Skip to main content

Brassinosteroid Mediated Regulation of Photosynthesis in Plants

  • Chapter
  • First Online:
Brassinosteroids: Plant Growth and Development

Abstract

Brassinosteroids (BRs) are sterol derivatives with multiple hydroxyl groups occurring universally in plants. Photosynthesis is the process which acts as base for the growth of the plant. BRs promote the activation as well as synthesis of enzymes responsible for the formation of chlorophyll. BRs regulate different components of photosynthetic machinery like photochemistry, stomatal conductance and enzymes of Calvin cycle. BRs promote photosynthetic carbon fixation by altering the functioning of stomata. The BR-mediated regulation of various photosynthetic components operates constitutively to promote net photosynthetic rate and ultimately, the growth and development of the plants. Thus, the role of BRs in regulating photosynthesis becomes an important area of research. The present chapter summarizes the BR-mediated changes in photosynthesis and its associated components under normal and stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullahi, B. A., Gu, X. G., Gan, Q. L., & Yang, Y. H. (2002). Brassinolide amelioration of aluminum toxicity in mungbean seedling growth. Journal of Plant Nutrition, 26, 1725–1734.

    Article  CAS  Google Scholar 

  • Adak, M. K., & Gupta, D. K. D. (1999). Photosynthesis and net assimilation rate of rice cultivars as influenced by waterlogging. Indian Journal of Plant Physiology, 4, 334–336.

    Google Scholar 

  • Alam, M. M., Hayat, S., Ali, B., & Ahmad, A. (2007). Effect of 28-homobrassinolide treatment on nickel toxicity in Brassica juncea. Photosynthetica, 45, 139–142.

    Article  CAS  Google Scholar 

  • Ali, A. A., & Abdel-Fattah, R. I. (2006). Osmolytes antioxidant behavior in Phaseolus vulgaris and Hordeum vulgare with brassinosteroid under salt stress. Journal of Agronomy, 5, 167–174.

    Article  Google Scholar 

  • Ali, B., Hayat, S., Hasan, S. A., & Ahmad, A. (2006). Effect of root applied 28-homobrassinolide on the performance of Lycopersicon esculentum. Scientia Horticulturae, 110, 267–273.

    Article  CAS  Google Scholar 

  • Ali, B., Hayat, S., & Ahmad, A. (2007). 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L.). Environmental and Experimental Botany, 59, 217–223.

    Article  CAS  Google Scholar 

  • Ali, Q., Athar, H. R., & Ashraf, M. (2008a). Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. Plant Growth Regulation, 56, 107–116.

    Article  CAS  Google Scholar 

  • Ali, B., Hayat, S., Fariduddin, Q., & Ahmad, A. (2008b). 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Chemosphere, 72, 1387–1392.

    Article  CAS  PubMed  Google Scholar 

  • Ali, B., Hasan, S. A., Hayat, S., Hayat, Q., Yadav, S., Fariduddin, Q., & Ahmad, A. (2008c). A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environmental and Experimental Botany, 62, 153–159.

    Article  CAS  Google Scholar 

  • Allen, D. J., & Ort, D. R. (2001). Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in Plant Science, 6, 36–42.

    Article  CAS  PubMed  Google Scholar 

  • Alyemeni, M. N., & Al-Quwaiz, S. M. (2016). Effect of 28-homobrassinolide on the performance of sensitive and resistant varieties of Vigna radiata. Saudi Journal of Biological Sciences, 23, 698–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alyemeni, M. N., Hayat, S., Wijaya, L., & Anaji, A. (2013). Foliar application of 28-homobrassinolide mitigates salinity stress by increasing the efficiency of photosynthesis in Brassica juncea. Acta Botânica Brasílica, 27, 502–505.

    Article  Google Scholar 

  • Anuradha, S., & Rao, S. S. (2003). Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Regulation, 40, 29–32.

    Article  CAS  Google Scholar 

  • Anuradha, S., & Rao, S. S. R. (2009). Effect of 24-epibrassinolide on the photosynthetic activity of radish plants under cadmium stress. Photosynthetica, 47, 317–320.

    Article  CAS  Google Scholar 

  • Arfan, M., Athar, H. R., & Ashraf, M. (2007). Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? Journal of Plant Physiology, 164, 685–694.

    Article  CAS  PubMed  Google Scholar 

  • Asha, A., & Lingakumar, K. (2015). Effect of 24-Epibrassinollide on the morphological and biochemical constitutions Vigna unguiculata (L.) seedlings. Indian Journal of Science Research and Technology, 3, 35–39.

    Google Scholar 

  • Ashraf, M., & Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51, 163–190.

    Article  CAS  Google Scholar 

  • Ashraf, M., & Sultana, R. (2000). Combination effect of NaCl salinity and nitrogen form on mineral composition of sunflower plants. Biologia Plantarum, 43, 615–619.

