Skip to main content

Vegetables Quality and Biotic Stress

  • Chapter
  • First Online:
Plant Health Under Biotic Stress

Abstract

Biotic stresses are one of the most important factor that have a substantial effect on crop growth and development and, finally, responsible for enormous losses of crop yield. Worldwide crop yield is reduced of about 25% due to diseases and insect infestation. Within different crops, worldwide vegetable production and consumption are constantly growing as a result of countless findings that attest their beneficial health properties. The quality target is an aspect that is increasingly considered within productions destined for modern consumption. This objective can be pursued through the improvement of one or more quality attributes. This issue seems to be very complex if we consider the relevant differences that characterize the vegetable production industry starting from crops, genetics, commodities, pedoclimatic conditions, agronomic and technical points of view. Biotic stresses can play a double role in conditioning vegetable quality with positive or negative consequences. Considering the complex modes of stress signaling by the plant, secondary metabolism is greatly affected by the generation of reactive oxygen species (ROS), hormonal components, and enzymatic activity. It is easy to assume that the effect of biotic stress is negative for product quality, but in some cases there is a potential utility of these metabolites for the consumer health. Paradoxically, the presence of stress during the cultivation of some species can be a crop extra value under the health profile. This chapter will seek to provide some guidance on the relationship between vegetables and biotic stresses, highlighting the consequences of biotic stress, the possible impact on the quality of vegetable crops, and some possible solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abate, T., van Huis, A., & Ampofo, J. K. O. (2000). Pest management strategies in traditional agriculture: An African perspective. Annual Review of Entomology, 45, 631–659.

    Article  CAS  PubMed  Google Scholar 

  • Abdelraheem, A., Liu, F., Song, M., & Zhang, J. F. (2017). A meta-analysis of quantitative trait loci for abiotic and biotic stress resistance in tetraploid cotton. Molecular Genetics and Genomics, 292, 1–15. https://doi.org/10.1007/s00438-017-1342-0.

    Article  CAS  Google Scholar 

  • AbuQamar, S., Luo, H., Laluk, K., Mickelbart, M. V., & Mengiste, T. (2009). Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. The Plant Journal, 58(2), 347–360.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, J. P., Badruzsaufari, E., Schenk, P. M., Manners, J. M., Desmond, O. J., Ehlert, C., Maclean, D. J., Ebert, P. R., & Kazan, K. (2004). Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell, 16, 3460–3479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.

    Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  PubMed  Google Scholar 

  • Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: From genes to the field. Journal of Experimental Botany, 63(10), 3523–3543.

    Article  CAS  PubMed  Google Scholar 

  • Atkinson, N. J., Dew, T. P., Orfila, C., & Urwin, P. E. (2011). Influence of combined biotic and abiotic stress on nutritional quality parameters in tomato (Solanum lycopersicum). Journal of Agricultural and Food Chemistry, 59, 9673–9682.

    Article  CAS  PubMed  Google Scholar 

  • Balmer, D., Flors, V., Glauser, G., & Mauch-Mani, B. (2013). Metabolomics of cereals under biotic stress: Current knowledge and techniques. Frontiers in Plant Science, 4(82), 1–12.

    Google Scholar 

  • Baranski, M., Srednicka-Tober, D., Volakakis, N., Seal, C., Sanderson, R., Stewart, G. B., Benbrook, C., Biavati, B., Markellou, E., Giotis, C., Gromadzka-Ostrowska, J., Rembialkowska, E., Skwarlo-Sonta, K., Tahvonen, R., Janovska, D., Niggli, U., Nicot, P., & Leifert, C. (2014). Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. British Journal of Nutrition, 112, 794–811.

    Article  CAS  PubMed  Google Scholar 

  • Barbieri, G., Pernice, R., Maggio, A., De Pascale, S., & Fogliano, V. (2008). Glucosinolates profile of Brassica rapa L: Subsp. Sylvestris L. Janch. var. esculenta. Food Chemistry, 107, 1687–1691.

    Article  CAS  Google Scholar 

  • Benbrook, C. (2009). The impacts of yield on nutritional quality: Lessons from organic farming. Hortscience, 44, 12–14.

    Article  Google Scholar 

  • Bostock, R. M. (2005). Signal crosstalk and induced resistance: Straddling the line between cost and benefit. Annual Review of Phytopathology, 43, 545–580.

    Article  CAS  PubMed  Google Scholar 

  • Cheong, Y. H., Chang, H. S., Gupta, R., Wang, X., Zhu, T., & Luan, S. (2002). Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiology, 129, 661–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colla, G., Fiorillo, A., Cardarelli, M., & Rouphael, Y. (2013). Grafting to improve abiotic stress tolerance of fruit vegetables. II International Symposium on Organic Greenhouse Horticulture, 1041, 119–125.

    Google Scholar 

  • Colla, G., Pérez-Alfocea, F., & Schwarz, D. (2017). Vegetable grafting: Principles and practices. Wallingford: CABI.

    Book  Google Scholar 

  • Del Amor, F. M. (2007). Yield and fruit quality response of sweet pepper to organic and mineral fertilization. Renewable Agriculture and Food Systems, 22, 233–238.

    Article  Google Scholar 

  • Deletre, E., Chandre, F., Barkman, B., Menut, C., & Martin, T. (2016). Naturally occurring bioactive compounds from four repellent essential oils against Bemisia tabaci whiteflies. Pest Management Science, 72, 179–189.

    Article  CAS  PubMed  Google Scholar 

  • Devi, G., & Nath, D. (2017). Entomopathogenic nematodes: A tool in biocontrol of insect pests of vegetables-A review. Agricultural Reviews, 38(2), 137–144.

    Article  Google Scholar 

  • Dimlioğlu, G., Daş, Z. A., Bor, M., Özdemir, F., & Türkan, İ. (2015). The impact of GABA in harpin-elicited biotic stress responses in Nicotiana tabaccum. Journal of Plant Physiology, 188, 51–57.

    Article  PubMed  CAS  Google Scholar 

  • Dita, M. A., Rispail, N., Prats, E., Rubiales, D., & Singh, K. B. (2006). Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica, 147(1–2), 1–24.

    Article  Google Scholar 

  • Dombrowski, J. E., Hind, S. R., Martin, R. C., & Stratmann, J. W. (2011). Wounding systemically activates a mitogen-activated protein kinase in forage and turf grasses. Plant Science, 180, 686–693.

    Article  CAS  PubMed  Google Scholar 

  • Dorais, M., Ehret, D. L., & Papadopoulos, A. P. (2008). Tomato (Solanum lycopersicum) health components: From the seed to the consumer. Phytochemistry Reviews, 7, 231–250.

    Article  CAS  Google Scholar 

  • Duc, G., Agrama, H., Bao, S., Berger, J., Bourion, V., De Ron, A. M., Gowda, C. L. L., Mikic, A., Millot, D., Singh, K. B., Tullu, A., Vandenberg, A., Vaz Patto, M. C., Warkentin, T. D., & Zong, X. (2015). Breeding annual grain legumes for sustainable agriculture: New methods to approach complex traits and target new cultivar ideotypes. Critical Reviews in Plant Sciences, 34(1–3), 381–411.

    Article  Google Scholar 

  • Dumas, Y., Dadomo, M., Di Lucca, G., & Grolier, P. (2003). Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. Journal of the Science of Food and Agriculture, 83, 369–382.

    Article  CAS  Google Scholar 

  • EnglishLoeb, G., Stout, M. J., & Duffey, S. S. (1997). Drought stress in tomatoes: Changes in plant chemistry and potential nonlinear consequences for insect herbivores. Oikos, 79, 456–468.

    Article  Google Scholar 

  • Faostat. (2018). https://www.who.int/dietphysicalactivity/fruit/en/index2.html.

  • Farooq, M. A., & Dietz, K. J. (2015). Silicon as versatile player in plant and human biology: Overlooked and poorly understood. Frontiers in Plant Science, 6, 994.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9(4), 436–442.

    Article  PubMed  Google Scholar 

  • Fuller, V. L., Lilley, C. J., & Urwin, P. E. (2008). Nematode resistance. The New Phytologist, 180, 27–44.

    Article  CAS  PubMed  Google Scholar 

  • Graziani, G., Ferracane, R., Sambo, P., Santagata, S., Nicoletto, C., & Fogliano, V. (2015). Profiling chicory sesquiterpene lactones by high resolution mass spectrometry. Food Research International, 67, 193–198.

    Article  CAS  Google Scholar 

  • Gupta, G., Parihar, S. S., Ahirwar, N. K., Snehi, S. K., & Singh, V. (2015). Plant growth promoting rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture. Journal of Microbial and Biochemical Technology, 7(2), 096–102.

    CAS  Google Scholar 

  • He, X., Zhu, L., Wassan, G. M., Wang, Y., Miao, Y., Shaban, M., Hu, H., Sun, H., & Zhang, X. (2017). GhJAZ2 attenuates cotton resistance to biotic stresses via inhibiting the transcriptional activity of GhbHLH171. Molecular Plant Pathology, 19, 896. https://doi.org/10.1111/mpp.12575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higley, L. G., Browde, J. A., & Higley, P. M. (1993). Moving towards new understandings of biotic stress and stress interactions. In D. R. Buxton, R. Shibles, R. A. Forsberg, B. L. Blad, K. H. Asay, G. M. Paulson, & R. F. Wilson (Eds.), International crop science I. Madison: Crop Science Society of America.

    Google Scholar 

  • Huang, L., Raats, D., Sela, H., Klymiuk, V., Lidzbarsky, G., Feng, L., Krugman, T., & Fahima, T. (2016). Evolution and adaptation of wild emmer wheat populations to biotic and abiotic stresses. Annual Review of Phytopathology, 54, 279–301.

    Article  CAS  PubMed  Google Scholar 

  • Hussain, S. S., Ali, M., Ahmad, M., & Siddique, K. H. (2011). Polyamines: Natural and engineered abiotic and biotic stress tolerance in plants. Biotechnology Advances, 29, 300–311.

    Article  CAS  PubMed  Google Scholar 

  • Kayum, M. A., Kim, H. T., Nath, U. K., Park, J. I., Kho, K. H., Cho, Y. G., & Nou, I. S. (2016). Research on biotic and abiotic stress related genes exploration and prediction in Brassica rapa and B. oleracea: A review. Plant Breeding and Biotechnology, 4(2), 135–144.

    Article  Google Scholar 

  • Keneni, G., & Ahmed, S. (2016). Genetic options for combating biotic stresses in cool-season food legumes. Indian Journal of Genetics and Plant Breeding, 76(4), 437–450.

    Article  Google Scholar 

  • Khoury, C. K., Castañeda-Alvarez, N. P., Achicanoy, H. A., Sosa, C. C., Bernau, V., Kassa, M. T., Norton, S. L., van der Maesen, L. J. G., Upadhyaya, H. D., Ramírez-Villegas, J., Jarvis, A., & Struik, P. C. (2015). Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: Distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance. Biological Conservation, 184, 259–270.

    Article  Google Scholar 

  • Kissoudis, C., Chowdhury, R., van Heusden, S., van de Wiel, C., Finkers, R., Visser, R. G., Bai, Y., & van der Linden, G. (2015). Combined biotic and abiotic stress resistance in tomato. Euphytica, 202(2), 317–332.

    Article  CAS  Google Scholar 

  • Lattanzio, V. (2003). Bioactive polyphenols: Their role in quality and storability of fruit and vegetables. Journal of Applied Botany, 77(5/6), 128–146.

    CAS  Google Scholar 

  • Lee, J. H., Hong, J. P., Oh, S. K., Lee, S., Choi, D., & Kim, W. (2004). The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: Possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Molecular Biology, 55(1), 61–81.

    Article  CAS  PubMed  Google Scholar 

  • Li, J. B., Luan, Y. S., & Yin, Y. L. (2014). SpMYB overexpression in tobacco plants leads to altered abiotic and biotic stress responses. Gene, 547(1), 145–151.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Rodda, M., Gnanasambandam, A., Aftab, M., Redden, R., Hobson, K., Rosewarne, G., Materne, M., Kaur, S., & Slater, A. T. (2015). Breeding for biotic stress resistance in chickpea: Progress and prospects. Euphytica, 204(2), 257–288.

    Article  Google Scholar 

  • Lorenzo, O., & Solano, R. (2005). Molecular players regulating the jasmonate signaling network. Current Opinion in Plant Biology, 8, 532–540.

    Article  CAS  PubMed  Google Scholar 

  • Maes, K., & Debergh, P. C. (2003). Volatiles emitted from in vitro grown tomato shoots during abiotic and biotic stress. Plant Cell, Tissue and Organ Culture, 75(1), 73–78.

    Article  CAS  Google Scholar 

  • Majid, M. U., Awan, M. F., Fatima, K., Tahir, M. S., Ali, Q., Rashid, B., RaoIdrees, A. Q., Nasir, A., & Husnain, T. (2017). Genetic resources of chili pepper (Capsicum annuum L.) against Phytophthora capsici and their induction through various biotic and abiotic factors. Cytology and Genetics, 51(4), 296–304.

    Article  Google Scholar 

  • Makkouk, K. M., Kumari, S. G., van Leur, J. A., & Jones, R. A. (2014). Control of plant virus diseases in cool-season grain legume crops. Advances in Virus Research, 90, 207–254.

    Article  PubMed  Google Scholar 

  • Malarz, J., Stojakowska, A., & Kisiel, W. (2007). Effect of methyl jasmonate and salicylic acid on sesquiterpene lactone accumulation in hairy roots of Cichorium intybus. Acta Physiologiae Plantarum, 29(2), 127–132.

    Article  CAS  Google Scholar 

  • Mansoor, S., Briddon, R. W., Zafar, Y., & Stanley, J. (2003). Geminivirus disease complexes: An emerging threat. Journal of Plant Sciences, 8, 128–134.

    CAS  Google Scholar 

  • Mauch-Mani, B., & Mauch, F. (2005). The role of abscisic acid in plant–pathogen interactions. Current Opinion in Plant Biology, 8, 409–414.

    Article  CAS  PubMed  Google Scholar 

  • Miedaner, T. (2016). Breeding strategies for improving plant resistance to diseases. In Advances in plant breeding strategies: Agronomic, abiotic and biotic stress traits (pp. 561–599). Cham: Springer.

    Chapter  Google Scholar 

  • Mir, R. R., & Kulwal, P. L. (2014). Legume genetics and genomics: Recent advances. National Academy Science Letters, 37(1), 1–3.

    Article  CAS  Google Scholar 

  • Mittler, R., & Blumwald, E. (2010). Genetic engineering for modern agriculture: Challenges and perspectives. Annual Review of Plant Biology, 61, 443–462.

    Article  CAS  PubMed  Google Scholar 

  • Montoya, J. M., & Raffaelli, D. (2010). Climate change, biotic interactions and ecosystem services. Philosophical Transactions of the Royal Society B, 365, 2013–2018.

    Article  Google Scholar 

  • Muehlbauer, F. J., & Kaiser, W. J. (1994). Using host plant resistance to manage biotic stresses in cool season food legumes. In Expanding the production and use of cool season food legumes (pp. 233–246). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Muigai, S. G., Schuster, D. J., Snyder, J. C., Scott, J. W., Bassett, M. J., & McAuslane, H. J. (2002). Mechanism of resistance in Lycopersicon germoplasm to the whitefly Bemisia argentifolli. Phytoparasitica, 30, 347–360.

    Article  Google Scholar 

  • Mutisya, S., Saidi, M., Opiyo, A., Ngouajio, M., & Martin, T. (2016). Synergistic effects of agronet covers and companion cropping on reducing whitefly infestation and improving yield of open field-grown tomatoes. Agronomy, 6(3), 42.

    Article  CAS  Google Scholar 

  • Nguyen, D., Rieu, I., Mariani, C., & van Dam, N. M. (2016). How plants handle multiple stresses: Hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Molecular Biology, 91(6), 727–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicoletto, C., Santagata, S., Pino, S., & Sambo, P. (2016). Antioxidant characterization of different italian broccoli landraces. Horticultura Brasileira, 34(1), 74–79.

    Article  Google Scholar 

  • Oancea, A. O., Gaspar, A., Seciu, A. M., Ștefan, L., Crăciunescu, O., Georgescu, F., & Lctușu, R. (2015). Development of a new technology for protective biofortification with selenium of Brassica crops. AgroLife Scientific Journal, 4(2), 80–85.

    Google Scholar 

  • Obidiegwu, J. E., Bryan, G. J., Jones, H. G., & Prashar, A. (2015). Coping with drought: Stress and adaptive responses in potato and perspectives for improvement. Frontiers in Plant Science, 6, 542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Orsini, F., Cascone, P., De Pascale, S., Barbieri, G., Corrado, G., Rao, R., & Maggio, A. (2010). Systemin-dependent salinity tolerance in tomato: Evidence of specific convergence of abiotic and biotic stress responses. Physiologia Plantarum, 138, 10–21.

    Article  CAS  PubMed  Google Scholar 

  • Orsini, F., Maggio, A., Rouphael, Y., & De Pascale, S. (2016). “Physiological quality” of organically grown vegetables. Scientia Horticulturae, 208, 131–139.

    Article  CAS  Google Scholar 

  • Oumouloud, A., & Álvarez, J. M. (2016). Breeding and genetics of resistance to Fusarium wilt in melon. In Advances in plant breeding strategies: Agronomic, abiotic and biotic stress traits (pp. 601–626). Cham: Springer.

    Chapter  Google Scholar 

  • Pegard, A., Brizzard, G., Fazari, A., Soucaze, O., Abad, P., & Djian-Caporalino, C. (2005). Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in Capsicum annuum. Phytopathology, 95, 158–165.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, R. K., & Higley, L. G. (2001). Illuminating the black box: The relationship between injury and yield. In R. K. D. Peterson & L. G. Higley (Eds.), Biotic stress and yield loss (pp. 1–14). Boca Raton: CRC Press.

    Google Scholar 

  • Poschenrieder, C., Tolrà, R., & Barceló, J. (2006). Can metals defend plants against biotic stress? Trends in Plant Science, 11(6), 288–295.

    Article  CAS  PubMed  Google Scholar 

  • Prasch, C. M., & Sonnewald, U. (2013). Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiology, 162, 1849–1866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quirós, R., Villalba, G., Munoz, P., Font, X., & Gabarrell, X. (2014). Environmental and agronomical assessment of three fertilization treatments applied in horticultural open field crops. Journal of Cleaner Production, 67, 147–158.

    Article  CAS  Google Scholar 

  • Radwan, M. A., Farrag, S. A. A., Abu-Elamayem, M. M., & Ahmed, N. S. (2012). Biological control of the root-knot nematode, Meloidogyne incognita on tomato using bioproducts of microbial origin. Applied Soil Ecology, 56, 58–62.

    Article  Google Scholar 

  • Rodda, M. S., Davidson, J., Javid, M., Sudheesh, S., Blake, S., Forster, J. W., & Kaur, S. (2017). Molecular breeding for Ascochyta blight resistance in lentil: Current Progress and future directions. Frontiers in Plant Science, 8, 1136.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roxas, A. C. (2009). Repellency of different plants against flea beetle Phyllotreta striolata (Chrysomelidae, Coleoptera) on Brassica pekinensis. Journal of Entomology, 23, 185–195.

    Google Scholar 

  • Sato, Y., Itagaki, S., Kurokawa, T., Ogura, J., Kobayashi, M., Hirano, T., Sugawara, M., & Iseki, K. (2011). In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. International Journal of Pharmaceutics, 403(1), 136–138.

    Article  CAS  PubMed  Google Scholar 

  • Schader, C., Zaller, J. G., & Köpke, U. (2005). Cotton-basil intercropping: Effects on pests, yields and economical parameters in an organic field in Fayoum. Egypt Biological Agriculture and Horticulture, 23, 59–72.

    Article  Google Scholar 

  • Schenk, P. M., Kazan, K., Wilson, I., Anderson, J. P., Richmond, T., Somerville, S. C., & Manners, J. M. (2000). Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Sciences of the United States of America, 97, 11655–11660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scopus. (2017). https://www.scopus.com/term/analyzer.uri?sid=189eef34845e1c7d2287ce2b546cf387&origin=resultslist&src=s&s=TITLE-ABSKEY%28stress+and+vegetables%29&sort=plff&sdt=b&sot=b&sl=36&count=14053&analyzeResults=Analyze+results&txGid=fe569346a704c6446a9ec45e4ac82c00.

  • Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 1. https://doi.org/10.1155/2012/217037.

    Article  CAS  Google Scholar 

  • Sharma, H. S., Fleming, C., Selby, C., Rao, J. R., & Martin, T. (2014). Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of Applied Phycology, 26(1), 465–490.

    Article  CAS  Google Scholar 

  • Singh, B., Sanwal, S. K., Rai, M., & Rai, A. B. (2009). Sources of biotic stress resistance in vegetable crops: A review. Vegetable Science, 36(2), 133–146.

    Google Scholar 

  • Song, B. Z., Wu, H. Y., Kong, Y., Zhang, J., Du, Y. L. J., Hu, H., & Yao, Y. C. (2010). Effects of intercropping with aromatic plants on diversity and structure of an arthropod community in a pear orchard. BioControl, 55, 741–751.

    Article  Google Scholar 

  • Sperdouli, I., & Moustakas, M. (2012). Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. Journal of Plant Physiology, 169, 577–585.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, N., Miller, G., Sejima, H., Harper, J., & Mittler, R. (2013). Enhanced seed production under prolonged heat stress conditions in Arabidopsis thaliana plants deficient in cytosolic ascorbate peroxidase 2. Journal of Experimental Botany, 64, 253–263.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32–43.

    Article  PubMed  Google Scholar 

  • Talcott, S. T., & Howard, L. R. (1999). Chemical and sensory quality of processed carrot puree as influenced by stress-induced phenolic compounds. Journal of Agricultural and Food Chemistry, 47(4), 1362–1366.

    Article  CAS  PubMed  Google Scholar 

  • Ton, J., van der Ent, S., van Hulten, M., Pozo, M., van Oosten, V., & van Loon, L. C. (2009). Priming as a mechanism behind induced resistance against pathogens; insects and abiotic stress. IOBC/wprs Bulletin, 44, 3–13.

    Google Scholar 

  • Torres, M. A., & Dangl, J. L. (2005). Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Current Opinion in Plant Biology, 8, 397–403.

    Article  CAS  PubMed  Google Scholar 

  • Treutter, D. (2006). Significance of flavonoids in plant resistance: A review. Environmental Chemistry Letters, 4, 147–157.

    Article  CAS  Google Scholar 

  • Turan, M., Ekinci, M., Yildirim, E., Güneş, A., Karagöz, K., Kotan, R., & Dursun, A. (2014). Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turkish Journal of Agriculture and Forestry, 38(3), 327–333.

    Article  CAS  Google Scholar 

  • Van den Ende, W., & El-Esawe, S. K. (2014). Sucrose signaling pathways leading to fructan and anthocyanin accumulation: A dual function in abiotic and biotic stress responses? Environmental and Experimental Botany, 108, 4–13.

    Article  CAS  Google Scholar 

  • Van Lenteren, J. C., Bolckmans, K., Köhl, J., Ravensberg, W. J., & Urbaneja, A. (2017). Biological control using invertebrates and microorganisms: Plenty of new opportunities. BioControl, 63, 1–21.

    Google Scholar 

  • Wu, Z., Yin, X., Bañuelos, G. S., Lin, Z. Q., Zhu, Z., Liu, Y., Yuan, L., & Li, M. (2015). Effect of selenium on control of postharvest gray mold of tomato fruit and the possible mechanisms involved. Frontiers in Microbiology, 6, 1441.

    PubMed  Google Scholar 

  • Xiong, L., & Yang, Y. (2003). Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 15, 745–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, N. W., Zang, L. S., Wang, S., Guo, J. Y., Xu, H. X., Zhang, F., & Wan, F. H. (2014). Biological pest management by predators and parasitoids in the greenhouse vegetables in China. Biological Control, 68, 92–102.

    Article  Google Scholar 

  • Yasuda, M., Ishikawa, A., Jikumaru, Y., Seki, M., Umezawa, T., & Asami, T. (2008). Antagonistic interaction between systemic acquired resistance and the abscisic acid mediated abiotic stress response in Arabidopsis. Plant Cell, 20, 1678–1692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi, A., Ahmad, E., Khan, M. S., Saif, S., & Rizvi, A. (2015). Role of plant growth promoting rhizobacteria in sustainable production of vegetables: Current perspective. Scientia Horticulturae, 193, 231–239.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Nicoletto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nicoletto, C., Maucieri, C., Zanin, G., Vianello, F., Sambo, P. (2019). Vegetables Quality and Biotic Stress. In: Ansari, R., Mahmood, I. (eds) Plant Health Under Biotic Stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-6043-5_6

Download citation

Publish with us

Policies and ethics