Skip to main content

Organic Soil Amendments: Potential Tool for Soil and Plant Health Management

  • Chapter
  • First Online:
Plant Health Under Biotic Stress

Abstract

Utilization of organic matter as a chief substrate for agricultural crops and beneficial microorganisms is gaining interest of plant pathologists, agronomists, manufacturing and processing industries, regulators, growers, tycoons and consumers. These organic inputs provide energy and nutrients to soil leading to a considerable change in the environment which becomes appropriate for survival of crops and proliferation of microorganisms. More likely, this exercise is further reinforced by the consumers’ demand as they are more conscious towards their health. Moreover, use of organic matter rather than disposal is preferred because it imparts in the market value and recycles back to the land leading towards the enhanced sustainable agricultural system. Various types of organic materials are now available and growers have been familiar with these wastes. However, efficacious nature of each organic matter is different maybe partly due to their chemical constituents, types, origin and duration of decomposition. Henceforth, the results of these natural products are inconsistent from site to site as well as from field to field. Similarly, there is no single mechanism which can advocate the queries prudently pertaining to disease management caused by various soilborne plant pathogens. Some common instances have, however, been exemplified like secretion of pathogen toxic compounds, alteration in soil physico-chemical properties, enhanced microbial activities and induction of host resistance against wide spectrum of soilborne pathogens. Moreover, soil is indistinct part of the ecosystem which may regulate the plants response. Application of low rate of organics is suggested as this will be affordable to the growers. In our opinion, this may be possible through appropriate site selection, formulation, storage and handling as well as consortia of organic matter with other compatible modules. Major problem in the adoption of this technology is insufficient supply of ready-made organics which needs a prudent optimization in order to attain sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi, P. A., Al-Dahmani, J., Sahin, F., Hoitink, H. A. J., & Miller, S. A. (2002). Effect of compost amendments on disease severity and yield of tomato in conventional and organic production systems. Plant Disease, 86(2), 156–161.

    Article  CAS  PubMed  Google Scholar 

  • Abbasi, M. K., Zafar, M., & Khan, S. R. (2007). Influence of different land-cover types on the changes of selected soil properties in the mountain region of Rawalakot Azad Jammu and Kashmir. Nutrient Cycling in Agroecosystems, 78(1), 97–110.

    Article  Google Scholar 

  • Abiven, S., Menassero, S., & Chenu, C. (2009). The effect of organic inputs over time on soil aggregate stability – A literature analysis. Soil Biology and Biochemistry, 41, 1–12.

    Article  CAS  Google Scholar 

  • Acharya, B. S., Rasmussen, J., & Eriksen, J. (2012). Grassland carbon sequestration and emissions following cultivation in a mixed crop rotation. Agriculture, Ecosystems & Environment, 153, 33–39.

    Article  CAS  Google Scholar 

  • Akhtar, M., & Malik, A. (2000). Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: A review. Bioresource Technology, 74, 5–47.

    Article  Google Scholar 

  • Akram, M., Rizvi, R., Sumbul, A., Ansari, R. A., & Mahmood, I. (2016). Potential role of bio-inoculants and organic matter for the management of root-knot nematode infesting chickpea. Cogent Food & Agriculture, 2(1), 1183457.

    Article  CAS  Google Scholar 

  • Alabouvette, C. (1999). Fusarium wilt suppressive soils: An example of disease-suppressive soils. Australasian Plant Pathology, 28, 57–64. https://doi.org/10.1071/AP99008.

    Article  Google Scholar 

  • Alabouvette, C., Backhouse, D., Steinberg, C., Donovan, N. J., Edel-Hermann, V., & Burgess, L. W. (2004). Microbial diversity in soil: Effects on crop health. In P. Schjonning, S. Elmholt, & B. T. Christensen (Eds.), Managing soil quality: Challenges in modern agriculture (pp. 121–138). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Albiach, R., Canet, R., Pomares, F., & Ingelmo, F. (2000). Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Bioresource Technology, 75, 43–48.

    Article  CAS  Google Scholar 

  • Alkooranee, J. T., Aledan, T. R., Ali, A. K., Lu, G., Zhang, X., Wu, J., Fu, C., & Li, M. (2017). Detecting the hormonal pathways in oilseed rape behind induced systemic resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum. PLoS One, 12(1), 1–21.

    Article  Google Scholar 

  • Allison, S. D., Wallenstein, M. D., & Bradford, M. A. (2010). Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience, 3(5), 336–340.

    Article  CAS  Google Scholar 

  • Alsanius, B. W., Blok, C., Cuijpers, W. J., França, S. C., Fuchs, J. G., Janmaat, L., Raviv, M., Streminska, M. A., Termorshuizen, A. J., & van der Wurff, A. W. (2016). Handbook for composting and compost use in organic horticulture. Bio Greenhouse COST Action FA 1105.

    Google Scholar 

  • Al-Turki, A. I. (2010). Quality assessment of commercially produced composts in Saudi Arabia market. International Journal of Agricultural Research, 5, 70–79.