    Article  CAS  Google Scholar 

  • Avudainayagam, S., Megharaj, M., Owens, G., Kookana, R. S., Chittleborough, D., & Naidu, R. (2003). Chemistry of chromium in soils with emphasis on tannery waste sites. In Reviews of environmental contamination and toxicology (pp. 53–91). New York: Springer.

    Chapter  Google Scholar 

  • Badger, M. R., & Price, G. D. (1994). The role of carbonic anhydrase in photosynthesis. Annual Review of Plant Biology, 45, 369–392.

    Article  CAS  Google Scholar 

  • Bai, M. Y., Shang, J. X., Oh, E., Fan, M., Bai, Y., Zentella, R., Sun, T. P., & Wang, Z. Y. (2012). Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology, 14, 810–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajguz, A. (2009). Brassinosteroid enhanced the level of abscisic acid in Chlorella vulgaris subjected to short-term heat stress. Journal of Plant Physiology, 166, 882–886.

    Article  CAS  PubMed  Google Scholar 

  • Bajguz, A., & Asami, T. (2005). Suppression of Wolffia arrhiza growth by brassinazole, an inhibitor of brassinosteroid biosynthesis and its restoration by endogenous 24-epibrassinolide. Phytochemistry, 66, 1787–1796.

    Article  CAS  PubMed  Google Scholar 

  • Bajguz, A., & Czerpak, R. (1998). Physiological and biochemical role of brassinosteroids and their structure activity relationship in the green alga Chlorella vulgaris Beijerinck (Chlorophyceae). Plant Growth Regulation, 17, 131–139.

    Article  CAS  Google Scholar 

  • Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 47, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Baker, N. R., & Oxborough, K. (2004). Chlorophyll fluorescence as a probe of photosynthetic productivity. In E. Papageorgiou & G. Govindjee (Eds.), Chlorophyll fluorescence: A signature of photosynthesis. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Barceló, J. U. A. N., & Poschenrieder, C. (1990). Plant water relations as affected by heavy metal stress: A review. Journal of Plant Nutrition, 13, 1–37.

    Article  Google Scholar 

  • Behnamnia, M., Kalantari, K. M., & Rezanejad, F. (2009). Exogenous application of brassinosteroid alleviates drought-induced oxidative stress in Lycopersicon esculentum L. General and Applied Plant Physiology, 35, 22–34.

    CAS  Google Scholar 

  • Berger, S., Papadopoulos, M., Schreiber, U., Kaiser, W., & Roitsch, T. (2004). Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum, 122, 419–428.

    Article  CAS  Google Scholar 

  • Berry, J., & Bjorkman, O. (1980). Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 31, 491–543.

    Article  Google Scholar 

  • Bhatia, D. S., & Kaur, J. (1997). Effect of homobrassinolide and humicil on chlorophyll content, hill activity and yield components in mungbean Vigna radiata (l.) Wilczek. Phytomorphology, 47, 421–426.

    Google Scholar 

  • Braun, P., & Wild, A. (1984). The influence of brassinosteroid on growth and parameters of photosynthesis of wheat and mustard plants. Journal of Plant Physiology, 116, 189–196.

    Article  CAS  PubMed  Google Scholar 

  • Çağ, S., Gören-Sağlam, N., Çıngıl-Barış, Ç., & Kaplan, E. (2007). The effect of different concentration of epibrassinolide on chlorophyll, protein and anthocyanin content and peroxidase activity in excised red cabbage (Brassica oleraceae L.) cotyledons. Biotechnology & Biotechnological Equipment, 21, 422–425.

    Article  Google Scholar 

  • Cevahir, G., Yentür, S., Eryilmaz, F., & Yilmazer, N. (2008). Influence of brassinosteroids on pigment content of Glycine max L.(soybean) grown in dark and light. Journal of Applied Biological Sciences, 1, 23–28.

    Google Scholar 

  • Chen, L. M., Lin, C. C., & Kao, C. H. (2000). Copper toxicity in rice seedlings: Changes in antioxidative enzyme activities, H2O2 level, and cell wall peroxidase activity in roots. Botanical Bulletin of Academia Sinica, 41, 99–103

    Google Scholar 

  • Chen, C., Huang, D., & Liu, J. (2009). Functions and toxicity of nickel in plants: Recent advances and future prospects. CLEAN – Soil, Air, Water, 37, 304–313.

    Article  CAS  Google Scholar 

  • Choudhary, S. P., Kanwar, M., Bhardwaj, R., Jing-Quan, Y. U., & Lam-Son, P. T. (2012). Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS One, 7, e33210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chugh, L. K., Gupta, V. K., & Sawhney, S. K. (1992). Effect of cadmium on enzymes of nitrogen metabolism in pea seedlings. Phytochemistry, 31, 395–400.

    Article  CAS  Google Scholar 

  • Clouse, S. D., Langford, M., & McMorris, T. C. (1996). A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiology, 111, 671–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalio, R. J. D., Pinheiro, H. P., Sodek, L., & Haddad, C. R. B. (2011). The effect of 24-epibrassinolide and clotrimazole on the adaptation of Cajanus cajan (L.) Millsp. to salinity. Acta Physiologiae Plantarum, 33, 1887–1896.

    Article  CAS  Google Scholar 

  • Dubey, R. S. (2005). Photosynthesis in plants under stressful conditions. In M. Pessarakli (Ed.), Handbook of photosynthesis (2nd ed., pp. 717–737). New York: CRC Press/Taylor and Francis Group.

    Google Scholar 

  • Ekinci, M., Yildirim, E., Dursun, A., & Turan, M. (2012). Mitigation of salt stress in lettuce (Lactuca sativa L. var. Crispa) by seed and foliar 24-epibrassinolide treatments. Horticultural Science, 47, 631–636.

    CAS  Google Scholar 

  • Ernst, W. H. O. (1980). Biochemical aspects of cadmium in plants. In J. O. Nriagu (Ed.), Cadmium in the environment, part 1 (pp. 639–653). New York: Wiley.

    Google Scholar 

  • Eskandari, M., & Eskandari, A. (2013). Effects of 28-homobrassinolide on growth, photosynthesis and essential oil content of Satureja khuzestanica. International Journal of Plant Physiology and Biochemistry, 5, 36–41.

    Article  CAS  Google Scholar 

  • Farazi, E., Afshari, H., & Abadi, H. H. (2015). Effect of different concentrations of brassinosteroid on physiomorphological characteristics of five pistachio genotypes (Pistacia vera. L). Journal of Nuts, 6, 143–153.

    CAS  Google Scholar 

  • Fariduddin, Q., Ahmad, A., Hayat, S., & Ahmad, A. (2000). The response of chickpea, raised from the seeds pre-treated with 28-homobrassinolide. In National seminar on plant physiological paradigm for fostering agro and biotechnology and augmenting environmental productivity in millennium, 134.

    Google Scholar 

  • Fariduddin, Q., Ahmad, A., & Hayat, S. (2003). Photosynthetic response of Vigna radiata to pre-sowing seed treatment with 28-homobrassinolide. Photosynthetica, 41, 307–310.

    Article  CAS  Google Scholar 

  • Fariduddin, Q., Ahmad, A., & Hayat, S. (2004). Responses of Vigna radiata to foliar application of 28-homobrassinolide and kinetin. Biologia Plantarum, 48, 465–468.

    Article  CAS  Google Scholar 

  • Fariduddin, Q., Hayat, S., Ali, B., & Ahmad, A. (2006). Effect of 28-homobrassinolide on the nitrate reductase, carbonic anhydrase activities and net photosynthetic rate in Vigna radiata. Acta Botanica Croatica, 65, 19–23.

    Google Scholar 

  • Fariduddin, Q., Hasan, S. A., Ali, B., Hayat, S., & Ahmad, A. (2008). Effect of modes of application of 28-homobrassinolide on mung bean. Turkish Journal of Biology, 32, 17–21.

    CAS  Google Scholar 

  • Fariduddin, Q., Yusuf, M., Hayat, S., & Ahmad, A. (2009). Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environmental and Experimental Botany, 66, 418–424.

    Article  CAS  Google Scholar 

  • Fariduddin, Q., Yusuf, M., Chalkoo, S., Hayat, S., & Ahmad, A. (2011). 28-homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. Photosynthetica, 49, 55–64.

    Article  CAS  Google Scholar 

  • Fariduddin, Q., Khalil, R. R., Mir, B. A., Yusf, M., & Ahmad, A. (2013). 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environmental Monitoring and Assessment, 185, 7845–7856.

    Article  CAS  PubMed  Google Scholar 

  • Farooq, M., Wahid, A., & Basra, S. M. A. (2009). Improving water relations and gas exchange with brassinosteroids in rice under drought stress. Journal of Agronomy and Crop Science, 195, 262–269.

    Article  CAS  Google Scholar 

  • Farooq, M., Wahid, A., Lee, D. J., Cheema, S. A., & Aziz, T. (2010). Drought stress: Comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. Journal of Agronomy and Crop Science, 196, 336–345.

    Article  CAS  Google Scholar 

  • Flowers, T. J. (2004). Improving crop salt tolerance. Journal of Experimental Botany, 55, 307–319.

    Article  CAS  PubMed  Google Scholar 

  • Gabr, M. A., Fathi, M. A., Azza, I. M., & Mekhaeil, G. B. (2011). Influences of some chemical substances used to induce early harvest of ‘Canino’ apricot trees. Natural Science, 9, 59–65.

