Skip to main content

Integrated Management of Rice Blast Caused by Magnaporthe oryzae

  • Chapter
  • First Online:
Plant Health Under Biotic Stress
  • 602 Accesses

Abstract

Rice (Oryza sativa L.) is the world’s most important crop and is considered to be a primary source of food for over half of the world’s population. In 2017, rice cultivation globally occupied an area of 166 m ha, with a production of 758.8 m t of paddy. More than 90% of the world’s rice crop is consumed in Asian countries, which account for about 60% of the earth’s population. Rice blast caused by the fungus Magnaporthe oryzae is one of the most severe diseases of rice. This pathogen is highly variable in nature. It attacks all developmental stages of rice, causing losses of around 10–30% annually in different rice-producing areas. The pathogen can infect several organs of the rice plant, such as the leaves, collars, necks, and panicles. Chemical agents have been used to combat several soil borne pathogens including Magnaporthe oryzae, but our environment is severely degraded by the use of chemicals that pollute the atmosphere and leave harmful effects. The excessive use of pesticides is responsible for the degradation of soil conditions, but this degradation can be limited by the use of targeted bioagents that are antagonistic to pathogens. The reduction of chemical pesticide use in agriculture is achieved by the integration of biocontrol agents, botanicals, and minimum doses of chemicals. Various management strategies, such as the controlled use of nitrogen fertilizers, the application of silica, and the flooding of fields have been used for a long time to control rice blast disease. Scientists are keen to develop durable resistant rice varieties through the pyramiding of quantitative trait loci and major genes. New strategies, such as the characterization of the R and Avr genes of rice, and biotechnological approaches that lead to the development of resistant cultivars should act against rice blast disease. However, the exploitation of durable host resistance remains a challenge for plant pathologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amante-Bordeos, A., Sitch, L. A., Nelson, R., Damacio, R. D., Oliva, N. P., Aswidinnoor, H., & Leung, H. (1992). Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice. Oryza sativa. Theoretical and Applied Genetics, 84, 345–354.

    Article  CAS  PubMed  Google Scholar 

  • Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.

    Article  CAS  Google Scholar 

  • Aravindan, S., Yadav, M. K., & Sharma, P. (2016). Biological control of rice blast disease with Trichoderma spp. under upland rice system. ORYZA-An International Journal on Rice, 53(2), 167–173.

    Google Scholar 

  • Barea, J. M., Azcon, R., & Azcon-Aguilar, C. (2002). Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek International Journal of General and Molecular, 81, 343–351.

    Article  CAS  Google Scholar 

  • Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Mecanismos de biocontrol de cepas de Trichoderma. International Microbiology, 7(4), 249–260.

    PubMed  Google Scholar 

  • Chen, D. H., Dela Vina, M., Inukai, T., Mackill, D. J., Ronald, P. C., & Nelson, R. J. (1999). Molecular mapping of the blast-resistance gene, Pi44(t), in a line derived from a durably resistant rice cultivar. Theoretical and Applied Genetics, 98, 1046–1053.

    Article  CAS  Google Scholar 

  • Choi, W., Park, E., & Lee, E. (1988). LEAFBLAST-A computer simulation model for leaf blast development on rice. Korean Journal of Plant Pathology (Korea R.), 4, 25–32.

    Google Scholar 

  • Datnoff, L. E., Deren, C. W., & Snyder, G. H. (1997). Silicon fertilization for disease management of rice in Florida. Crop Protection, 16(6), 525–531.

    Article  CAS  Google Scholar 

  • de Jong, J. C., McCormack, B. J., Smirnoff, N., & Talbot, N. J. (1997). Glycerol generates turgor in rice blast. Nature, 389, 244–244.

    Article  Google Scholar 

  • Dean, R. A. (1997). Signal pathways and appressorium morphogenesis. Annual Review of Phytopathology, 35(1), 211–234.

    Article  CAS  PubMed  Google Scholar 

  • Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J., & Pan, H. (2005). The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 434(7036), 980–986.

    Article  CAS  PubMed  Google Scholar 

  • Deng, Y., Zhu, X., Shen, Y., & He, Z. (2006). Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theoretical and Applied Genetics, 113, 705–713.

    Article  CAS  PubMed  Google Scholar 

  • Dwinita, W. U., Sugiono, M., Hajrial, A., Asep, S., & Ida, H. (2008). Blast resistance genes in wild rice Oryza rufipogon and rice cultivar IR64. Indian Journal of Agriculture, 1, 71–76.

    Google Scholar 

  • Fitzsimons, M. S., & Miller, R. M. (2010). The importance of soil microorganisms for maintaining diverse plant communities in tall grass prairie. American Journal of Botany, 97, 1937–1943.

    Article  PubMed  Google Scholar 

  • Flor, H. H. (1955). Host-parasite interaction in flax rust–its genetics and other implications. Phytopathology, 45, 680–685.

    Google Scholar 

  • Fukunaga, K., Misato, T., Ishii, I., Asakawa, M., & Katagiri, M. (1968). Research and development of antibiotics for rice blast control. Bulletin of the National Institute of Agricultural Sciences Tokyo, 22, 1–94.

    Google Scholar 

  • Gnanamanickam, S. S., & Mew, T. W. (1992). Biological control of blast disease of rice (Oryza sativa L.) with antagonistic bacteria and its mediation by a Pseudomonas antibiotic. Japanese Journal of Phytopathology, 58(3), 380–385.

    Article  Google Scholar 

  • Gnanamanickam, S. S., Reyes, R. C., & Mew, T. W. (1989). Biological control of rice blast using antagonistic bacteria. Philippine Phytopathology (Philippines).

    Google Scholar 

  • Hamer, J. E., Howard, R. J., Chumley, F. G., & Valent, B. (1988). A mechanism for surface attachment in spores of a plant pathogenic fungus. Science, 239(4837), 288–290.

    Article  CAS  PubMed  Google Scholar 

  • Harada, Y. (1955). Studies on a new antibiotic for rice blast control. In Lecture given at the annual meeting of the Agricultural Chemical Society of Japan.

    Google Scholar 

  • Hori, S. (1898) Blast disease of rice plants (Special Report, Vol. 1, pp. 1–36). Imperial Agricultural Experimental Station, Tokyo.

    Google Scholar 

  • Hori, M., Arata, T., & Inoue, Y. (1960). Studies on the forecasting method of blast disease. VI. Forecasting by the degree of accumulated starch in the sheath of rice plant. Annals of the Phytopathological Society of Japan, 25(1), 2.

    Google Scholar 

  • Ito, S., & Sakamoto, M. (1939) Studies on rice blast. Res. Hokkaido Univ. Bot. Lab. Fac. Agric. Rep., p. 1943.

    Google Scholar 

  • Jamalizadeh, M., Etebarian, H. R., Aminian, H., & Alizadeh, A. (2011). A review of mechanisms of action of biological control organisms against post-harvest fruit spoilage. EPPO Bulletin, 41(1), 65–71.

    Article  Google Scholar 

  • Jena, K. K., Multani, G. S., Khush, G. S. (1991). Monogenic alien addition lines of Oryza australiensis and alien gene transfer. Rice Genet II:728.

    Google Scholar 

  • Jones, D. J., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–328.

    Article  CAS  PubMed  Google Scholar 

  • Kahn, R. P., & Libby, J. L. (1958). The effect of environmental factors and plant age on the infection of rice by the blast fungus, Pyricularia oryzae. Phytopathology, 48, 25–30.

    Google Scholar 

  • Kang, S., Sweigard, J. A., & Valent, B. (1995). The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Molecular Plant-Microbe Interactions, 8, 939–948.

    Article  CAS  PubMed  Google Scholar 

  • Katagiri, M., & Uesugi, Y. (1978). In vitro selection of mutants of Pyricularia oryzae resistant to fungicides. Japanese Journal of Phytopathology, 44(2), 218–219.

    Article  Google Scholar 

  • Kawamura, E., & Ono, K. (1948). Study on the relation between the pre-infection behavior of rice blast fungus, Pyricularia oryzae, and water droplets on rice plant leaves. Bulletin of the National Agricultural Experiment Station, 4, 1–12.

    Google Scholar 

  • Kawashima, R. (1927). Influence of silica on rice blast disease. Japanese Journal of Soil Science and Plant Nutrition, 1, 86–91.

    Google Scholar 

  • Kim, C. K., & Kim, C. H. (1993). The rice leaf blast simulation model EPIBLAST. In Systems approaches for agricultural development (pp. 309–321). Dordrecht: Springer.

    Google Scholar 

  • Kole, C. (2006). Cereals and millets (Vol. 1). New York: Springer.

    Book  Google Scholar 

  • Kumar, P., Pathania, S., Katoch, P., Sharma, T. R., Plaha, P., & Rathour, R. (2010). Genetic and physical mapping of blast resistance gene Pi-42(t) on the short arm of rice chromosome 12. Molecular Breeding, 25, 217–228.

    Article  CAS  Google Scholar 

  • Kumar, V., Kumar, A., Singh, V. P., & Tomar, A. (2017). Effectiveness measurement of bio-agents and botanicals against Pyricularia oryzae. Journal of Pure and Applied Microbiology, 11(1), 585–592.

    Article  CAS  Google Scholar 

  • Lau, J. A., & Lennon, J. T. (2011). Evolutionary ecology of plant-microbe interactions: Soil microbial structure alters selection on plant traits. The New Phytologist, 192, 215–224.

    Article  PubMed  Google Scholar 

  • Link, K. C., & Ou, S. H. (1969). Standardization of the international race numbers of Pyricularia oryzae. Phytopathology, 59, 339–342.

    Google Scholar 

  • Liu, B., Zhang, S., Zhu, X., Yang, Q., Wu, S., Mei, M., Mauleon, R., Leach, J., Mew, T., & Leung, H. (2004). Candidate defense genes as predictors of quantitative blast resistance in rice. Molecular Plant-Microbe Interactions, 17, 1146–1152.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X. Q., Wang, L., Chen, S., Lin, F., & Pan, Q. H. (2005). Genetic and physical mapping of Pi36(t), a novel rice blast resistance gene located on rice chromosome 8. Molecular Genetics and Genomics, 274, 394–401.

    Article  CAS  PubMed  Google Scholar 

  • Manibhushanrao, K., & Krishnan, P. (1991). Epidemiology of blast (EPIBLA): A simulation model and forecasting system for tropical rice in India (pp. 31–38). Manila: Rice Blast Modeling and Forecasting IRRI.

    Google Scholar 

  • Manjappa, K. (2013). Evaluation of antifungal properties of Eupatorium (Chromolaena odorata L.) plant Extract against Pyricularia oryzae causing blast disease in rice crop. Asian Journal of Pharmaceutical Science and Technology, 5(1), 79–81.

    Google Scholar 

  • Miyake, K., & Ikeda, M. (1932). Influence of silica application on rice blast. Japanese Journal of Soil Science and Plant Nutrition, 6, 53–76.

    Google Scholar 

  • Mu, C., Liu, X., Lu, Q., Jiang, X., & Zhu, C. (2007). Biological control of rice blast by Bacillus subtilis B-332 strain. Acta Phytophylacica Sinica, 34(2), 123–128.

    CAS  Google Scholar 

  • Ogawa, M. (1953). Studies on blast control of Ceresan lime. Ohugoku-Shikoku Agricultural Resesearch, 3, 1–5.

    Google Scholar 

  • Okamoto, M. (1972). On the characteristics of Kasumin, antibiotic fungicide. Japan Pesticide Information, 10, 66–69.

    Google Scholar 

  • Olufolaji, D. B., Adeosun, B. O., & Onasanya, R. O. (2015). In vitro investigation on antifungal activity of some plant extracts against Pyricularia oryzae. Nigerian Journal of Biotechnology, 29(1), 38–43.

    Article  Google Scholar 

  • Onodera, I. (1917). Chemical studies on rice blast (Dactylaria parasitance Cavara). Journal of Scientific Agricultural Society, 180, 606–617.

    Google Scholar 

  • Ou, S. H. (1971). A Type of Stable Resistance to Blast Disease of Rice. Phytopathology, 61(6), 703.

    Article  Google Scholar 

  • Ou, S. H. (1985). Rice diseases. Manila: International Rice Research Institute.

    Google Scholar 

  • Ou, S. H. (1987). Bacterial disease. Rice disease (pp. 66–96). Tucson: CAB International.

    Google Scholar 

  • Padmanabhan, S. (1963). The role of therapeutic treatments in plant disease control with special reference to rice diseases. Indian Phytopathology Society Bulletin, 1, 79–84.

    Google Scholar 

  • Pan, H. Q., Tanisaka, T., & Ikehashi, H. (1996). Studies on the genetics and breeding of blast resistance in rice VI. Gene analysis of the blast resistance of two Yunnan native cultivars GA20 and GA25. Breeding Science, 46(2), 70.

    Google Scholar 

  • Parimelazhagan, T. (2001). Botanical fungicide for the control of rice blast disease. Bioved, 12(1/2), 11–15.

    Google Scholar 

  • Pinnschmidt, H. O., Bonman, J. M., & Kranz, J. (1995). Lesion development and sporulation of rice blast. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 102, 299–306.

    Google Scholar 

  • Plank, J. V. D. (1963). Plant diseases: epidemics and control. Plant diseases: epidemics and control.

    Google Scholar 

  • Pooja, K., & Katoch, A. (2014). Past, present and future of rice blast management. Plant Science Today, 1, 165–173.

    Article  Google Scholar 

  • Pozo, M. J., & Azcón-Aguilar, C. (2007). Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology, 10(4), 393–398.

    Article  CAS  PubMed  Google Scholar 

  • Prabhu A. S., & Morais O. P. (1986). Blast disease management in upland rice in Brazil. In Progress in upland rice research. Proceedings of the 1985 Jakarta conference, pp. 383–382.

    Google Scholar 

  • Ram, T., Majumder, N. D., Mishra, B., Ansari, M. M., & Padmavathi, G. (2007). Introgression of broad-spectrum blast resistance gene(s) into cultivated rice (Oryza sativa ssp indica) from wild rice O. rufipogon. Current Science, 92, 225–230.

    CAS  Google Scholar 

  • Refaei, M. I. (1977). Epidemiology of rice blast disease in the tropics with special reference to the leaf wetness in relation to disease development. Doctoral dissertation, IARI, Division of Plant Pathology, New Delhi.

    Google Scholar 

  • Roumen, E. C. (1992). Partial resistance to neck blast influenced by stage of panicle development and rice genotype. Euphytica, 64, 173–182.

    Article  Google Scholar 

  • Sallaud, C., Lorieux, M., Roumen, E., Tharreau, D., Berruyer, R., Svestasrani, P., Garsmeur, O., Ghesquiere, A., & Notteghem, J. L. (2003). Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theoretical and Applied Genetics, 106, 794–803.

    Article  CAS  PubMed  Google Scholar 

  • Sesma, A., & Osbourn, A. E. (2004). The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature, 431(7008), 582–586.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, T. R., Madhav, M. S., Singh, B. K., Shanker, P., Jana, T. K., Dalal, V., Pandit, A., Singh, A., Gaikwad, K., Upreti, H. C., & Singh, N. K. (2005). High-resolution mapping, cloning and molecular characterization of the Pik (h) gene of rice, which confers resistance to Magnaporthe grisea. Molecular Genetics and Genomics, 274, 569–578.

    Article  CAS  PubMed  Google Scholar 

  • Siddiq, E. A. (1996). Current status and future outlook for hybrid rice technology in India. In Hybrid rice technology (pp. 1–27). Hyderabad: ICAR, Directorate of Rice Research.

    Google Scholar 

  • Sitch, L. A., Amante, A. D., Dalmacio, R. D., & Leung, H. (1989). Oryza minuta, a source of blast and bacterial blight resistance for rice improvement. In A. Mujeeb-Kazi & L. A. Sitch (Eds.), Review of advances in plant biotechnology (pp. 315–322). Mexico/Manila: CIMMYT/IRRI.

    Google Scholar 

  • Skamnioti, P., & Gurr, S. J. (2009). Against the grain: safeguarding rice from rice blast disease. Trends in Biotechnology, 27, 141–150.

    Article  CAS  PubMed  Google Scholar 

  • Someya, N., Nakajima, M., Hamamoto, H., Yamaguchi, I., & Akutsu, K. (2004). Effects of light conditions on prodigiosin stability in the biocontrol bacterium Serratia marcescens strain B2. Journal of General Plant Pathology, 70(6), 367–370.

    Article  CAS  Google Scholar 

  • Suwarno, S., Lubis, E., & Soenarjo, E. (2001). Breeding of upland rice in Indonesia. In M. Kosim Kardin, I. Prasadja, & M. (e.) Syam (Eds.), Upland rice research in Indonesia (Current status and future Directions) (pp. 1–6). Bogor: Central Research Institute for Food Crops, Agency for Agricultural Research and Development.

    Google Scholar 

  • Suzuki, H. (1954). Studies on antiblastin (I-IV). Annals of the Phytopathological Society of Japan, 18, 138.

    Google Scholar 

  • Sweigard, J. A., Carroll, A. M., Kang, S., Farrall, L., Chumley, F. G., & Valent, B. (1995). Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell, 7, 1221–1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabien, R. E., Pinson, S. R. M., Marchetti, M. A., Li, Z., Park, W. D., Paterson, A. H., & Stansel, J. W. (1996). Blast resistance genes from Teqing and Lemont. In G. S. Khush (Ed.), Rice genetics III. Proceedings of third international rice genetics symposium, Oct 16–20 (pp. 451–455). Manila: International Rice Research Institute.

    Google Scholar 

  • Tabien, R. E., Li, Z., Paterson, A. H., Marchetti, M. A., Stansel, J. W., & Pinson, S. R. M. (2000). Mapping of four rice blast resistance genes from ‘Lemont’ and ‘Teqing’ and evaluation of their combinatorial effect for field resistance. Theoretical and Applied Genetics, 101, 1215–1225.

    Article  CAS  Google Scholar 

  • Tacconi, G., Baldassarre, V., Lanzanova, C., Faivre-Rampant, O., Cavigiolo, S., Urso, S., & Valè, G. (2010). Polymorphism analysis of genomic regions associated with broad-spectrum effective blast resistance genes for marker development in rice. Molecular Breeding, 26(4), 595–617.

    Article  Google Scholar 

  • Talbot, N. J. (2003). On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annual Reviews in Microbiology, 57(1), 177–202.

    Article  CAS  Google Scholar 

  • Tamari, K., & Kaji, J. (1955). Biochemical studies of the blast fungus (Pyricularia oryzae Cavara). Part 2. Studies on the physiological action of pyricularin, a toxin produced by the blast fungus on rice plants. Journal of Agricultural Chemical Society of Japan, 29, 185–190.

    Article  CAS  Google Scholar 

  • Teng, P. S., Torres, C. Q., Nuque, F. L., & Calvero, S. B. (1990). Current knowledge on crop losses in tropical rice. In Crop loss assessment in rice (pp. 39–54). Los Banos: IRRI.

    Google Scholar 

  • Thurston, H. D. (1998). Tropical plant diseases. Ithaca: American Phytopathological Society (APS Press).

    Google Scholar 

  • Tucker, S. L., & Talbot, N. J. (2001). Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annual Review of Phytopathology, 39(1), 385–417.

    Article  CAS  PubMed  Google Scholar 

  • Uesugi, Y. (1978). Resistance of phytopathogenic fungi to fungicides. Japan Pesticide Information, Japan.

    Google Scholar 

  • Usman, G. M., Wakil, W., Sahi, S. T., & Saleem il, Y. (2009). Influence of various fungicides on the management of rice blast disease. Mycopathology, 7(1), 29–34.

    Google Scholar 

  • Valent, B., & Chumley, F. G. (1991). Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Annual Review of Phytopathology, 29(1), 443–467.

    Article  CAS  PubMed  Google Scholar 

  • van der Heijden, M. G. A., Bakker, R., Verwaal, J., Scheublin, T. R., Rutten, M., Van Logtestijn, R., & Staehelin, C. (2006). Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland. FEMS Microbiology Ecology, 56, 178–118.

    Article  PubMed  Google Scholar 

  • van der Heijden, M. G. A., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296–310.

    Article  PubMed  Google Scholar 

  • Watanabe, K., Tanaka, T., Fukuhara, K., Miyairi, N., Yonehara, H., & Umezawa, H. A. M. A. O. (1957). Blastmycin, a new antibiotic from Streptomyces sp. J. Antibiotics, Ser. A, 10(2), 39–45.

    CAS  Google Scholar 

  • Wilson, R. A., & Talbot, N. J. (2009). Under pressure: Investigating the biology of plant infection by Magnaporthe oryzae. Nature Reviews. Microbiology, 7, 185–195.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J. R., & Hamer, J. E. (1996). MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes & Development, 10(21), 2696–2706.

    Article  CAS  Google Scholar 

  • Xu, J. R., Zhao, X., & Dean, R. A. (2007). From genes to genomes: A new paradigm for studying fungal pathogenesis in Magnaporthe oryzae. Advances in Genetics, 57, 175–218.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J. H., Liu, H. X., Zhu, G. M., Pan, Y. L., Xu, L. P., & Guo, J. H. (2008). Diversity analysis of antagonists from rice-associated bacteria and their application in biocontrol of rice diseases. Journal of Applied Microbiology, 104(1), 91–104.

    Google Scholar 

  • Yoshii, K. (1949). Studies on Cephalothecium as a means of artificial immunization of agricultural crops. Japanese Journal of Phytopathology, 13, 37–40.

    Article  Google Scholar 

  • Zeigler, R. S., Leong, S. A., & Teng, P. S. (1994). Rice blast disease. Manila: International Rice Research Institute.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, M., Ashraf, S. (2019). Integrated Management of Rice Blast Caused by Magnaporthe oryzae . In: Ansari, R., Mahmood, I. (eds) Plant Health Under Biotic Stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-6043-5_5

Download citation

Publish with us

Policies and ethics