    Article  CAS  Google Scholar 

  • Anonymous. (2017). Pests eat away 35% of total crop yield, says ICAR scientist. http://www.thehindu.com/news/national/pests-eat-away-35-of-total-crop-yield-says-icar-scientist/article17368426.ece

  • Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.

    Google Scholar 

  • Ansari, R. A., Mahmood, I., Rizvi, R., Sumbul, A., & Safiuddin. (2017a). Siderophores: Augmentation of soil health and crop productivity. In V. Kumar, M. Kumar, S. Sharma, & R. Prasad (Eds.), Probiotics in agroecosystem. Singapore: Springer. (in press).

    Google Scholar 

  • Ansari, R. A., Rizvi, R., Sumbul, A., & Mahmood, I. (2017b). PGPR: Current vogue in sustainable crop production. In V. Kumar, M. Kumar, S. Sharma, & R. Prasad (Eds.), Probiotics and plant health. Singapore: Springer. (in press).

    Google Scholar 

  • Arvanitoyannis, I. S., Ladas, D., & Mavromatis, A. (2006). Potential uses and applications of treated wine waste: A review. The International Journal of Food Science & Technology, 41(5), 475–487.

    Article  CAS  Google Scholar 

  • Aviles, M., Borrero, C., & Trillas, M. I. (2011). Review on compost as an inducer of disease suppression in plants grown in soilless culture. Dynamic Soil, Dynamic Plant, 5, 1–11.

    Google Scholar 

  • Bailey, K. L., & Lazarovits, G. (2003). Suppressing soil-borne diseases with residue management and organic amendments. Soil and Tillage Research, 72, 169–180.

    Article  Google Scholar 

  • Baker, R., & Cook, J. (1974). Biological control of plant pathogens. San Francisco: W.H. Freeman, 433p.

    Google Scholar 

  • Bangar, K. S., Parmar, B. B., & Maini, A. (2000). Effect of nitrogen and press mud application on yield and uptake of N, P and K by sugarcane (Saccharum officinarum L.). Crop Research, 19(2), 198–203.

    Google Scholar 

  • Bauer, A., & Black, A. L. (1994). Quantification of the effect of soil organic matter content on soil productivity. Soil Science Society of America Journal, 58(1), 185–193.

    Article  Google Scholar 

  • Beck-Friis, B., Pell, M., Sonesson, U., Jönsson, H., & Kirchmann, H. (2000). Formation and emission of N2O and CH4 from compost heaps of organic household waste. Environmental Monitoring and Assessment, 62, 317–331.

    Article  CAS  Google Scholar 

  • Bender, G. S., Casale, W. L., & Rahimian, M. (1992). Use of worm-composted sludge as a soil amendment for avocados in Phytophthora-infested soil. In Proceeding of Second World Avocado Congress, Orange, CA, USA, p. 143.

    Google Scholar 

  • Bernard, E., Larkin, R. P., Tavantzis, S., Erich, M. S., Alyokhin, A., & Gross, S. (2014). Rapeseed rotation, compost, and biocontrol amendments reduce soilborne diseases and increase tuber yield in organic and conventional potato production systems. Plant and Soil, 374, 611–627.

    Article  CAS  Google Scholar 

  • Berthrong, S. T., Buckley, D. H., & Drinkwater, L. E. (2013). Agricultural management and labile carbon additions affect soil microbial community structure and interact with carbon and nitrogen cycling. Microbial Ecology, 66, 158–170.

    Article  CAS  PubMed  Google Scholar 

  • Beusen, A. H. W., Bouwman, A. F., Heuberger, P. S. C., Van Drecht, G., & Van Der Hoek, K. W. (2008). Bottom-up uncertainty estimates of global ammonia emissions from global agricultural production systems. Atmospheric Environment, 42, 6067–6077.

    Article  CAS  Google Scholar 

  • Bhowmik, A., Fortuna, A. M., Cihacek, L., Bary, A., & Cogger, C. G. (2016). Use of biological indicators of soil health to estimate reactive nitrogen dynamics in long-term organic vegetable and pasture systems. Soil Biology and Biochemistry, 103, 308–319.

    Article  CAS  Google Scholar 

  • Bhowmik, A., Fortuna, A. M., Cihacek, L. J., Bary, A. I., Carr, P. M., & Cogger, C. G. (2017). Potential carbon sequestration and nitrogen cycling in long-term organic management systems. Renewable Agriculture and Food Systems, 1–13. https://doi.org/10.1017/S1742170516000429

  • Blok, W. J., Lamers, J. G., Termorshuizen, A. J., & Bollen, G. J. (2000). Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology, 90, 253–259.

    Article  CAS  PubMed  Google Scholar 

  • Bokhtiar, S. M., Paul, G. C., Rashid, M. A., & Rahman, A. B. M. (2001). Effect of press mud and organic nitrogen on soil fertility and yield of sugarcane grown in high Ganges river flood plain soils of Bangladesh. Indian Sugar, 51(4), 235–240.

    Google Scholar 

  • Bonanomi, G., Antignani, V., Capodilupo, M., & Scala, F. (2010). Identifying the characteristics of organic amendments that suppress soilborne plant diseases. Soil Biology and Biochemistry, 42, 136–144.

    Article  CAS  Google Scholar 

  • Bonanomi, G., D’Ascoli, R., Antignani, V., Capodilupo, M., Cozzolino, L., Marzaioli, R., Puopolo, G., Rutigliano, F. A., Scelza, R., Scotti, R., Rao, M. A., & Zoina, A. (2011a). Assessing soil quality under intensive cultivation and tree orchards in Southern Italy. Applied Soil Ecology, 47, 187–194.

    Article  Google Scholar 

  • Bonanomi, G., Antignani, V., Barile, E., Lanzotti, V., & Scala, F. (2011b). Decomposition of Medicago sativa residues affects phytotoxicity, fungal growth and soil-borne pathogen diseases. Journal of Plant Pathology, 93, 57–69.

    CAS  Google Scholar 

  • Bonanomi, G., Incerti, G., Giannino, F., Mingo, A., Lanzotti, V., & Mazzoleni, S. (2013). Litter quality assessed by solid state 13 C NMR spectroscopy predicts decay rate better than C/N and Lignin/N ratios. Soil Biology and Biochemistry, 56, 40–48.

    Article  CAS  Google Scholar 

  • Bonanomi, G., Capodilupo, M., Incerti, G., & Mazzoleni, S. (2014a). Nitrogen transfer in litter mixture enhances decomposition rate, temperature sensitivity, and C quality changes. Plant and Soil, 381, 307–321.

    Article  CAS  Google Scholar 

  • Bonanomi, G., D’Ascoli, R., Scotti, R., Gaglione, S. A., Caceres, M. G., Sultana, S., Scelza, R., Rao, M. A., & Zoina, A. (2014b). Soil quality recovery and crop yield enhancement by combined application of compost and wood to vegetables grown under plastic tunnels. Agriculture, Ecosystems & Environment, 192, 1–7.

    Article  CAS  Google Scholar 

  • Bonilla, N., Cazorla, F. M., Martínez-Alonso, M., Hermoso, J. M., González-Fernández, J., Gaju, N., Landa, B. B., & de Vicente, A. (2012a). Organic amendments and land management affect bacterial community composition, diversity and biomass in avocado crop soils. Plant and Soil, 357, 215–226.

    Article  CAS  Google Scholar 

  • Bonilla, N., Gutierrez-Barranquero, J. A., de Vicente, A., & Cazorla, F. M. (2012b). Enhancing soil quality and plant health through suppressive organic amendments. Diversity, 4, 475–491.

    Article  Google Scholar 

  • Borrero, C., Trillas, M. I., Ordovás, J., Tello, J. C., & Avilés, M. (2004). Predictive factors for the suppression of Fusarium wilt of tomato in plant growth media. Phytopathology, 94, 1094–1101.

    Article  PubMed  Google Scholar 

  • Bouizgarne, B. (2013). Bacteria for plant growth promotion and disease management. In Bacteria in agrobiology: Disease management (pp. 15–47). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Bowles, T. M., Hollander, A. D., Steenwerth, K., & Jackson, L. E. (2015). Tightly-coupled plant-soil nitrogen cycling: Comparison of organic farms across an agricultural landscape. PLoS One, 10(6), e0131888. https://doi.org/10.1371/journal.pone.0131888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunetti, G., Plaza, C., & Senesi, N. (2005). Olive pomace amendment in Mediterranean conditions: Effect on soil and humic acid properties and wheat (Triticum turgidum L.) yield. Journal of Agricultural and Food Chemistry, 53(17), 6730–6737.

    Article  CAS  PubMed  Google Scholar 

  • Bulluck, L. R., III, & Ristaino, J. B. (2002). Effect of synthetic and organic soil fertility amendments on southern blight, soil microbial communities, and yield of processing tomatoes. Phytopathology, 92(2), 181–189.

    Article  CAS  PubMed  Google Scholar 

  • Bulluck Iii, L. R., Brosius, M., Evanylo, G. K., & Ristaino, J. B. (2002). Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Applied Soil Ecology, 19, 147–160.

    Article  Google Scholar 

  • Burauel, P., & BaBmann, F. (2005). Soils as filter and buffer for pesticides-experimental concepts to understand soil functions. Environmental Pollution, 133, 11–16.

    Article  CAS  PubMed  Google Scholar 

  • Castano, R., Borrero, C., & Aviles, M. (2011). Organic matter fractions by SP-MAS C-13 NMR and microbial communities involved in the suppression of Fusarium wilt in organic growth media. Biological Control, 58, 286–293.

    Article  Google Scholar 

  • Ceja-Navarro, J. A., Rivera-Orduña, F. N., Patiño-Zúñiga, L., Vila-Sanjurjo, A., Crossa, J., Govaerts, B., & Dendooven, L. (2010). Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities. Applied and Environmental Microbiology, 76, 3685–3691. https://doi.org/10.1128/AEM.02726-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celik, I., Ortas, I., & Kilic, S. (2004). Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a Chromoxerert soil. Soil and Tillage Research, 78(1), 59–67.

    Article  Google Scholar 

  • Cesaro, A., Belgiorno, V., & Guida, M. (2015). Compost from organic solid waste: Quality assessment and European regulations for its sustainable use. Resources, Conservation and Recycling, 94, 72–79.

    Article  Google Scholar 

  • Chae, D. H., Jin, R. D., Hwangbo, H., Kim, Y. H., Kim, Y. W., Park, R. D., Krishnan, H. B., & Kim, K. Y. (2006). Control of late blight (Phytophthora capsici) in pepper plant with a compost containing multitude of chitinase-producing bacteria. BioControl, 51, 339–351.

    Article  Google Scholar 

  • Chakraborty, A., Chakrabarti, K., Chakraborty, A., & Ghosh, S. (2011). Effect of long-term fertilizers and manure application on microbial biomass and microbial activity of a tropical agricultural soil. Biology and Fertility of Soils, 47, 227–233.

    Article  Google Scholar 

  • Chan, Y. C., Sinha, R. K., & Wang, W. (2011). Emission of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia). Waste Management and Research, 29(5), 540–548.

    Article  CAS  PubMed  Google Scholar 

  • Chan, M. T., Selvam, A., & Wong, J. W. (2016). Reducing nitrogen loss and salinity during ‘struvite’food waste composting by zeolite amendment. Bioresource Technology, 200, 838–844.

    Article  CAS  PubMed  Google Scholar 

  • Claassen, V. P., & Carey, J. L. (2006). Comparison of slow-release nitrogen yield from organic soil amendments and chemical fertilizers and implications for regeneration of disturbed sites. Land Degradation and Development, 18, 119–132.

    Article  Google Scholar 

  • Clough, A., & Skjemstad, J. O. (2000). Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate. Australian Journal of Soil Research, 38, 1005–1016.

    Article  CAS  Google Scholar 

  • Cohen, M. F., Yamasaki, H., & Mazzola, M. (2005). Brassica napus seed meal soil amendment modifies microbial community structure, nitric oxide production and incidence of Rhizoctonia root rot. Soil Biology and Biochemistry, 37, 1215–1227. https://doi.org/10.1016/j.soilbio.2004.11.027.

    Article  CAS  Google Scholar 

  • Conn, K. L., Tenuta, M., & Lazarovits, G. (2005). Liquid swine manure can kill Verticillium dahliae microsclerotia in soil by volatile fatty acid, nitrous acid, and ammonia toxicity. Phytopathology, 95(1), 28–35.

    Article  PubMed  Google Scholar 

  • Creamer, N. G., & Baldwin, K. R. (2000). An evaluation of summer cover crops for use in vegetable production systems in North Carolina. Hortscience, 35(4), 600–603.

    Article  Google Scholar 

  • Crecchio, C., Curci, M., Mininni, R., Ricciuti, P., & Ruggiero, P. (2004). Effects of municipal solid waste compost amendments on soil enzyme activities and bacterial genetic diversity. Soil Biology and Biochemistry, 36, 1595–1605.

    Article  CAS  Google Scholar 

  • De Baets, S., Van de Weg, M. J., Lewis, R., Steinberg, N., Meersmans, J., Quine, T. A., Shaver, G. R., & Hartley, I. P. (2016). Investigating the controls on soil organic matter decomposition in tussock tundra soil and permafrost after fire. Soil Biology and Biochemistry, 99, 108–116.

    Article  CAS  Google Scholar 

  • Delgado, M. M., Martin, J. V., De Imperial, R. M., León-Cófreces, C., & García, M. C. (2010). Phytotoxicity of uncomposted and composted poultry manure. African Journal of Plant Science, 4(5), 151–159.

    Google Scholar 

  • Dimitrov, M. R., Veraart, A. J., de Hollander, M., Smidt, H., van Veen, J. A., & Kuramae, E. E. (2017). Successive DNA extractions improve characterization of soil microbial communities. PeerJ, 5, e2915. https://doi.org/10.7717/peerj.2915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolliver, H., Gupta, S., & Noll, S. (2008). Antibiotic degradation during manure composting. Journal of Environmental Quality, 37, 1245–1253.

    Article  CAS  PubMed  Google Scholar 

  • Dotaniya, M. L., Datta, S. C., Biswas, D. R., Dotaniya, C. K., Meena, B. L., Rajendiran, S., & Lata, M. (2016). Use of sugarcane industrial by-products for improving sugarcane productivity and soil health. The International Journal of Recycling of Organic Waste in Agriculture, 5(3), 185–194.

    Article  Google Scholar 

  • Douglas, J. T., Aitken, M. N., & Smith, C. A. (2003). Effects of five non-agricultural organic wastes on soil composition, and on the yield and nitrogen recovery of Italian ryegrass. Soil Use and Management, 19, 135–138.

    Article  Google Scholar 

  • Downer, A. J., Menge, J. A., & Pond, E. (2001). Association of cellulytic enzyme activities in eucalyptus mulches with biological control of Phytophthora cinnamomi. Phytopathology, 91(9), 847–855.

    Article  CAS  PubMed  Google Scholar 

  • Drinkwater, L. E., Letourneau, D. K., Workneh, F., van Bruggen, A. H. C., & Shennan, C. (1995). Fundamental differences between conventional and organic tomato agroecosystems in California. Ecological Applications, 5, 1098–1112.

    Article  Google Scholar 

  • Edel-Hermann, V., Dreumont, C., Pérez-Piqueres, A., & Steinberg, C. (2004). Terminal restriction fragment length polymorphism analysis of ribosomal RNA genes to assess changes in fungal community structure in soils. FEMS Microbiology Ecology, 47, 397–404.

    Article  CAS  PubMed  Google Scholar 

  • Ebelhar, S. A., Frye, W. W., & Blevins, R. L. (1984). Nitrogen from legume cover crops for no-tillage corn 1. Agronomy Journal, 76(1), 51–55.

    Article  Google Scholar 

  • El-Abbassi, A., Saadaoui, N., Kiai, H., Raiti, J., & Hafidi, A. (2017). Potential applications of olive mill wastewater as biopesticide for crops protection. Science of the Total Environment, 576, 10–21.

    Article  CAS  PubMed  Google Scholar 

  • Elizabeth, R. (2014). One-third of food is lost or wasted: what can be done. National geographic. http://news.nationalgeographic.com/news/2014/10/141013-food-waste-national-security-environment-science-ngfood/

  • Epstein, E. (2003). Land application of sewage sludge and biosolids. Boca Raton: Lewis Publishers/CRC Press.

    Google Scholar 

  • Erhart, E., Burian, K., Hartl, W., & Stich, K. (1999). Suppression of Pythium ultimum by biowaste composts in relation to compost microbial biomass, activity and content of phenolic compounds. Journal of Phytopathology, 147, 299–305.

    Article  CAS  Google Scholar 

  • F.A.O. (2011). Global food losses and food waste – Extent, causes and prevention. Rome: FAO. http://www.fao.org/3/a-i2697e.pdf.

    Google Scholar 

  • Fageria, N. K., Baligar, V. C., & Bailey, B. A. (2005). Role of cover crops in improving soil and row crop productivity. Communications in Soil Science and Plant Analysis, 36(19–20), 2733–2757.

    Article  CAS  Google Scholar 

  • Fang, C., Smith, P., Moncrieff, J. B., & Smith, J. U. (2005). Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433, 57e59.

    Article  CAS  Google Scholar 

  • Faye, J. M. (2017). Evaluation of organic amendments for the management of root-knot nematodes (Meloidogyne spp.) of tomato (Solanum Lycopersicum L.). Doctoral dissertation. Department of crop and soil sciences, Kwame Nkrumah University of Science and Technology.

    Google Scholar 

  • Ferrer, J., Páez, G., Mármol, Z., Ramones, E., Chandler, C., Marın, M., & Ferrer, A. (2001). Agronomic use of biotechnologically processed grape wastes. Bioresource Technology, 76(1), 39–44.

    Article  CAS  PubMed  Google Scholar 

  • Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., & Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450, 277–280.

    Article  CAS  PubMed  Google Scholar 

  • Fox, T., & Fimeche, C. (2013, January). Global food: Waste not, want not. Institute of Mechanical Engineers, London. https://www.imeche.org/policy-and-press/reports/detail/global-food-waste-not-want-not

  • Franco-Andreu, L., Gómez, I., Parrado, J., García, C., Hernández, T., & Tejada, M. (2016). Soil biology changes as a consequence of organic amendments subjected to a severe drought. Land Degradation & Development, 28(3), 897–905.

    Article  Google Scholar 

  • Fu, L., Penton, C. R., Ruan, Y., Shen, Z., Xue, C., Li, R., & Shen, Q. (2017). Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biology and Biochemistry, 104, 39–48.

    Article  CAS  Google Scholar 

  • Galanakis, C. M. (2015). Food waste recovery: Processing technologies and industrial techniques. London: Academic.

    Google Scholar 

  • Garcia, C., Hernandez, T., Costa, F., & Ceccanti, B. (1994). Biochemical parameters in soils regenerated by the addition of organic wastes. Waste Management and Research, 12(6), 457–466.

    Article  CAS  Google Scholar 

  • Garcıa-Gil, J. C., Plaza, C., Soler-Rovira, P., & Polo, A. (2000). Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biology and Biochemistry, 32, 1907–1913.