    Google Scholar 

  • Gruszka, D. (2013). The brassinosteroid signaling pathway-new key players and interconnections with other signaling networks crucial for plant development and stress tolerance. International Journal of Molecular Sciences, 14, 8740–8774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gururani, M. A., Upadhyaya, C. P., Strasser, R. J., Woong, Y. J., & Park, S. W. (2012). Physiological and biochemical responses of transgenic potato plants with altered expression of PSII manganese stabilizing protein. Plant Physiology and Biochemistry, 58, 182–194.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. C. (1984). Oxygen toxicity, oxygen radical, transition metals and disease. The Biochemical Journal, 219, 1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamada, K. (1986). Brassinolide in crop cultivation. In Plant growth regulators in agriculture (FFTC Book Series) (Vol. 34, pp. 188–196). Taipei: Food and Fertilizer Technology Center for the Asian and Pacific Region.

    Google Scholar 

  • Hayat, S., Ahmad, A., Mobin, M., Fariduddin, Q., & Azam, Z. M. (2001). Carbonic anhydrase, photosynthesis, and seed yield in mustard plants treated with phytohormones. Photosynthetica, 39, 111–114.

    Article  CAS  Google Scholar 

  • Hayat, S., Ali, B., Hasan, S. A., & Ahmad, A. (2007). Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environmental and Experimental Botany, 60, 33–41.

    Article  CAS  Google Scholar 

  • Hayat, S., Hasan, S. A., Hayat, Q., & Ahmad, A. (2010). Brassinosteroids protect Lycopersicon esculentum from cadmium toxicity applied as shotgun approach. Protoplasma, 239, 3–14.

    Article  CAS  PubMed  Google Scholar 

  • Hayat, S., Yadav, S., Wani, A. S., Irfan, M., & Ahmad, A. (2011). Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the growth, carbonic anhydrase activity and photosynthetic efficiency of Lycopersicon esculentum. Photosynthetica, 49, 397–404.

    Article  CAS  Google Scholar 

  • Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments: A review. Plant Signaling & Behavior, 7, 1456–1466.

    Article  CAS  Google Scholar 

  • He, R. Y., Wang, G. J., & Wang, X. S. (1991). Effects of brassinolide on growth and chilling resistance of maize seedlings. In ACS symposium series-American Chemical Society.

    Google Scholar 

  • He, J. X., Gendron, J. M., Sun, Y., Gampala, S. S., Gendron, N., Sun, C. Q., & Wang, Z. Y. (2005). BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science, 307, 1634–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holá, D., Rothová, O., Kočová, M., Kohout, L., & Kvasnica, M. (2010). The effect of brassinosteroids on the morphology, development and yield of field-grown maize. Plant Growth Regulation, 61, 29–43.

    Article  CAS  Google Scholar 

  • Hopkins, W. J. (1995). Introduction to plant physiology. New York: Wiley.

    Google Scholar 

  • Hu, W. H., Yan, X. H., Xiao, Y. A., Zenga, J. J., Qia, H. J., & Ogweno, J. O. (2013). 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Scientia Horticulturae, 150, 232–237.

    Article  CAS  Google Scholar 

  • Janeczko, A., Koscielniak, J., Pilipowicz, M., Szarek-Lukaszewska, G., & xSkoczowski, A. (2005). Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica, 43, 293–298.

    Article  CAS  Google Scholar 

  • Janeczko, A., Gullner, G., Skoczowski, A., Dubert, F., & Barna, B. (2007). Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. Biologia Plantarum, 51, 355–358.

    Article  CAS  Google Scholar 

  • Jiang, Y. P., Cheng, F., Zhou, Y. H., Xia, X. J., Mao, W. H., Shi, K., Chen, Z. X., & Yu, J. Q. (2012). Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus. Journal of Zhejiang University. Science. B, 13, 811–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor, D., Rattan, A., Gautam, V., Kapoor, N., & Bhardwaj, R. (2014). 24-epibrassinolide Mediated Changes in photosynthetic pigments and antioxidative defence system of radish seedlings under cadmium and mercury stress. Journal of Stress Physiology and Biochemistry, 10, 3.

    Google Scholar 

  • Katsumi, M. (1991). Physiological modes of brassinolide action in cucumber hypocotyl growth. In ACS symposium series-American Chemical Society (USA).

    Google Scholar 

  • Khan, S., Cao, Q., Zheng, Y. M., Huanga, Y. Z., & Zhua, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152, 686–692.

    Article  CAS  PubMed  Google Scholar 

  • Kim, T. W., Guan, S., Sun, Y., Deng, Z., Tang, W., Shang, J. X., Sun, Y., Burlingame, A. L., & Wang, Z. Y. (2009). Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nature Cell Biology, 11, 1254–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, T. W., Michniewicz, M., Bergmann, D. C., & Wang, Z. Y. (2012). Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature, 482, 419–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita, T., Cano-Delgado, A., Seto, H., Hiranuma, S., Fujioka, S., Yoshida, S., & Chory, J. (2005). Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature, 433, 167–171.

    Article  CAS  PubMed  Google Scholar 

  • Koca, H., Bor, M., Özdemir, F., & Türkan, I. (2007). The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environmental and Experimental Botany, 60, 344–351.

    Article  CAS  Google Scholar 

  • Krause, H., & Weis, W. (1991). Chlorophyll Fluorescence and Photosynthesis: The Basics. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 313–349.

    Article  CAS  Google Scholar 

  • Krumova, S., Zhiponova, M., Dankov, K., Velikova, V., Balashev, K., Andreeva, T., Russinova, E., & Taneva, S. (2013). Brassinosteroids regulate the thylakoid membrane architecture and the photosystem II function. Journal of Photochemistry and Photobiology B: Biology, 126, 97–104.

    Article  CAS  Google Scholar 

  • Kulaeva, O. N., Burkhanova, E. A., Fedina, A. B., Khokhlova, V. A., Bokebayeva, G. A., Vorbrodt, H. M., & Adam, G. N. (1991). Effect of brassinosteroids on protein synthesis and plant-cell ultrastructure under stress conditions. In ACS symposium series-American Chemical Society (USA).

    Google Scholar 

  • Kupper, H., Gotz, B., Mijovilovich, A., Kupper, F. C., & Meyer-Klaucke, W. (2009). Complexation and toxicity of copper in higher plants. I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiology, 151, 702–714.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, J., & Nam, K. H. (2002). Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science, 295(5558), 1299–1301.

    Google Scholar 

  • Li, Y. H., Liu, Y. J., Xu, X. L., Jin, M., An, L. Z., & Zhang, H. (2012). Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana. Biologia Plantarum, 56, 192–196.

    Article  CAS  Google Scholar 

  • Li, X. J., Guo, X., Zhou, Y. H., Shi, K., Zhou, J., Yu, J. Q., & Xia, X. J. (2016). Overexpression of a brassinosteroid biosynthetic gene dwarf enhances photosynthetic capacity through activation of calvin cycle enzymes in tomato. BMC Plant Biology, 16, 33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lima, J. V., & Lobato, A. K. S. (2017). Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit. Physiology and Molecular Biology of Plants, 23, 59–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maestri, E., Klueva, N., Perrotta, C., Gulli, M., Nguyen, H. T., & Marmiroli, N. (2002). Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology, 48, 667–681.

    Article  CAS  PubMed  Google Scholar 

  • Maity, U., & Bera, A. K. (2009). Effect of exogenous application of brassinolide and salicylic acid on certain physiological and biochemical aspects of green gram (Vigna radiata L. Wilczek). Indian Journal of Agricultural Research, 43, 194–199.

    Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). London: Academic.

    Google Scholar 

  • Mohanty, N., Vass, I., & Demeter, S. (1989). Impairment of photosystem 2 activity at the level of secondary quinone electron acceptor in chloroplasts treated with cobalt, nickel and zinc ions. Physiologia Plantarum, 76, 386–390.

    Article  CAS  Google Scholar 

  • Moroney, J. V., Bartlett, S. G., & Samuelsson, G. (2001). Carbonic anhydrases in plants and algae. Plant, Cell & Environment, 24, 141–153.

    Article  CAS  Google Scholar 

  • Mossor-Pietraszewska, T. (2001). Effect of aluminium on plant growth and metabolism. Acta Biochimica Polonica, 48, 673–686.

    CAS  PubMed  Google Scholar 

  • Nath, K., Jajoo, A., Poudyal, R. S., Timilsina, R., Park, Y. S., Aroe, E. Y., Nam, H. G., & Lee, C. H. (2013). Towards a critical understanding of the photosystem II repair mechanism and its regulation during stress conditions. FEBS Letters, 587, 3372–3381.

    Article  CAS  PubMed  Google Scholar 

  • Naz, F. S., Yusuf, M., Khan, T. A., Fariduddin, Q., & Ahmad, A. (2015). Low level of selenium increases the efficacy of 24-epibrassinolide through altered physiological and biochemical traits of Brassica juncea plants. Food Chemistry, 185, 441–448.

    Article  CAS  PubMed  Google Scholar 

  • Nellaepalli, S., Zsiros, O., Toth, T., Yadavalli, V., Garab, G., Subramanyam, R., & Kovács, L. (2014). Heat- and light-induced detachment of the light harvesting complex from isolated photosystem I supercomplexes. Journal of Photochemistry and Photobiology B: Biology, 137, 13–20.

    Article  CAS  Google Scholar 

  • Nishiyama, Y., Allakhverdiev, S. I., & Murata, N. (2011). Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiologia Plantarum, 142(1), 35–46.

    Google Scholar 

  • Noctor, G., Mhamdi, A., & Foyer, C. H. (2014). The roles of reactive oxygen metabolism in drought: Not so cut and dried. Plant Physiology, 164, 1636–1648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogweno, J. O., Song, X. S., Shi, K., HU, W. H., Mao, W. H., Zhou, Y. H., Yu, J. Q., & Nogues, S. (2008). Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. Journal of Plant Growth Regulation, 27, 49–57.

    Article  CAS  Google Scholar 

  • Oh, M. H., Wang, X., Wu, X., Zhao, Y., Clouse, S. D., & Huber, S. C. (2010). Autophosphorylation of Tyr-610 in the receptor kinase BAK1 plays a role in brassinosteroid signaling and basal defense gene expression. Proceedings of the National Academy of Sciences, 107, 17827–17832.

    Article  CAS  Google Scholar 

  • Oh, M. H., Sun, J., Oh, D. H., Zielinski, R. E., Clouse, S. D., & Huber, S. C. (2011). Enhancing Arabidopsis leaf growth by engineering the BRASSINOSTEROID INSENSITIVE1 receptor kinase. Plant Physiology, 157, 120–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, J., Lin, S., & Woodbury, N. W. (2012). Bacteriochlorophyll excited-state quenching pathways in bacterial reaction centres with the primary donor oxidized. The Journal of Physical Chemistry. B, 116, 2014–2022.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, D. M., Goswami, C. L., & Kumar, B. (2001). Hormonal regulation of photosynthetic enzymes in cotton under water stress. Photosynthetica, 38, 403–407.

    Article  Google Scholar 

  • Pareek, A., Singla, S. L., & Grover, A. (1998). Protein alterations associated with salinity, desiccation, high and low temperature stresses and abscisic acid application in lal nakanda, a drought tolerant rice cultivar. Current Science, 75, 1170–1174.

    CAS  Google Scholar 

  • Peng, P., Yan, Z., Zhu, Y., & Li, J. (2008). Regulation of the Arabidopsis GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 through proteasome-mediated protein degradation. Molecular Plant, 1, 338–346.

    Article  CAS  PubMed  Google Scholar 

  • Perveen, S., Shahbaz, M., & Ashraf, M. (2010). Regulation in gas exchange and quantum yield of photosystem II (PSII) in salt-stressed and non-stressed wheat plants raised from seed treated with triacontanol. Pakistan Journal of Botany, 42, 3073–3081.

    CAS  Google Scholar 

  • Pinheiro, H. A., Silva, J. V., & Endres, L. (2008). Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L) seedlings subjected to salt stress conditions. Indstrial Crops and Products, 27, 385–392.

    Article  CAS  Google Scholar 

  • Piñol, R., & Simón, E. (2009). Effect of 24-epibrassinolide on chlorophyll fluorescence and photosynthetic CO2 assimilation in Vicia faba plants treated with the photosynthesis-inhibiting herbicide terbutryn. Journal of Plant Growth Regulation, 28, 97–105.

    Article  CAS  Google Scholar 

  • Pociecha, E., Dziurka, M., Oklestkova, J., & Janeczko, A. (2016). Brassinosteroids increase winter survival of winter rye (Secale cereale L.) by affecting photosynthetic capacity and carbohydrate metabolism during the cold acclimation process. Plant Growth Regulation, 80, 127–135.

    Article  CAS  Google Scholar 

  • Pociecha, E., Dziurka, D., Waligórski, P., Tomasz, K., & Janeczko, A. (2017). 24-epibrassinolide pre-treatment modifies cold-induced photosynthetic acclimation mechanisms and phytohormone response of perennial ryegrass in cultivar-dependent manner. Journal of Plant Growth Regulation, 36, 618–628

    Google Scholar 

  • Portis, A. R., Jr. (1992). Regulation of ribulose 1, 5-bisphosphate carboxylase/oxygenase activity. Annual Review of Plant Biology, 43, 415–437.

    Article  CAS  Google Scholar 

  • Poschenrieder, C., Gunse, B., & Barceló, J. (1989). Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves. Plant Physiology, 90, 1365–1371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qayyum, B. U., Shahbaz, M. U., & Akram, N. A. (2007). Interactive effect of foliar application of 24-epibrassinolide and root zone salinity on morpho-physiological attributes of wheat (Triticum aestivum L.). International Journal of Agriculture and Biology, 9, 584–589.

    CAS  Google Scholar 

  • Rady, M. M. (2011). Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Scientia Horticulturae, 129, 232–237.

    Article  CAS  Google Scholar 

  • Raven, J. A., Evans, M. C., & Korb, R. E. (1999). The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynthesis Research, 60, 111–150.

    Article  CAS  Google Scholar 

  • Reddy, M. P., & Vora, A. B. (1986). Changes in pigment composition, Hill reaction activity and saccharides metabolism in Bajra (Pennisetum typhoides S & H) leaves under NaCl salinity. Photosynthetica, 20, 50–55.

    CAS  Google Scholar 

  • Rhodes, D., Nadolska-Orczyk, A., & Rich, P. J. (2002). Salinity, osmolytes and compatible solutes. In Salinity: Environment-plants-molecules (pp. 181–204). Dordrecht: Springer.

    Google Scholar 

  • Sairam, R. K. (1994a). Effect of homobrassinolide application on metabolic activity and grain yield of wheat under normal and water-stress condition. Journal of Agronomy and Crop Science, 173, 11–16.

    Article  CAS  Google Scholar 

  • Sairam, R. K. (1994b). Effects of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture-stress conditions of two wheat varieties. Plant Growth Regulation, 14, 173–181.

    Article  CAS  Google Scholar 

  • Sam, O., Núñez, M., Ruiz-Sánchez, M. C., Dell’Amico, J., Falcón, V., De La Rosa, M. C., & Seoane, J. (2001). Effect of a brassinosteroid analogue and high temperature stress on leaf ultrastructure of Lycopersicon esculentum. Biologia Plantarum, 44, 213–218.

    Article  Google Scholar 

  • Serna, M., Hernández, F., Coll, F., & Amords, A. (2012). Brassinosteroid analogues effect on yield and quality parameters of field-grown lettuce (Lactuca sativa L.). Scientia Horticulturae, 143, 29–37.

    Article  CAS  Google Scholar 

  • Shahbaz, M., Ashraf, M., & Athar, H. U. R. (2008). Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regulation, 55, 51–64.

    Article  CAS  Google Scholar 

  • Sharma, I., Ching, E., Saini, S., Bhardwaj, R., & Pati, P. K. (2013). Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiology and Biochemistry, 69, 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Sheoran, I. S., Singal, H. R., & Singh, R. (1990). Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeonpea (Cajanus cajan L.). Photosynthesis Research, 23, 345–351.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui, H., Hayat, S., & Bajguz, A. (2018a). Regulation of photosynthesis by brassinosteroids in plants. Acta Physiologiae Plantarum, 40, 59.

    Article  CAS  Google Scholar 

  • Siddiqui, H., Ahmed, K. B. M., & Hayat, S. (2018b). Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the performance of different components influencing the photosynthetic machinery in Brassica juncea L. Plant Physiology and Biochemistry, 129, 198–212.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui, H., Yusuf, M., Faraz, A., Faizan, M., Sami, F., & Hayat, S. (2018c). 24-Epibrassinolide supplemented with silicon enhances the photosynthetic efficiency of Brassica juncea under salt stress. South African Journal of Botony, 118, 120–128.

    Article  CAS  Google Scholar 

  • Simões-Araújo, J. L., Rumjanek, N. G., & Margis-Pinheiro, M. (2003). Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. Brazilian Journal of Plant Physiology, 15, 33–41.

    Article  Google Scholar 

  • Singh, I., & Shono, M. (2005). Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regulation, 47, 111–119.

    Article  CAS  Google Scholar 

  • Singh, P. K., & Tewari, R. K. (2003). Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. Journal of Environmental Biology, 24, 107–112.

    CAS  PubMed  Google Scholar 

  • Singh, I., Kumar, U., Singh, S. K., Gupta, C., Singh, M., & Kushwaha, S. R. (2012). Physiological and biochemical effect of 24-epibrassinoslide on cold tolerance in maize seedlings. Physiology and Molecular Biology of Plants, 18, 229–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, S., & Stewart, G. R. (1990). Effect of potassium levels on the stomatal behavior of the hemi-parasite Striga hermonthica. Plant Physiology, 94, 1472–1476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofo, A., Tuzio, A. C., Dichio, B., & Xiloyannis, C. (2005). Influence of water deficit and rewatering on the components of the ascorbate–glutathione cycle in four interspecific Prunus hybrids. Plant Science, 169, 403–412.

    Article  CAS  Google Scholar 

  • Stobart, A. K., Griffiths, W. T., Ameen-Bukhari, I., & Sherwood, R. P. (1985). The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiologia Plantarum, 63, 293–298.

    Article  CAS  Google Scholar 

  • Sültemeyer, D., Schmidt, C., & Fock, H. P. (1993). Carbonic anhydrases in higher plants and aquatic microorganisms. Physiologia Plantarum, 88, 179–190.

    Article  Google Scholar 

  • Swamy, K. N., & Rao, S. S. R. (2009). Effect of 24-epibrassinolide on growth, photosynthesis, and essential oil content of Pelargonium graveolens (L.) Herit. Russian Journal of Plant Physiology, 56, 616–620.

    Article  CAS  Google Scholar 

  • Swamy, K. N., Vardhini, B. V., Ramakrishna, B., Anuradha, S., Siddulu, N., & Rao, S. S. R. (2014). Role of 28-homobrassinolide on growth biochemical parameters of Trigonella foenu-graecum L. plants subjected to lead toxicity. International Journal of Multidisciplinary Current Research, 2, 317–321.

    Google Scholar 

  • Takahashi, S., & Badger, M. R. (2011). Photoprotection in plants: A new light on photosystem II damage. Trends in Plant Science, 16, 53–60.

    Article  CAS  PubMed  Google Scholar 

  • Thussagunpanit, J., Jutamanee, K., & Kaveeta, L. (2015). Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation, and rice seed set under heat stress. Journal of Plant Growth Regulation, 34, 320–331.

    Article  CAS  Google Scholar 

  • Tikkanen, M., & Aro, E. M. (2014). Integrative regulatory network of plant thylakoid energy transduction. Trends in Plant Science, 19, 10–17.

    Article  CAS  PubMed  Google Scholar 

  • Vassilev, A., & Yordanov, I. (1997). Reductive analysis of factors limiting growth of cadmium-treated plants: A review. Bulgarian Journal of Plant Physiology, 23, 114–133.

    CAS  Google Scholar 

  • Verma, A., Malik, C. P., & Gupta, V. K. (2011). In vitro effects of brassinosteroids on the growth and antioxidant enzyme activities in groundnut. ISRN Agronomy, 2012, 1–8.

    Article  CAS  Google Scholar 

  • Vert, G., & Chory, J. (2006). Downstream nuclear events in brassinosteroid signaling. Nature, 441, 96–100.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., & Chory, J. (2006). Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science, 313, 1118–1122.

    Article  CAS  PubMed  Google Scholar 

  • Weast, R. C. (1984). CRC handbook of chemistry and physics (64th ed.). Boca Raton: CRC.

    Google Scholar 

  • Went, F. W., & Thimann, K. V. (1937). Phytohormones. New York: Osmun/Universe Books.

    Google Scholar 

  • Wise, R. R., & Naylor, A. W. (1987). Chilling-enhanced photooxidation the peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiology, 83, 272–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff, S. P., Garner, A., & Dean, R. T. (1986). Free radicals, lipids and protein degradation. Trends in Biochemical Sciences, 11, 27–31.

    Article  CAS  Google Scholar 

  • Wu, X. X., He, J., Zhu, Z. W., Yang, S. J., & Zha, D. S. (2014). Protection of photosynthesis and antioxidative system by 24-epibrassinolide in Solanum melongena under cold stress. Biologia Plantarum, 58, 185–188.

    Article  CAS  Google Scholar 

  • Xia, X. J., Huang, Y. Y., Wang, L., Huang, L. F., Yu, Y. L., Zhou, Y. H., & Yu, J. Q. (2006). Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pre-treatment in Cucumis sativus L. Pesticide Biochemistry and Physiology, 86, 42–48.

    Article  CAS  Google Scholar 

  • Xia, X. J., Huang, L. F., Zhou, Y. H., Mao, W. H., Shi, K., Wu, J. X., Asami, T., Chen, Z., & Yu, J. Q. (2009). Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta, 230, 1185–1196.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J. Y., Zheng, W., Tian, Y., Wu, Y., & Zhou, D. W. (2011). Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica, 49, 275–284.

    Article  CAS  Google Scholar 

  • Yin, Y., Vafeados, D., Tao, Y., Yoshida, S., Asami, T., & Chory, J. (2005). A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell, 120, 249–259.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J. Q., Huang, L. F., Hu, W. H., Zhou, Y. H., Mao, W. H., Ye, S. F., & Nogués, S. (2004). A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. Journal of Experimental Botany, 55, 1135–1143.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, L., Shu, S., Sun, J., Guo, S., & Tezuka, T. (2012). Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress. Photosynthesis Research, 112, 205–214.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, G. F., Jia, C. G., Li, Z., Sun, B., Zhang, L. P., Liu, N., & Wang, Q. M. (2010). Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Scientia Horticulturae, 126(2), 103–108.

    Google Scholar 

  • Yusuf, M., Fariduddin, Q., Ahmad, I., & Ahmad, A. (2014). Brassinosteroid-mediated evaluation of antioxidant system and nitrogen metabolism in two contrasting cultivars of Vigna radiata under different levels of nickel. Physiology and Molecular Biology of Plants, 20, 449–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zayed, A. M., & Terry, N. (2003). Chromium in the environment: Factors affecting biological remediation. Plant and Soil, 249, 139–156.

    Article  CAS  Google Scholar 

  • Zhang, J. H., Huang, W. D., Liu, Y. P., & PAN, Q. H. (2005). Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera l. cv. jingxiu) under cross-temperature stresses. Journal of Integrative Plant Biology, 47, 959–970.

    Article  Google Scholar 

  • Zhang, M., Zhai, Z., Tian, X., Duan, L., & Li, Z. (2008). Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regulation, 56, 257–264.

    Article  CAS  Google Scholar 

  • Zhang, M. K., Liu, Z. Y., & Wang, H. (2010). Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Communications in Soil Science and Plant Analysis, 41, 820–831.

    Article  CAS  Google Scholar 

  • Zhu, J. K. (2001). Cell signaling under salt, water and cold stresses. Current Opinion in Plant Biology, 4, 401–406.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siddiqui, H., Sami, F., Faizan, M., Faraz, A., Hayat, S. (2019). Brassinosteroid Mediated Regulation of Photosynthesis in Plants. In: Hayat, S., Yusuf, M., Bhardwaj, R., Bajguz, A. (eds) Brassinosteroids: Plant Growth and Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6058-9_7

Download citation

Publish with us

Policies and ethics