (10–100 nm, R > 7 Ω) copper films deposited on glass substrates at T = 300 K are considered. The thin films were produced by thermal evaporation in a vacuum with residual gas pressure (10−2–10−3 Pa). The substrates had luminescence under exciting by Raman light (Raman scattering) of 30 mW power, with a wavelength of 785 nm. The resonances were identified by comparing the absorption and Raman spectra at excitation wavelengths of 633 and 785 nm. Among films with a close absorption level, films with the largest amplitude of the Raman signal had a structure with the maximum value of optical resonances. Under the influence of exciting light of 30 mW, the Raman spectrum and the color of these films changed. Copper films deposited on glass substrates at a temperature of 300 °C with an electrical resistivity R < 0.5 Ω/square did not have pronounced Raman peaks, their Raman spectrum and color did not change under 300 mW excitation light with a wavelength λ of 785 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joannopoulos JD, Johnson SG, Winn JN et al (2008) Photonic crystals. Molding the flow of light. Princeton University Press

    Google Scholar 

  2. Klimov VV (2009) Nanoplasmonica. Fizmatlit, Moscow

    Google Scholar 

  3. Toropov A, Shubina T (2015) Plasmonic effects. In: Metal-semiconductor nanostructures. Oxford Science Publications, Press Oxford University. https://doi.org/10.1093/acprof:oso/9780199699315.001.0001

  4. Komisarenko FE, Zhukov MV, Muhin IS et al. (2017) Formirovanie metallicheskih nanoostovkov pri elektronnom obluchenii tonkoy plenki zolota na stekle. J Tech Phys 87(2):306–309 (in Russian). https://doi.org/10.21883/JTF.2017.02.44143.1784

  5. Samsonov VM, Kuznezova YV, D’yakova EV (2016) O fractal’nih svoystvah agregatov metallicheskih nanoclasterov na tverdoy poverhnosti. J Tech Phys 86(2):306–309 (in Russian)

    Google Scholar 

  6. Korolenko PV, Rizhikova YV (2015) Konstructivnie fractali v modelyah nanoclusterov. In: Proceedings of the conference “M.V. Lomonosov readings, physics section”. Moscow State University, Moscow, p 5 (in Russian)

    Google Scholar 

  7. Gryn’ko DO, Barabash MY, Borshagivskiy EG et al (2008) Template as a tool of nanotechnology group. Nanosyst Nanomater Nanotech 6(N1):91–103

    Google Scholar 

  8. Hlebzov NG (2008) Optica i biofotonica nanochastiz s plasmonnim rezonansom. Quantum Electron 38(N6):504–529 (in Russian)

    Google Scholar 

  9. Kim YK, Ok G, Choi SW et al (2017) The interfacing structural effect of Ag/grapheme oxide nanohybrid films on surface enhanced Raman scattering. Nanoscale 9:5872. https://doi.org/10.1039/c7nr00308k

  10. Petrov YuI (1986) Klasteri i malie chastizi. Nauka, Moscow (in Russian)

    Google Scholar 

  11. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  12. Karpov SV, Slabko VV (2003) Optichiskie I fotofizicheskie svoystva fractal’no strukturirovanih zoley metallov. SO RAN, Novosibirsk (in Russian)

    Google Scholar 

  13. Bobovich YS (1972) Lazernaya spektroskopiya spontannogo kombinatsionnogo rasseyaniya slabo vzaimodeystvuyuschih molekul i ee prilozheniya. UFN 108:401 (in Russian). https://doi.org/10.3367/UFNr.0108.197211a.0401

  14. Arbuzov VI (2008) Osnovi radiazionnogo opticheskogo materialovedeniya. SPbGUITMO, SPb (in Russian)

    Google Scholar 

  15. Trofimov VI, Osadisenko VL (1993) Rost i morfologiya tonkih plenok. Energoatomizdat, Moscow (in Russian)

    Google Scholar 

  16. Lewis B, Anderson JC (1978) Nuclation and growth of thin films. Academic Press, New York

    Google Scholar 

  17. Lazarev VB, Sobolev VV, Shapligin IS (1983) Himicheskiev i fizicheskie svoystva prostih oksidov metallov. Nauka, Moscow (in Russian)

    Google Scholar 

  18. Byub P (1962) Fotoprovodimost’ tverdih tel. Foreign. liter-ra, Moscow (in Russian)

    Google Scholar 

  19. Colomban P, Henry D (2005) Raman signature modification induced by copper nanoparticles in silicate glass. J Raman Spectrosc 36(9):884–890

    Article  CAS  Google Scholar 

  20. Kukushkin SA, Osipov AV (1998) Prozessi kondensazii tonkih plenok. UFN 168:1083–1116 (in Russian). https://doi.org/10.3367/UFNr.0168.199810b.1083

  21. Morozov NF, Paukshto MV, Tovstik PE (1997) Proceedings of international conference and exhibition: “Micro-Mat 97”, Berlin, p 218

    Google Scholar 

Download references

Acknowledgements

The work was carried out within the framework of Fundamental problems of new nanomaterials and nanotechnologies (2015–2019) of The National Academy of Science of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Barabash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barabash, M.Y., Vlaykov, G.G., Kolesnichenko, A.A., Ryabov, L.V. (2019). Method for Identification of Optical Resonances of Metal Films. In: Pogrebnjak, A.D., Novosad, V. (eds) Advances in Thin Films, Nanostructured Materials, and Coatings. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-6133-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6133-3_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6132-6

  • Online ISBN: 978-981-13-6133-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics