Skip to main content

Back Energy Transfer in Nonanuclear Terbium Clusters

  • Chapter
  • First Online:
Energy Transfer Processes in Polynuclear Lanthanide Complexes

Part of the book series: Springer Theses ((Springer Theses))

  • 306 Accesses

Abstract

Energy transfer from organic ligands to a lanthanide ion is the main concept of sensitized luminescence in lanthanide complexes. Back energy transfer is the reverse process, which occur when the energy of the triplet excited state is close to the emitting excited state of the lanthanide ion and can lead to decrease in sensitization efficiency and therefore the quantum yield as well. Generally, the back energy transfer rate constant is proportional to the energy gap between the triplet excited state and the emitting excited state of the lanthanide, but there are some compounds that deviate from this trend. This chapter focuses on [Tb9(μ-OH)10(L)16]NO3 where ligand L is a derivative of methyl salicylate ligands to change the triplet excited state energy without significantly changing the structure so that direct comparison of back energy transfer rate constant can be performed. The conclusion of this chapter is that back energy transfer rate constant is determined not only by the energy gap but also by the activation energy and the frequency factor (electronic correlation) of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smentek L, Kędziorski A (2010) Efficiency of the energy transfer in lanthanide-organic chelates; spectral overlap integral. J Lumin 130:1154–1159

    Article  CAS  Google Scholar 

  2. Hasegawa Y, Wada Y, Yanagida S (2004) Strategies for the design of luminescent lanthanide (III) complexes and their photonic applications. J Photochem Photobiol, C 5:183–202

    Article  CAS  Google Scholar 

  3. Gutierrez F, Tedeschi C, Maron L, Daudey J-P, Poteau R, Azema J, Tisnès P, Picard C (2004) Quantum chemistry-based interpretations on the lowest triplet state of luminescent lanthanides complexes. Part 1. Relation between the triplet state energy of hydroxamate complexes and their luminescence properties. Dalton Trans 1334–1347

    Google Scholar 

  4. Latva M, Takalo H, Mukkala V-M, Matachescu C, Rodríguez-Ubis JC, Kankare J (1997) Correlation between the lowest triplet state energy level of the ligand and lanthanide (III) luminescence quantum yield. J Lumin 75:149–169

    Article  CAS  Google Scholar 

  5. Nakanishi T, Suzuki Y, Doi Y, Seki T, Koizumi H, Fushimi K, Fujita K, Hinatsu Y, Ito H, Tanaka K, Hasegawa Y (2014) Enhancement of optical faraday effect of nonanuclear Tb (III) complexes. Inorg Chem 53:7635–7641

    Article  CAS  Google Scholar 

  6. Lima NBD, Gonçalves SMC, Júnior SA, Simas AM (2013) A comprehensive strategy to boost the quantum yield of luminescence of europium complexes Sci Rep 3, 2395

    Google Scholar 

  7. Miyata K, Nakagawa T, Kawakami R, Kita Y, Sugimoto K, Nakashima T, Harada T, Kawai T, Hasegawa Y (2011) Remarkable luminescence properties of lanthanide complexes with asymmetric dodecahedron structures. Chem Eur J 17:521–528

    Article  CAS  Google Scholar 

  8. Yanagisawa K, Nakanishi T, Kitagawa Y, Seki T, Akama T, Kobayashi M, Taketsugu T, Ito H, Fushimi K, Hasegawa Y (2015) Seven‐coordinate luminophores: brilliant luminescence of lanthanide complexes with C3v geometrical structures. Eur J Inorg Chem 4769–4774

    Article  CAS  Google Scholar 

  9. Hasegawa Y, Ohkubo T, Nakanishi T, Kobayashi A, Kato M, Seki T, Ito H, Fushimi K (2013) Effect of ligand polarization on asymmetric structural formation for strongly luminescent lanthanide complexes. Eur J Inorg Chem 5911–5918

    Article  CAS  Google Scholar 

  10. Manseki K, Hasegawa Y, Wada Y, Ichida H, Kanematsu Y, Kushida T (2007) Visible and near-infrared luminescence from self-assembled lanthanide (III) clusters with organic photosensitizers. J Lumin 122–123:262–264

    Article  Google Scholar 

  11. Katagiri S, Tsukahara Y, Hasegawa Y, Wada Y (2007) Energy-transfer mechanism in photoluminescent terbium (III) complexes causing their temperature-dependence. Bull Chem Soc Jpn 80:1492–1503

    Article  CAS  Google Scholar 

  12. Yanagisawa K, Kitagawa Y, Nakanishi T, Akama T, Kobayashi M, Seki T, Fushimi K, Ito H, Taketsugu T, Hasegawa Y (2017) Enhanced Luminescence of Asymmetrical Seven‐Coordinate EuIII Complexes Including LMCT Perturbation. Eur J Inorg Chem 3843–3848

    Article  CAS  Google Scholar 

  13. Miyata K, Konno Y, Nakanishi T, Kobayashi A, Kato M, Fushimi K, Hasegawa Y (2013) Chameleon luminophore for sensing temperatures: control of metal‐to‐metal and energy back transfer in lanthanide coordination polymers. Angew Chem Int Ed 52:6413–6416

    Article  CAS  Google Scholar 

  14. Hatanaka M, Morokuma K (2014) The ONIOM method and its applications. J Chem Theory Comput 10:4184–4188

    Article  CAS  Google Scholar 

  15. Omagari S, Nakanishi T, Kitagawa Y, Fushimi K, Hasegawa Y (2015) Synthesis and photoluminescence properties of nonanuclear Tb (III) clusters with long alkyl chain group. e-J Surf Sci Nanotech 13, 27–30

    Article  CAS  Google Scholar 

  16. Omagari S, Nakanishi T, Seki T, Kitagawa Y, Takahata Y, Fushimi K, Ito H, Hasegawa Y (2015) effective photosensitized energy transfer of nonanuclear terbium clusters using methyl salicylate derivatives. J Phys Chem A 119, 1943–1947

    Article  CAS  Google Scholar 

  17. Nasso I, Geum N, Bechara G, Mestre-Voegtlé B, Galaup C, Picard C (2014) Highly luminescent Tb (III) macrocyclic complex based on a DO3A hosting unit and an appended carboxylated N, C-pyrazolylpyridine antenna. J Photochem Photobiol, A 274:124–132

    Article  CAS  Google Scholar 

  18. Bassett AP, Magennis SW, Glover PB, Lewis DJ, Spencer N, Parsons S, Williams RM, De Cola L, Pikramenou Z (2004) Highly luminescent, triple-and quadruple-stranded, dinuclear Eu, Nd, and Sm (III) lanthanide complexes based on bis-diketonate ligands. J Am Chem Soc 126:9413–9424

    Article  CAS  Google Scholar 

  19. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322

    Article  CAS  Google Scholar 

  20. Marcus RA (1984) Nonadiabatic processes involving quantum‐like and classical‐like coordinates with applications to nonadiabatic electron transfers. J Chem Phys 81:4494–4500

    Article  CAS  Google Scholar 

  21. Sudha Devi L, Al-Suti MK, Dosche C, Khan MS, Friend RH, Köhler A (2008) Triplet energy transfer in conjugated polymers. I. Experimental investigation of a weakly disordered compound Phys Rev B 78, 1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Omagari .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Omagari, S. (2019). Back Energy Transfer in Nonanuclear Terbium Clusters. In: Energy Transfer Processes in Polynuclear Lanthanide Complexes. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-6049-7_5

Download citation

Publish with us

Policies and ethics