Skip to main content

Brassinosteroids in Microalgae: Application for Growth Improvement and Protection Against Abiotic Stresses

  • Chapter
  • First Online:
Brassinosteroids: Plant Growth and Development

Abstract

Brassinosteroids have been found in a broad spectrum of microalgae, their biological activities correspond to the function in higher plants. Studies on the endogenous brassinosteroids suggest that the operation of the early and late C6-oxidation pathways, lead to brassinolide existence in algae. The growth and development of algae under the influence of brassinosteroids are unusually dynamic, despite the application of micromolar concentrations. These compounds regulate every aspect of algal life, from formation during development via stimulation of metabolite synthesis to abiotic stress responses, such as heavy metal action, salt and thermal stress. The relationship between brassinosteroids and the other well-known plant hormones has been explored. This chapter summarizes the studies of brassinosteroids on algal cultures in the last three decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bajguz, A. (2000a). Blockade of heavy metals accumulation in Chlorella vulgaris cells by 24-epibrassinolide. Plant Physiology and Biochemistry, 38, 797–801.

    Article  CAS  Google Scholar 

  • Bajguz, A. (2000b). Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiology and Biochemistry, 38, 209–215.

    Article  CAS  Google Scholar 

  • Bajguz, A. (2002). Brassinosteroids and lead as stimulators of phytochelatins synthesis in Chlorella vulgaris. Journal of Plant Physiology, 159, 321–324.

    Article  CAS  Google Scholar 

  • Bajguz, A. (2009a). Brassinosteroid enhanced the level of abscisic acid in Chlorella vulgaris subjected to short-term heat stress. Journal of Plant Physiology, 166, 882–886.

    Article  CAS  Google Scholar 

  • Bajguz, A. (2009b). Isolation and characterization of brassinosteroids from algal cultures of Chlorella vulgaris Beijerinck (Trebouxiophyceae). Journal of Plant Physiology, 166, 1946–1949.

    Google Scholar 

  • Bajguz, A. (2010). An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environmental and Experimental Botany, 68, 175–179.

    Article  CAS  Google Scholar 

  • Bajguz, A. (2011). Suppression of Chlorella vulgaris growth by cadmium, lead, and copper stress and its restoration by endogenous brassinolide. Archives of Environmental Contamination and Toxicology, 60, 406–416.

    Article  CAS  Google Scholar 

  • Bajguz, A., & Asami, T. (2004). Effects of brassinazole, an inhibitor of brassinosteroid biosynthesis, on light- and dark-grown Chlorella vulgaris. Planta, 218, 869–877.

    Article  CAS  Google Scholar 

  • Bajguz, A., & Czerpak, R. (1996). Effect of brassinosteroids on growth and proton extrusion in the alga Chlorella vulgaris Beijerinck (Chlorophyceae). Journal of Plant Growth Regulation, 15, 153–156.

    Google Scholar 

  • Bajguz, A., & Czerpak, R. (1998). Physiological and biochemical role of brassinosteroids and their structure-activity relationship in the green alga Chlorella vulgaris Beijerinck (Chlorophyceae). Journal of Plant Growth Regulation, 17, 131–139.

    Google Scholar 

  • Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 47, 1–8.

    Article  CAS  Google Scholar 

  • Bajguz, A., & Piotrowska-Niczyporuk, A. (2013). Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiology and Biochemistry, 71, 290–297.

    Google Scholar 

  • Bajguz, A., & Piotrowska-Niczyporuk, A. (2014). Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiology and Biochemistry, 80, 176–183.

    Google Scholar 

  • Bajguz, A., & Tretyn, A. (2003). The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry, 62, 1027–1046.

    Article  CAS  Google Scholar 

  • Borowitzka, M. A., Beardall, J., & Raven, J. A. (Eds.). (2016). The physiology of microalgae. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-24945-2.

    Book  Google Scholar 

  • Buchanan, B. B., Gruissem, W., & Jones, R. L. (2005). Biochemistry & molecular biology of plants (2nd ed.). Hoboken: Wiley.

    Google Scholar 

  • Choudhary, S. P., Yu, J. Q., Yamaguchi-Shinozaki, K., Shinozaki, K., & Tran, L. S. P. (2012). Benefits of brassinosteroid crosstalk. Trends in Plant Science, 17, 594–605. https://doi.org/10.1016/j.tplants.2012.05.012.

  • Chung, Y., & Choe, S. (2013). The regulation of brassinosteroid biosynthesis in Arabidopsis. Critical Reviews in Plant Sciences, 32, 396–410.

    Article  Google Scholar 

  • Davies, P. J. (Ed.). (2010). Plant hormones. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-2686-7.

    Book  Google Scholar 

  • Fradique, M., Batista, A. P., Nunes, M. C., Gouveia, L., Bandarra, N. M., & Raymundo, A. (2010). Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. Journal of Science and Food Agriculture, 90, 1656–1664.

    Google Scholar 

  • Gallego-Bartolome, J., Minguet, E. G., Grau-Enguix, F., Abbas, M., Locascio, A., Thomas, S. G., Alabadi, D., & Blazquez, M. A. (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences, 109, 13446–13451.