    Article  Google Scholar 

  • Geier, B. (2007). IFOAM and the history of the international organic movement. InOrganic farming: An international history (pp. 175–186). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Ghimire, R., Lamichhane, S., Acharya, B. S., Bista, P., & Sainju, U. M. (2017). Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: A review. Journal of Integrative Agriculture, 16(1), 1–15.

    Article  Google Scholar 

  • Ghulam, S., Khan, M. J., Usman, K., & Shakeebullah. (2012). Effect of different rates of press mud on plant growth and yield of lentil in calcareous soil. Sarhad Journal of Agriculture, 28(2), 249–252.

    Google Scholar 

  • Goldstein, J., Pincus, I., & Rynk, R. (2000). Compost use in agriculture. Compost Science & Utilization, 11(2), 94–96.

    Google Scholar 

  • Gomez, E., Ferreras, L., & Toresani, S. (2006). Soil bacterial functional diversity as influenced by organic amendment application. Bioresource Technology, 97, 1484–1489. https://doi.org/10.1016/j.biortech.2005.06.021.

    Article  CAS  PubMed  Google Scholar 

  • Goss, M. J., Tubeileh, A., & Goorahoo, D. (2013). A review of the use of organic amendments and the risk to human health. Advances in Agronomy, 120, 275–379.

    Article  CAS  PubMed Central  Google Scholar 

  • Goyal, S., Chander, K., Mundra, M., & Kapoor, K. (1999). Influence of inorganic fertilizers and organic amendments on soil organic matter and soil microbial properties under tropical conditions. Biology and Fertility of Soils, 29, 196–200.

    Article  CAS  Google Scholar 

  • Hachicha, R., Rekik, O., Hachicha, S., Ferchichi, M., Woodward, S., Moncef, N., Cegarra, J., & Mechichi, T. (2012). Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity. Chemosphere, 88, 677–682.

    Article  CAS  PubMed  Google Scholar 

  • Hadar, Y., & Mandelbaum, R. (1992). Suppressive compost for biocontrol of soilborne plant pathogens. Phytoparasitica, 20(1), S113–S116.

    Article  Google Scholar 

  • Hadar, Y., & Papadopoulou, K. K. (2012). Suppressive composts: Microbial ecology links between abiotic environments and healthy plants. Annual Review of Phytopathology, 50, 133–153.

    Article  CAS  PubMed  Google Scholar 

  • Hader, Y., Mandelbaum, R., & Gorodecki, B. (1992). Biological control of soilborne plant pathogens by suppressive compost. In E. S. Tjamos, G. C. Papavizas, & R. J. Cook (Eds.), Biological control of plant diseases (pp. 79–83). New York: Plenum Press.

    Chapter  Google Scholar 

  • Handa, I. T., Aerts, R., Berendse, F., Berg, M. P., Bruder, A., Butenschoen, O., Chauvet, E., Gessner, M. O., Jabiol, J., Makkonen, M., & McKie, B. G. (2014). Consequences of biodiversity loss for litter decomposition across biomes. Nature, 509(7499), 218–221.

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves, J. C., Adl, M. S., & Warman, P. R. (2008). A review of the use of composted municipal solid waste in agriculture. Agriculture, Ecosystems & Environment, 123, 1–14.

    Article  Google Scholar 

  • Heyman, F., Lindahl, B., Persson, L., Wikström, M., & Stenlid, J. (2007). Calcium concentrations of soil affect suppressiveness against Aphanomyces root rot of pea. Soil Biology and Biochemistry, 39, 2222–2229.

    Article  CAS  Google Scholar 

  • Hiddink, G. A., van Bruggen, A. H. C., Termorshuizen, A. J., Raaijmakers, J. M., & Semenov, A. V. (2005). Effect of organic management of soils on suppressiveness to Gaeumannomyces graminis var. tritici and its antagonist, Pseudomonas fluorescens. European Journal of Plant Pathology, 113, 417–435.

    Article  Google Scholar 

  • Hodge, A., Robinson, D., & Fitter, A. H. (2000). Are microorganisms more effective than plants at competing for nitrogen? Trends in Plant Science, 5, 304–308.

    Article  CAS  PubMed  Google Scholar 

  • Hofsetz, K., & Silva, M. A. (2012). Brazilian sugarcane bagasse: Energy and non-energy consumption. Biomass & Bioenergy, 4(6), 564–573.

    Article  Google Scholar 

  • Hoitink, H. A. J., & Boehm, M. J. (1999). Biocontrol within the context of soil microbial communities: A substrate-dependent phenomenon. Annual Review of Phytopathology, 37, 427–446.

    Article  CAS  PubMed  Google Scholar 

  • Hoitink, H. A. J., Boehm, M. J., & Hadar, Y. (1993). Mechanisms of suppression of soilborne plant pathogens in compost-amended substrates. In H. A. J. Hoitink & H. M. Keener (Eds.), Science and engineering of composting (pp. 601–621). Worthington: Renaissance Publication.

    Google Scholar 

  • Horrocks, A., Curtin, D., Tregurtha, C., & Meenken, E. (2016). Municipal compost as a nutrient source for organic crop production in New Zealand. Agronomy, 6(2), 35.

    Article  Google Scholar 

  • Hu, Z., Xu, C., McDowell, N. G., Johnson, D. J., Wang, M., Luo, Y., Zhou, X., & Huang, Z. (2017). Linking microbial community composition to C loss rates during wood decomposition. Soil Biology and Biochemistry, 104, 108–116.

    Article  CAS  Google Scholar 

  • Huang, X., Wen, T., Zhang, J., Meng, L., Zhu, T., & Cai, Z. (2015). Toxic organic acids produced in biological soil disinfestation mainly caused the suppression of Fusarium oxysporum f. sp. cubense. BioControl, 60(1), 113–124.

    Article  CAS  Google Scholar 

  • Iovieno, P., Morra, L., Leone, A., Pagano, L., & Alfani, A. (2009). Effect of organic and mineral fertilizers on soil respiration and enzyme activities of two Mediterranean horticultural soils. Biology and Fertility of Soils, 45, 555–561.

    Article  CAS  Google Scholar 

  • Janvier, C., Villeneuve, F., Alabouvette, C., Edel-Hermann, V., Mateille, T., & Steinberg, C. (2007). Soil health through soil disease suppression: Which strategy from descriptors to indicators? Soil Biology and Biochemistry, 39(1), 1–23.

    Google Scholar 

  • Jindo, K., Chocano, C., Melgares de Aguilar, J., González, D., Hernandez, T., & García, C. (2016). Impact of compost application during 5 years on crop production, soil microbial activity, carbon fraction, and humification process. Communications in Soil Science and Plant Analysis, 47(16), 1907–1919.

    CAS  Google Scholar 

  • Johnson, J. M. F., Franzluebbers, A. J., Weyers, S. L., & Reicosky, D. C. (2007). Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution, 150, 107–124.

    Article  CAS  PubMed  Google Scholar 

  • Johnston, A. E., Poulton, P. R., & Coleman, K. (2009). Soil organic matter: Its importance in sustainable agriculture and carbon dioxide fluxes. Advances in Agronomy, 101, 1–57.

    Article  Google Scholar 

  • Jouquet, E. P., Bloquel, E., Doan, T. T., Ricoy, M., Orange, D., Rumpel, C., & Duc, T. T. (2011). Do compost and vermicompost improve macronutrient retention and plant growth in degraded tropical soils? Compost Science & Utilization, 19(1), 15–24.

    Article  CAS  Google Scholar 

  • Jowit, J. (2007). Call to use leftovers and cut food waste. https://www.theguardian.com/environment/2007/oct/28/food.foodanddrink?CMP=share_btn_tw

  • Juul, S. (2016). Will Denmark win the global race against food waste? The Huffington Post. http://www.huffingtonpost.com/selina-juul/will-denmark-become-a-wor_b_9703260.html

  • Kammerer, D., Claus, A., Carle, R., & Schieber, A. (2004). Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. Journal of Agricultural and Food Chemistry, 52, 4360–4367.

    Article  CAS  PubMed  Google Scholar 

  • Karami, A., Homaee, M., Afzalinia, S., Ruhipour, H., & Basirat, S. (2012). Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties. Agriculture, Ecosystems & Environment, 148, 22–28.

    Article  CAS  Google Scholar 

  • Kaur, C., & Verma, G. (2016). Effect of different organic sources and their combinations on weed growth and yield of wheat (Triticum aestivum). The Indian Journal of Agricultural Sciences, 50(5), 491–494.

    Google Scholar 

  • Keswani, C., Bisen, K., Chitara, M. K., Sarma, B. K., & Singh, H. B. (2017). Exploring the role of secondary metabolites of Trichoderma in tripartite interaction with plant and pathogens. In Agro-environmental sustainability (pp. 63–79). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Khaliq, A., & Abbasi, M. K. (2015). Improvements in the physical and chemical characteristics of degraded soils supplemented with organic–inorganic amendments in the Himalayan region of Kashmir, Pakistan. Catena, 126, 209–219.

    Article  CAS  Google Scholar 

  • Khan, M. R., Jain, R. K., Ghule, T. M., & Pal, S. (2014). Root knot nematodes in India. A comprehensive monograph. All India Co-ordinated Research Project on Plant Parasitic Nematodes with Integrated Approach for their control. Indian Agricultural Research Institute, New Delhi, pp 78.

    Google Scholar 

  • Kim, J. Y. (2014). Food waste – A bigger problem than you thought. http://www.huffingtonpost.com/jim-yong-kim/food-waste%2D%2D-a-bigger-pro_b_5000462.html?ncid=engmodushpmg00000004

  • Kirchmann, H., & Lundvall, A. (1993). Relationship between N immobilization and volatile fatty acids in soil after application of pig and cattle slurry. Biology and Fertility of Soils, 15, 161–164.

    Article  CAS  Google Scholar 

  • Klein, E. (2011). Soil suppressiveness to Fusarium disease following organic amendments and solarization. Plant Disease, 95(9), 1116–1123. https://doi.org/10.1094/PDIS-01-11-0065.

    Article  PubMed  Google Scholar 

  • Kumar, S. (2016). Municipal solid waste management in developing countries. Boca Raton: CRC Press, Taylor and Francis Group.

    Book  Google Scholar 

  • Kumar, K., Rosen, C. J., Gupta, S. C., & McNearney, M. (2009). Land application of sugar beet by-products: Effects on nitrogen mineralization and crop yields. Journal of Environmental Quality, 38, 319–328.

    Article  CAS  PubMed  Google Scholar 

  • Lakhdar, A., Rabhi, M., Ghnaya, T., Montemurro, F., Jedidi, N., & Abdelly, C. (2009). Effectiveness of compost use in salt-affected soil. Journal of Hazardous Materials, 171, 29–37.

    Article  CAS  PubMed  Google Scholar 

  • Lal, R. (2005). Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degradation and Development, 17, 197–209.

    Article  Google Scholar 

  • Lampkin, N. (1990). Organic farming. Ipswich: Farming Press Books.

    Google Scholar 

  • Lazarovits, G. (2001). Management of soil-borne plant pathogens with organic amendments: A disease control strategy salvaged from the past. Canadian Journal of Plant Pathology, 23, 1–7.

    Article  Google Scholar 

  • Lazarovits, G. (2010). Managing soilborne disease of potatoes using ecologically based approaches. The American Journal of Potato Research, 87(5), 401–411.

    Article  Google Scholar 

  • Lazarovits, G., & Subbarao, K. (2010). Challenges in controlling Verticillium wilt by the use of nonchemical methods. In U. Gisi, I. Chet, & L. Gullino (Eds.), Recent developments in management of plant diseases (pp. 247–264). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Lazarovits, G., Conn, K. L., Abbasi, P. A., & Tenuta, M. (2005). Understanding the mode of action of organic soil amendments provides the way for improved management of soilborne plant pathogens. Acta Horticulturae, 698, 215.

    Article  Google Scholar 

  • Leroy, B. L. M., Herath, H. M. S. K., Sleutel, S., De Neve, S., Gabriels, D., Reheul, D., & Moens, M. (2008). The quality of exogenous organic matter: Short-term effects on soil physical properties and soil organic matter fractions. Soil Use and Management, 24(2), 139–147.

    Article  Google Scholar 

  • Lewis, J. A., & Papavizas, G. C. (1991). Biocontrol of plant diseases: The approach for tomorrow. Crop Protection, 10(2), 95–105.

    Article  Google Scholar 

  • Li, R., Tao, R., Ling, N., & Chu, G. (2017). Chemical, organic and bio-fertilizer management practices effect on soil physicochemical property and antagonistic bacteria abundance of a cotton field: Implications for soil biological quality. Soil & Tillage Research, 167, 30–38.

    Article  Google Scholar 

  • Liu, Z., Chen, X., Jing, Y., Li, Q., Zhang, J., & Huang, Q. (2014). Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena, 123, 45–51.

    Article  CAS  Google Scholar 

  • Liebig, M. A., Morgan, J. A., Reeder, J. D., Ellert, B. H., Gollany, H. T., & Schuman, G. E. (2005). Greenhouse gas contributions and mitigation potential of agricultural practices in northwestern USA and western Canada. Soil and Tillage Research, 83(1), 25–52.

    Article  Google Scholar 

  • Lockwood, J. L. (1990). Relation of energy stress to behaviour of soilborne plant pathogens and to disease development. In D. Hornby (Ed.), Biological control of soilborne plant pathogens (pp. 197–214). Wallingford: CAB International.

    Google Scholar 

  • Lucas, S. T., D’Angelo, E. M., & Williams, M. A. (2014). Improving soil structure by promoting fungal abundance with organic soil amendments. Applied Soil Ecology, 75, 13–23.

    Article  Google Scholar 

  • Maas, E. V., & Hoffman, G. J. (1977). Crop salt tolerance-current assessment. Journal of Irrigation and Drainage, 103, 115–134.

    Google Scholar 

  • Mäder, P., Flieβbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science, 296, 1694–1697.

    Article  PubMed  Google Scholar 

  • Malandraki, I., Tjamos, S. E., Pantelides, I. S., & Paplomatas, E. J. (2008). Thermal inactivation of compost suppressiveness implicates possible biological factors in disease management. Biological Control, 44(2), 180–187.

    Article  Google Scholar 

  • Martin, F. N. (2003). Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide. Annual Review of Phytopathology, 41, 325–350.

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Blanco, J., Lazcano, C., Christensen, T. H., Muñoz, P., Rieradevall, J., Møller, J., Antón, A., & Boldrin, A. (2013). Compost benefits for agriculture evaluated by life cycle assessment: A review. