Skip to main content

Eco-friendly Approaches to the Management of Plant-Parasitic Nematodes

  • Chapter
  • First Online:

Abstract

Eco-friendly approaches have been increasingly used for the management of plant-parasitic nematodes because of growing worldwide concern regarding health risks and environmental contamination caused by nematicides. Avoiding the introduction and spread of nematodes to non-infested areas is the most efficient method of control. Cleaning machinery and equipment, use of healthy planting materials, and quarantine procedures are good examples of preventive practices. In infested fields, nematode populations can be reduced by combining cultural, physical, and biological methods and genetic resistance of plants. The use of resistant crops is one of the most efficient and eco-friendly methods for reducing losses caused by plant-parasitic nematodes. Based on the information on which nematode species/races are prevalent in the field, the grower should choose a resistant crop, when available. Soil plowing and irrigation – named humid fallow – have been used for the management of root-knot nematodes in common bean (Phaseolus vulgaris), lettuce (Lactuca sativa), and okra (Abelmoschus esculentus) in Brazil. Soil steaming, treatment of planting materials with hot water, and soil solarization are recommended for the control of several plant-parasitic nematode species, based on the lethal action of high temperatures. Biofumigation with residues from some species of Brassicaceae and manures releases volatile toxic gases during the degradation process of the organic matter, including isothiocyanates. Non-host or antagonistic plants are also important tools for the integrated management of nematodes. In this context, marigolds (Tagetes erecta and T. patula), crotalaria (Crotalaria spectabilis), sunn hemp (Crotalaria juncea), and velvet bean (Mucuna pruriens) are widely used as antagonistic plants. Soil amendment with crop residues of neem (Azadirachta indica), castor bean (Ricinus communis), velvet bean (Mucuna pruriens), crotalaria (Crotalaria spectabilis), and Brassica spp.; oil seed cakes of neem, castor bean, mustard, and sesame; cattle manure; poultry litter; liquid swine manure; and crab shells release nematotoxic substances during decomposition, provide nutrients to the plants, and increase the population of biocontrol agents. More than 200 species of nematode antagonists have been identified, including fungi, bacteria, nematodes, tardigrades, and collemboles. Fungi and bacteria are the most studied and commercially exploited organisms for nematode control. Several commercial bionematicides have been developed from the nematode-trapping fungi Arthrobotrys, Dactylaria, Dactylella, and Monacrosporium, the egg-parasitic fungi Purpureocillium lilacinum and Pochonia chlamydosporia, the antibiotic bacterium Bacillus species, and the obligate parasite bacterium Pasteuria spp. The anaerobic soil disinfestation is an ecological alternative to soil fumigation for the control of several soilborne pathogens, including nematodes. This technique consists of incorporating organic material that is easily decomposable (C/N ratio from 8 to 20:1) into the soil, irrigating to saturation, and covering the soil with oxygen-impermeable plastic. Accumulation of toxic products from anaerobic decomposition, antagonism by anaerobic organisms, lack of oxygen, and the combination of all of them are the main drivers that explain the efficacy of anaerobic soil disinfestation. Consumers have been demanding higher food security and environmental quality, and this situation will not be different in the future. In this context, scientists’ efforts in discovering new nonchemical strategies for nematode control and improvements in the current methods must be continuous.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ali, M. A., Azeem, F., Abbas, A., Joyia, F. A., Li, H., & Dababat, A. A. (2017). Transgenic strategies for enhancement of nematode resistance in plants. Frontiers in Plant Science, 8, 750.

    Article  Google Scholar 

  • Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.

    Google Scholar 

  • Asmus, G. L., & Ishimi, C. M. (2009). Flutuação populacional de Rotylenchulus reniformis em solo cultivado com algodoeiro. Pesquisa Agropecuária Brasileira, 44, 51–57.

    Article  Google Scholar 

  • Asmus, G. L., & Richetti, A. (2010). Rotação de culturas para o manejo do nematoide reniforme em algodoeiro. Dourados: Embrapa Agropecuária Oeste.

    Google Scholar 

  • Bensen, T., Smith, R., Subbarao, K., Koike, T., Fennimore, S., & Shem-Tov, S. (2009). Mustard and other cover crop effects vary on lettuce drop caused by Sclerotinia minor and on weeds. Plant Disease, 93, 1019–1027.

    Article  Google Scholar 

  • Bishop, A. H., Gowen, S. R., Pembroke, B., & Trotter, J. R. (2007). Morphological and molecular characteristics of a new species of Pasteuria parasitic on Meloidogyne ardenensis. Journal of Invertebrate Pathology, 96, 28–33.

    Article  CAS  Google Scholar 

  • Blok, W. J., Lamers, J. G., Termorshuizen, A. J., & Bollen, G. J. (2000). Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology, 90, 253–259.

    Article  CAS  Google Scholar 

  • Bontempo, A. F., Fernandes, R. H., Lopes, J., Freitas, L. G., & Lopes, E. A. (2014). Pochonia chlamydosporia controls Meloidogyne incognita on carrot. Australasian Plant Pathology, 43, 421–424.

    Article  Google Scholar 

  • Bontempo, A. F., Lopes, E. A., Fernandes, R. H., Freitas, L. G., & Dallemole-Giaretta, R. (2017). Dose-response effect of Pochonia chlamydosporia against Meloidogyne incognita on carrot under field conditions. Revista Caatinga, 30, 258–262.

    Article  Google Scholar 

  • Borges, D. C., Antedomênico, S. R., Santos, V. P., & Inomoto, M. M. (2009). Reação de genótipos de Avena spp. a Meloidogyne incognita raça 4. Tropical Plant Pathology, 34, 24–28.

    Article  Google Scholar 

  • Borges, D. C., Machado, A. C. Z., & Inomoto, M. M. (2010). Reação de aveias a Pratylenchus brachyurus. Tropical Plant Pathology, 35, 178–181.

    Google Scholar 

  • Bridge, J. (2000). Keynote: Nematodes of bananas and plantains in Africa: Research trends and management strategies relating to the small scale farmer. Acta Horticulturae, 540, 391–408.

    Article  Google Scholar 

  • Bridge, J., & Starr, J. L. (2007). Plant nematodes of agricultural importance: A color handbook. Burlington: Academic.

    Book  Google Scholar 

  • Brown, P. D., & Morra, M. J. (1997). Control of soil-borne plant pests using glucosinolate-containing plants. In D. L. Sparks (Ed.), Advances in agronomy (pp. 167–215). San Diego: Academic.

    Google Scholar 

  • Campos, V. P., Dutra, M. R., Silva, J. R. C., & Valério, C. R. (2005). Revolvimento do solo e irrigação no controle de fitonematoides. Editora UFLA.

    Google Scholar 

  • Chen, S., & Dickson, D. W. (2012). Biological control of plant-parasitic nematodes. In R. H. Manzanilla-López & N. Marbán-Mendoza (Eds.), Practical plant nematology (pp. 761–811). Montecillo: Colegio de Postgraduados.

    Google Scholar 

  • Dallemole-Giaretta, R., Freitas, L. G., Cavallin, I. C., Marmentini, G. A., Faria, C. M. R., & Resende, J. T. V. (2013). Avaliação de um produto à base de Pochonia chlamydosporia no controle de Meloidogyne javanica em alface e cenoura no campo. Nematropica, 43, 131–137.

    Google Scholar 

  • Dallemole-Giaretta, R., Santos, I., Camochena, R. C., Lopes, E. A., Reiner, D. A., Pazolini, K., & Xavier, D. M. (2014). Bioprodutos à base de fungos para o controle biológico de doenças de plantas. Revisão Anual de Patologia de Plantas, 22, 116–159.

    Google Scholar 

  • Decraemer, W., & Hunt, D. J. (2006). Structure and classification. In R. N. Perry & M. Moens (Eds.), Plant nematology (pp. 3–32). Wallingford: CABI Publishing.

    Chapter  Google Scholar 

  • DeVay, J. E. (1991). Historical review and principles of soil solarization. In J. E. DeVay, J. J. Stapleton, & C. L. Elmore (Eds.), Soil Solarization (pp. 1–15). Rome: FAO.

    Google Scholar 

  • Dias, W. P., Silva, J. F. V., Carneiro, G. E. S., Garcia, A., & Arias, C. A. A. (2009). Nematoide de cisto da soja: biologia e manejo pelo uso da resistência genética. Nematologia Brasileira, 33, 1–16.

    Google Scholar 

  • Dutra, M. R., & Campos, V. P. (1998). Efeito do preparo do solo na população de nematoides das galhas (Meloidogyne spp.). Nematologia Brasileira, 22, 19.

    Google Scholar 

  • Dutra, M. R., & Campos, V. P. (2003a). Manejo do solo e da irrigação como nova tática de controle de Meloidogyne incognita em feijoeiro. Fitopatologia Brasileira, 28, 608–614.

    Article  Google Scholar 

  • Dutra, M. R., & Campos, V. P. (2003b). Efeito do manejo do solo e da água na população de Meloidogyne javanica (Treub, 1885) em quiabeiro em campo. Summa Phytopathologica, 29, 249–254.

    Google Scholar 

  • Dutra, M. R., Campos, V. P., & Toyota, M. (2003). Manejo do solo e da irrigação para o controle de Meloidogyne javanica em alface. Nematologia Brasileira, 27, 29–34.

    Google Scholar 

  • Fassuolitis, G. (1987). Genetic basis of plant resistance to nematodes. In J. A. Veech & D. W. Dickson (Eds.), Vistas on nematology (pp. 364–371). Hyattsville: Society of Nematologists Inc.

    Google Scholar 

  • Ferraz, S., Freitas, L. G., Lopes, E. A., & Dias-Arieira, C. R. (2010). Manejo sustentável de fitonematoides. Viçosa: Editora UFV.

    Google Scholar 

  • Freitas, L. G., Dalemole-Giaretta, R., Ferraz, S., Zooca, R. J. F., & Podestá, G. S. (2009). Controle biológico de nematoides: estudo de casos. In L. Zambolim & M. C. Picanço (Eds.), Controle biológico: pragas e doenças: exemplos práticos (pp. 41–82). Viçosa: UFV/DFP.

    Google Scholar 

  • Fuller, V. L., Lilley, C. J., & Urwin, P. E. (2008). Nematode resistance. The New Phytologist, 180, 27–44.

    Article  CAS  Google Scholar 

  • Gamliel, A., & Stapleton, J. J. (1993). Effect of soil amendment with chicken compost or ammonium phosphate and solarization on pathogen control, rhizosphere microorganisms and lettuce growth. Plant Disease, 77, 886–891.

    Article  CAS  Google Scholar 

  • Gamliel, A., Austerweil, M., & Kritzman, G. (2000). Non-chemical approach to soilborne pest management – Organic amendments. Crop Protection, 19, 847–853.

    Article  Google Scholar 

  • Godefroid, M., Tixier, P., Chabrier, C., Djigal, D., & Quénéhervé, P. (2017). Associations of soil type and previous crop with plant-feeding nematode communities in plantain agrosystems. Applied Soil Ecology, 113, 63–70.

    Article  Google Scholar 

  • Hoitink, H. A. J., & Fahy, P. C. (1986). Basis for the control of soilborne plant pathogens with compost. Annual Review of Phytopathology, 24, 93–114.

    Article  Google Scholar 

  • Inomoto, M. M., & Asmus, G. L. (2009). Culturas de cobertura e de rotação devem ser plantas não hospedeiras de nematoides. Visão Agrícola, 9, 112–116.

    Google Scholar 

  • Inomoto, M. M., & Asmus, G. L. (2014). Adubos verdes das famílias Fabaceae e Mimosaceae para o controle de fitonematoides. In Lima Filho OF, E. J. Ambrosano, F. Rossi, & J. A. D. Carlos (Eds.), Adubação verde e plantas de cobertura no Brasil. Brasília: Embrapa.

    Google Scholar 

  • Inomoto, M. M., Antedomênico, S. R., Santos, V. P., Silva, R. A., & Almeida, G. C. (2008). Avaliação em casa de vegetação do uso de sorgo, milheto e crotalária no manejo de Meloidogyne incognita. Tropical Plant Pathology, 33, 125–129.

    Article  Google Scholar 

  • Jones, J. T., Haegman, A., Danchin, E. G., Gaur, H. S., Helder, J., Jones, M. G., Kikuchi, T., Manzanilla-López, R., Palomares-Rius, J. E., Wesemael, W. M., & Perry, R. N. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14, 946–961.

    Article  Google Scholar 

  • Katan, J., & Gamliel, A. (2009). Soil solarization- 30 years on – What lessons have been learned? In U. Gisi, I. Chet, & L. Gullino (Eds.), Recent development in disease management (pp. 265–283). Amsterdam: Springer.

    Google Scholar 

  • Katan, J., & Gamliel, A. (2011). Soilborne diseases, control by physical methods. In J. Glinski, J. Horabik, & J. Lipiec (Eds.), Encyclopedia of agrophysics (pp. 813–816). Amsterdam: Springer.

    Chapter  Google Scholar 

  • Kirkegaard, J. A., Sarwan, M., Mathiessen, J. N., Thomas, G., & Monteiro, A. A. (1998). Assessment the biofumigation potential of crucifers. Acta Horticulturae, 459, 105–111.

    Article  CAS  Google Scholar 

  • Lehman, P. S. (2004). Cost benefits of nematode management through regulating programs. In Z. Chen, S. Chen, & D. W. Dickson (Eds.), Nematology – Advances and perspectives (Nematode management and utilization) (Vol. 2, pp. 1133–1177). Tsinghua: University Press & CABI Publishing.

    Google Scholar 

  • Leon, L., Branchero, L., Lopez-Perez, J. A., & Bello, A. (2000). Control de Meloidogyne incognita en cultivo de tomate en Uruguay. Boletín de sanidad vegetal, 26, 401–407.

    Google Scholar 

  • Leon, L., Lopez-Perez, J. A., Rodríguez, A., Casanova, D., Arias, M., & Bello, A. (2001). Management of Meloidogyne arenaria in protected crops of Swiss chard in Uruguay. Nematropica, 31, 103–108.

    Google Scholar 

  • Lopes, E. A., & Ferraz, S. (2016). Importância dos fitonematoides na agricultura. In C. M. G. Oliveira, M. A. Santos, & L. H. S. Castro (Eds.), Diagnose de fitonematoides (pp. 1–10). Campinas: Millenium Editora.

    Google Scholar 

  • Marbán-Mendoza, N., & Manzanilla-López, R. H. (2012). Chemical and non-chemical tactics to control plant-parasitic nematodes. In R. H. Manzanilla-López & N. Marbán-Mendoza (Eds.), Practical plant nematology (pp. 729–759). Montecillo: Colegio de Postgraduados.

    Google Scholar 

  • Martinelli, P. R. P., Santos, J. M., & Barbosa, J. C. (2012). Eficácia de formulações contendo cinco fungos nematófagos para o manejo de Pratylenchus jaehni em citros. Nematologia Brasileira, 36, 1–8.

    Google Scholar 

  • Matsuo, E., Ferreira, P. A., Sediyama, T., Ferraz, S., Borém, A., & Fritsche-Neto, R. (2012). Breeding for nematodes resistance. In R. Fritsche-Neto & A. Borém (Eds.), Plant breeding for biotic stress resistance (pp. 81–102). Heidelberg: Springer.

    Chapter  Google Scholar 

  • McSorley, R., & Gallaher, R. N. (1995). Cultural practices improve crop tolerance to nematodes. Nematropica, 25, 53–60.

    Google Scholar 

  • Neves, W. S., Freitas, L. G., Dallemole-Giaretta, R., Coutinho, M. M., Ferraz, S., & Parreira, D. F. (2012). Incorporação de farinha de semente de mamão ao solo, em diferentes doses, para o controle de Meloidogyne javanica. Nematologia Brasileira, 36, 25–31.

    Google Scholar 

  • Nicol, J. M., Turner, S. J., Coyne, D. L., den Nijs, L., Hockland, S., & Tahna Maafi, Z. (2011). Current nematode threats to world agriculture. In J. Jones, G. Gheysen, & C. Fenoll (Eds.), Genomics and molecular genetics of plant-nematode interactions (pp. 21–43). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Njoroge, S. M., Kabir, Z., Martin, F. N., Koike, S. T., & Subbarao, K. V. (2009). Comparison of crop rotation for Verticillium wilt management and effect on Pythium species in conventional and organic strawberry production. Plant Disease, 93, 519–527.

    Article  CAS  Google Scholar 

  • Peng, Y., & Moens, M. (2003). Host resistance and tolerance to migratory plant-parasitic nematodes. Nematology, 5, 145–177.

    Article  Google Scholar 

  • Rao, M. S., Kamalnath, M., Umamaheswari, R., Rajinikanth, R., Prabu, P., Priti, K., Grace, G. N., Chaya, M. K., & Gopalakrishnan, C. (2017). Bacillus subtilis IIHR BS-2 enriched vermicompost controls root knot nematode and soft rot disease complex in carrot. Scientia Horticulturae, 218, 56–62.

    Article  Google Scholar 

  • Rich, J. R., Brito, J. A., Kaur, R., & Ferrell, J. A. (2009). Weed species as hosts of Meloidogyne: A review. Nematropica, 39, 157–185.

    Google Scholar 

  • Ritzinger, C. H. S. P., & McSorley, R. (1998). Effect of fresh and dry organic amendments on Meloidogyne arenaria in greenhouse experiments. Nematropica, 28, 173–185.

    Google Scholar 

  • Roberts, P. A. (2002). Concepts and consequences of resistance. In J. L. Starr, R. Cook, & J. Bridge (Eds.), Plant resistance to parasitic nematodes (pp. 23–41). Wallingford: CABI Publishing.

    Chapter  Google Scholar 

  • Rodríguez-Kábana, R., Morgan-Jones, G., & Chet, I. (1987). Biological control of nematodes: Soil amendments and microbial antagonists. Plant and Soil, 100, 237–247.

    Article  Google Scholar 

  • Rosskopf, E. N., Burelle, N., Hong, J., Butler, D. M., Noling, J. W., He, Z., Booker, B., & Sances, S. (2014). Comparison of anaerobic soil disinfestation and drip-applied organic acids for raised-bed specialty crop production in Florida. Acta Horticulturae, 1044, 221–228.

    Article  Google Scholar 

  • Runia, W. T., Thoden, T. C., Molendijk, L. P. G., van den Berg, W., Termorshuizen, A. J., Streminska, M. A., van der Wurff, F. H., & Meints, H. (2014). Unravelling the mechanism of pathogen inactivation during anaerobic soil disinfestation. Acta Horticulturae, 1044, 177–193.

    Article  Google Scholar 

  • Sasser, J. N., & Freckman, D. W. (1987). A world perspective on nematology: The role of the society. In J. A. Veech & D. W. Dickson (Eds.), Vistas on nematology (pp. 7–14). Hyattsville: Society of Nematologists.

    Google Scholar 

  • Shennan, C., Muramoto, J., Lamers, J., Mazzola, M., Rosskopf, E. N., Kokalis-Burelle, N., Momma, N., Butler, D. M., & Kobara, Y. (2014). Anaerobic soil disinfestation for soil borne disease control in strawberry and vegetable systems: Current knowledge and future directions. Acta Horticulturae, 1044, 165–175.

    Article  Google Scholar 

  • Shinmura, A. (2000). Causal agent and control of root rot of welsh onion. PSJ Soilborne Disease Workshop Report, 20, 133–143.

    Google Scholar 

  • Shinmura, A. (2004). Principle and effect of soil sterilization method by reducing redox potential of soil. (PSJ) Soilborne Disease Workshop Report, 22, 2–12.

    Google Scholar 

  • Shrestha, U., Augé, R. M., & Butler, D. M. (2016). A meta-analysis of the impact of anaerobic soil disinfestation on pest suppression and yield of horticultural crops. Frontiers in Plant Science, 7, 1254.

    PubMed  PubMed Central  Google Scholar 

  • Sikora, R. A., Bridge, J., & Starr, J. L. (2005). Management practices: An overview of integrated nematode management technologies. In M. Luc, R. A. Sikora, & J. Bridge (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture (pp. 793–825). Wallingford: CABI Publishing.

    Chapter  Google Scholar 

  • Silva, J. F. V. (1999). Um histórico. In O nematoide de cisto da soja: a experiência brasileira (pp. 15–24). Jaboticabal: Sociedade Brasileira de Nematologia.

    Google Scholar 

  • Stapleton, J. J., Duncan, R. A., & Johnson, R. (1998). Soil disinfestations with cruciferous amendments and sub-lethal heating: Effects on Meloidogyne incognita, Sclerotium rolfsiiand Pythium ultimum. Plant Pathology, 47, 737–742.

    Google Scholar 

  • Stirling, G. R. (2014). Biological control of plant-parasitic nematodes: Soil ecosystem management in sustainable agriculture. Wallingford: CABI Publishing.

    Book  Google Scholar 

  • Sturhan, D., Winkelheide, R., Sayre, R. M., & Wergin, W. P. (1994). Light and electron microscopical studies of the life cycle and developmental stages of a Pasteuria isolate parasitizing the pea cyst nematode, Heterodera goettingiana. Fundamental and Applied Nematology, 17, 29–42.

    Google Scholar 

  • Thomas, C., & Cottage, A. (2006). Genetic engineering for resistance. In R. N. Perry & M. Moens (Eds.), Plant nematology (pp. 255–272). Wallingford: CABI Publishing.

    Chapter  Google Scholar 

  • Tihohod, D. (1993). Nematologia Agrícola Aplicada. Jaboticabal: UNESP.

    Google Scholar 

  • Tsang, M. M. C., Hara, A. H., & Sipes, B. S. (2003). Hot water treatments of potted palms to control the burrowing nematode, Radopholus simili. Crop Protection, 22, 589–593.

    Article  Google Scholar 

  • Van Gundy, S. D., Bird, A. F., & Wallace, H. R. (1967). Aging and starvation in juvenile of Meloidogyne javanica and Tylenchulus semipenetrans. Phytopathology, 57, 559–571.

    Google Scholar 

  • Wang, K. H., & McSorley, R. (2008). Exposure time to lethal temperatures for Meloidogyne incognita suppression and its implication for soil solarization. Journal of Nematology, 40, 7–12.

    PubMed  PubMed Central  Google Scholar 

  • Zhou, L., Yuen, G., Wang, Y., Wei, L., & Ji, G. (2016). Evaluation of bacterial biological control agents for control of root-knot nematode disease on tomato. Crop Protection, 84, 8–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

E. A. Lopes thanks CNPq for the productivity grant (304663/2014-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Everaldo Antônio Lopes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lopes, E.A., Dallemole-Giaretta, R., dos Santos Neves, W., Parreira, D.F., Ferreira, P.A. (2019). Eco-friendly Approaches to the Management of Plant-Parasitic Nematodes. In: Ansari, R., Mahmood, I. (eds) Plant Health Under Biotic Stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-6043-5_9

Download citation

Publish with us

Policies and ethics