Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 364 Accesses

Abstract

Light emission from organic materials has been an important research topic during the last few decades because of its scientific and technological importance, particularly due to the success of organic light emitting diodes (OLEDs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Furno M, Meerheim R, Hofmann S, Lüssem B, Leo K (2012) Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys Rev B 85(11):115205. https://doi.org/10.1103/physrevb.85.115205

    Article  ADS  Google Scholar 

  2. Chance R, Prock A, Silbey R (1978) Molecular fluorescence and energy transfer near interfaces. Adv Chem Phys 37:65

    Google Scholar 

  3. Barnes W (1998) Fluorescence near interfaces: the role of photonic mode density. J Modern Optics 45:661–699

    Article  ADS  MathSciNet  Google Scholar 

  4. Neyts KA (1998) Simulation of light emission from thin-film microcavities. JOSA A 15:962–971

    Article  ADS  Google Scholar 

  5. Wasey J, Safonov A, Samuel I, Barnes W (2000) Effects of dipole orientation and birefringence on the optical emission from thin films. Optics Commun 183:109–121

    Article  ADS  Google Scholar 

  6. Wasey JAE, Safonov A, Samuel IDW, Barnes WL (2001) Efficiency of radiative emission from thin films of a light-emitting conjugated polymer. Phys Re B 64(20):205201. https://doi.org/10.1103/physrevb.64.205201

    Article  ADS  Google Scholar 

  7. Lin C-L, Cho T-Y, Chang C-H, Wu C-C (2006) Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode. Appl Phys Lett 88:081114

    Article  ADS  Google Scholar 

  8. Lin C-L, Chang H-C, Tien K-C, Wu C-C (2007) Influences of resonant wavelengths on performances of microcavity organic light-emitting devices. Appl Phys Lett 90:071111

    Article  ADS  Google Scholar 

  9. Kim, J-B, Lee J-H, Moon C-K Kim J-J (2014) Highly efficient inverted top emitting organic light emitting diodes using a transparent top electrode with color stability on viewing angle. Appl Phys Lett 104: 31–33

    Article  ADS  Google Scholar 

  10. Bulović V et al (1998) Weak microcavity effects in organic light-emitting devices. Phys Rev B 58:3730

    Article  ADS  Google Scholar 

  11. Wasey J, Safonov A, Samuel I, Barnes W (2000) Effects of dipole orientation and birefringence on the optical emission from thin films. Optics Commun 183:109–121

    Article  ADS  Google Scholar 

  12. Kim SY et al (2013) Organic Light-Emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter. Adv Func Mater 23:3896–3900

    Article  Google Scholar 

  13. Shin H et al (2014) Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit. Adv Mater 26:4730–4734

    Article  Google Scholar 

  14. Lu M-H, Sturm J (2002) Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment. J Appl Phys 91:595–604

    Article  ADS  Google Scholar 

  15. Smith LH, Wasey JA, Samuel ID, Barnes WL (2005) Light out-coupling efficiencies of organic light-emitting diode structures and the effect of photoluminescence quantum yield. Adv Func Mater 15:1839–1844

    Article  Google Scholar 

  16. Nowy S, Krummacher BC, Frischeisen J, Reinke NA, Brütting W (2008) Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency. J Appl Phys 104:123109

    Article  ADS  Google Scholar 

  17. Meerheim R, Furno M, Hofmann S, Lüssem B, Leo K (2010) Quantification of energy loss mechanisms in organic light-emitting diodes. Appl Phys Lett 97:275

    Article  Google Scholar 

  18. Kim S-Y, Kim J-J (2010) Outcoupling efficiency of organic light emitting diodes and the effect of ITO thickness. Org Electron 11:1010–1015

    Article  Google Scholar 

  19. Lee J-H, Lee S, Kim J-B, Jang J, Kim J-J (2012) A high performance transparent inverted organic light emitting diode with 1, 4, 5, 8, 9, 11-hexaazatriphenylenehexacarbonitrile as an organic buffer layer. J Mater Chem 22:15262–15266

    Article  Google Scholar 

  20. Kim JB, Lee JH, Moon CK, Kim SY, Kim JJ (2013) Highly enhanced light extraction from surface plasmonic loss minimized organic light-emitting diodes. Adv Mater 25:3571–3577

    Article  Google Scholar 

  21. Kim KH, Moon CK, Lee JH, Kim SY, Kim JJ (2014) Highly efficient organic light-emitting diodes with phosphorescent emitters having high quantum yield and horizontal orientation of transition dipole moments. Adv Mater 26:3844–3847

    Article  Google Scholar 

  22. Sun JW et al (2014) A fluorescent organic light-emitting diode with 30% external quantum efficiency. Adv Mater 26:5684–5688

    Article  ADS  Google Scholar 

  23. Frischeisen J, Yokoyama D, Adachi C, Brütting W (2010) Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements. Appl Phys Lett 96:073302. https://doi.org/10.1063/1.3309705

    Article  ADS  Google Scholar 

  24. Flämmich M et al (2011) Oriented phosphorescent emitters boost OLED efficiency. Org Electron 12:1663–1668

    Article  Google Scholar 

  25. Liehm P et al (2012) Comparing the emissive dipole orientation of two similar phosphorescent green emitter molecules in highly efficient organic light-emitting diodes. Appl Phys Lett 101:253304

    Article  ADS  Google Scholar 

  26. Flämmich M et al (2010) Orientation of emissive dipoles in OLEDs: quantitative in situ analysis. Org Electron 11:1039–1046

    Article  Google Scholar 

  27. Schmidt TD et al (2011) Evidence for non-isotropic emitter orientation in a red phosphorescent organic light-emitting diode and its implications for determining the emitter’s radiative quantum efficiency. Appl Phys Lett 99:225

    Google Scholar 

  28. Penninck L, Steinbacher F, Krause R, Neyts K (2012) Determining emissive dipole orientation in organic light emitting devices by decay time measurement. Org Electron 13:3079–3084

    Article  Google Scholar 

  29. Lin H-W et al (2004) Anisotropic optical properties and molecular orientation in vacuum-deposited ter (9, 9-diarylfluorene) s thin films using spectroscopic ellipsometry. J Appl Phys 95:881–886

    Article  ADS  Google Scholar 

  30. Yokoyama D, Sakaguchi A, Suzuki M, Adachi C (2008) Horizontal molecular orientation in vacuum-deposited organic amorphous films of hole and electron transport materials. Appl Phys Lett 93:394

    Article  Google Scholar 

  31. Yokoyama D (2011) Molecular orientation in small-molecule organic light-emitting diodes. J Mater Chem 21:19187–19202

    Article  Google Scholar 

  32. Yokoyama D, Nakayama KI, Otani T, Kido J (2012) Wide-range refractive index control of organic semiconductor films toward advanced optical design of organic optoelectronic devices. Adv Mater 24(47):6368–6373

    Article  Google Scholar 

  33. Penninck L, De Visschere P, Beeckman J, Neyts K (2011) Dipole radiation within one-dimensional anisotropic microcavities: a simulation method. Opt Express 19:18558–18576

    Article  ADS  Google Scholar 

  34. Purcell EM (1995) Spontaneous emission probabilities at radio frequencies. In: Confined Electrons and Photons. Springer, Boston, MA, pp 839–839

    Chapter  Google Scholar 

  35. Lamansky S et al (2001) Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes. J Am Chem Soc 123:4304–4312

    Article  Google Scholar 

  36. Kim KH, Moon CK, Lee JH, Kim SY, Kim JJ (2014) Highly efficient organic light-emitting diodes with phosphorescent emitters having high quantum yield and horizontal orientation of transition dipole moments. Adv Mater 26:3844–3847. https://doi.org/10.1002/adma.201305733

    Article  Google Scholar 

  37. Kim S-Y et al (2013) Organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter. Adv Func Mater 23:3896–3900. https://doi.org/10.1002/adfm.201300104

    Article  Google Scholar 

  38. Park YS et al (2013) Exciplex-forming co-host for organic light-emitting diodes with ultimate efficiency. Adv Func Mater 23:4914–4920

    Article  Google Scholar 

  39. Lee JH, Lee S, Yoo SJ, Kim KH, Kim JJ (2014) Langevin and trap-assisted recombination in phosphorescent organic light emitting diodes. Adv Func Mater 24:4681–4688

    Article  Google Scholar 

  40. Lee S, Kim KH, Limbach D, Park YS, Kim JJ (2013) Low roll-off and high efficiency orange organic light emitting diodes with controlled co-doping of green and red phosphorescent dopants in an exciplex forming co-host. Adv Func Mater 23:4105–4110

    Article  Google Scholar 

  41. Yokoyama D (2011) Molecular orientation in small-molecule organic light-emitting diodes. J Mater Chem 21:19187. https://doi.org/10.1039/c1jm13417e

    Article  Google Scholar 

  42. Sasabe H et al (2011) Influence of substituted pyridine rings on physical properties and electron mobilities of 2-methylpyrimidine skeleton-based electron transporters. Adv Func Mater 21:336–342

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moon, CK. (2019). Modeling of the Dipole Radiation in an Anisotropic Microcavity. In: Molecular Orientation and Emission Characteristics of Ir Complexes and Exciplex in Organic Thin Films. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-6055-8_2

Download citation

Publish with us

Policies and ethics