    Article  CAS  Google Scholar 

  • Gao, Z., Meng, C., Gao, H., Zhang, X., Xu, D., Su, Y., Wang, Y., Zhao, Y., & Ye, N. (2013). Analysis of mRNA expression profiles of carotenogenesis and astaxanthin production of Haematococcus pluvialis under exogenous 24-epibrassinolide (EBR). Biological Research, 46, 201–206.

    Article  Google Scholar 

  • Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N., Worley, J. F., Warthen, J. D., Steffens, G. L., Flippen-Anderson, J. L., & Cook, J. C. (1979). Brassinolide, a plant growth- promoting steroid isolated from Brassica napus pollen. Nature, 281, 216–217.

    Article  CAS  Google Scholar 

  • Hardtke, C. S., Dorcey, E., Osmont, K. S., & Sibout, R. (2007). Phytohormone collaboration: zooming in on auxin–brassinosteroid interactions. Trends in Cell Biology, 17, 485–492.

    Article  CAS  Google Scholar 

  • Hofmann, N. R. (2015). Taking hormone crosstalk to a new level: Brassinosteroids regulate gibberellin biosynthesis. Plant Cell, 27, 2081–2081.

    Article  CAS  Google Scholar 

  • Kanwar, M. K., Bajguz, A., Zhou, J., & Bhardwaj, R. (2017). Analysis of brassinosteroids in plants. Journal of Plant Growth Regulation, 36, 1002–1030.

    Article  CAS  Google Scholar 

  • Kozlova, T. A., Hardy, B. P., Krishna, P., & Levin, D. B. (2017). Effect of phytohormones on growth and accumulation of pigments and fatty acids in the microalgae Scenedesmus quadricauda. Algal Research, 27, 325–334.

    Article  Google Scholar 

  • Liang, S., Liu, X., Chen, F., & Chen, Z. (2004). Current microalgal health food R & D activities in China. In P. O. Ang (Ed.), Asian Pacific Phycology in the 21st Century: Prospects and Challenges (pp. 45–48). Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  • Lichtenthaler, H. (1999). The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 47–65.

    Google Scholar 

  • Liu, J., Qiu, W., & Xia, D. (2018). Brassinosteroid improves lipid productivity and stress tolerance of Chlorella cells induced by high temperature. Journal of Applied Phycology, 30, 253–260.

    Google Scholar 

  • Lu, Y., & Xu, J. (2015). Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends in Plant Science, 20, 273–282.

    Article  CAS  Google Scholar 

  • Marumo, S., Hattori, H., Abe, H., Nonoyama, Y., & Munakata, K. (1968). The presence of novel plant growth regulators in leaves of Distylium racemosum Sieb et Zucc. Agricultural and Biological Chemistry, 32, 528–529.

    Article  CAS  Google Scholar 

  • Mitchell, J. W., Mandava, N., Worley, J. F., Plimmer, J. R., & Smith, M. V. (1970). Brassins - a new family of plant hormones from rape pollen. Nature, 225, 1065–1066.

    Article  CAS  Google Scholar 

  • Panis, G., & Carreon, J. R. (2016). Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line. Algal Research, 18, 175–190.

    Google Scholar 

  • Rajewska, I., Talarek, M., & Bajguz, A. (2016). Brassinosteroids and response of plants to heavy metals action. Frontiers in Plant Science, 7, 629.

    Article  Google Scholar 

  • Safi, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35, 265–278.

    Article  Google Scholar 

  • Sahoo, D., & Seckbach, J. (2015). The Algae World. Dordrecht: Springer.

    Book  Google Scholar 

  • Shah, M. M. R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Frontiers in Plant Science, 7, 531.

    PubMed  PubMed Central  Google Scholar 

  • Singh, R., Parihar, P., Singh, M., Bajguz, A., Kumar, J., Singh, S., Singh, V. P., & Prasad, S. M. (2017). Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: Current status and future prospects. Frontiers in Microbiology, 8, 515.

    Article  Google Scholar 

  • Sivakumar, G., Xu, J., Thompson, R. W., Yang, Y., Randol-Smith, P., & Weathers, P. J. (2012). Integrated green algal technology for bioremediation and biofuel. Bioresource Technology, 107, 1–9.

    Article  CAS  Google Scholar 

  • Stirk, W. A., & Staden, J. V. (2014). Plant growth regulators in seaweeds. In Advances in botanical research (pp. 125–159). London: Elsevier.

    Google Scholar 

  • Stirk, W., Novák, O., Strnad, M., & van Staden, J. (2003). Cytokinins in macroalgae. Plant Growth Regulation, 41, 13–24.

    Article  CAS  Google Scholar 

  • Stirk, W., Bálint, P., Tarkowská, D., Novák, O., Strnad, M., Ördög, V., & van Staden, J. (2013a). Hormone profiles in microalgae: gibberellins and brassinosteroids. Plant Physiology and Biochemistry, 70, 348–353.

    Article  CAS  Google Scholar 

  • Stirk, W. A., Ordög, V., Novák, O., Rolcik, J., Strnad, M., Bálint, P., & van Staden, J. (2013b). Auxin and cytokinin relationships in 24 microalgal strains. Journal of Phycology, 49, 459–467.

    Article  CAS  Google Scholar 

  • Stirk, W., Bálint, P., Tarkowská, D., Novák, O., Maróti, G., Ljung, K., Turecková, V., Strnad, M., Ordög, V., & van Staden, J. (2014a). Effect of light on growth and endogenous hormones in Chlorella minutissima (Trebouxiophyceae). Plant Physiology and Biochemistry, 79, 66–76.

    Article  CAS  Google Scholar 

  • Stirk, W. A., Tarkowská, D., Turecová, V., Strnad, M., & van Staden, J. (2014b). Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima. Journal of Applied Phycology, 26, 561–567.

    Google Scholar 

  • Stirk, W. A., Bálint, P., Tarkowská, D., Strnad, M., van Staden, J., & Ördög, V. (2018). Endogenous brassinosteroids in microalgae exposed to salt and low temperature stress. European Journal of Phycology, 53, 273–279.

    Article  CAS  Google Scholar 

  • Talarek-Karwel, M., Bajguz, A., Piotrowska-Niczyporuk, A., & Rajewska, I. (2018). The effect of 24-epibrassinolide on the green alga Acutodesmus obliquus (Chlorophyceae). Plant Physiology and Biochemistry, 124, 175–183.

    Google Scholar 

  • Tarakhovskaya, E. R., Maslov, Y. I., & Shishova, M. F. (2007). Phytohormones in algae. Russian Journal of Plant Physiology, 54, 163–170.

    Article  CAS  Google Scholar 

  • Tarkowská, D., & Strnad, M. (2017). Protocol for extraction and isolation of brassinosteroids from plant tissues. In Methods in Molecular Biology (pp. 1–7). New York: Springer.

    Google Scholar 

  • Tarkowská, D., Novák, O., Oklestkova, J., & Strnad, M. (2016). The determination of 22 natural brassinosteroids in a minute sample of plant tissue by UHPLC–ESI–MS/MS. Analytical and Bioanalytical Chemistry, 408, 6799–6812.

    Article  Google Scholar 

  • Tate, J. J., Gutierrez-Wing, M. T., Rusch, K. A., & Benton, M. G. (2013). The effects of plant growth substances and mixed cultures on growth and metabolite production of green algae Chlorella sp.: A Review. Journal of Plant Growth Regulation, 32, 417–428.

    Google Scholar 

  • Tian, H., Lv, B., Ding, T., Bai, M., & Ding, Z. (2018). Auxin-BR interaction regulates plant growth and development. Frontiers in Plant Science, 8, 2256.

    Article  Google Scholar 

  • Tran, L. S. P., & Pal, S. (eds) (2014). Phytohormones: A window to metabolism. Signaling and biotechnological applications. New York: Springer. https://doi.org/10.1007/978-1-4939-0491-4.

  • Tsavkelova, E. A., Klimova, S. Y., Cherdyntseva, T. A., & Netrusov, A. I. (2006). Hormones and hormone like substances of microorganisms: A review. Applied Biochemistry and Microbiology, 42, 229–235.

    Article  CAS  Google Scholar 

  • Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell, K. E., Smith, A. G., Camire, M. E., & Brawley, S. H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29, 949–982.

    Article  CAS  Google Scholar 

  • Yokota, T., Arima, M., & Takahashi, N. (1982). Castasterone, a new phytosterol with plant hormone potency, from chestnut insect gall. Tetrahedron Letters, 23, 1275–1278.

    Article  CAS  Google Scholar 

  • Yokota, T., Kim, S. K., Fukui, Y., Takahashi, N., Takeuchi, Y., & Takematsu, T. (1987). Brassinosteroids and sterols from a green alga, Hydrodictyon reticulatum: Configuration at C-24. Phytochemistry, 26, 503–506.

    Article  CAS  Google Scholar 

  • Youn, J. H., Kim, T. W., Joo, S. H., Son, S. H., Roh, J., Kim, S., Kim, T. W., & Kim, S. K. (2018). Function and molecular regulation of DWARF1 as a C-24 reductase in brassinosteroid biosynthesis in Arabidopsis. Journal of Experimental Botany, 69, 1873–1886.

    Google Scholar 

  • Zeraatkar, A. K., Ahmadzadeh, H., Talebi, A. F., Moheimani, N. R., & McHenry, M. P. (2016). Potential use of algae for heavy metal bioremediation, a critical review. Journal of Environmental Management, 181, 817–831.

    Article  CAS  Google Scholar 

  • Zhao, B., & Li, J. (2012). Regulation of brassinosteroid biosynthesis and inactivation. Journal of Integrative Plant Biology, 54, 746–759.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author is grateful to Adam Bajguz for an excellent assisting during the text edition in LaTeX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Bajguz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bajguz, A. (2019). Brassinosteroids in Microalgae: Application for Growth Improvement and Protection Against Abiotic Stresses. In: Hayat, S., Yusuf, M., Bhardwaj, R., Bajguz, A. (eds) Brassinosteroids: Plant Growth and Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6058-9_2

Download citation

Publish with us

Policies and ethics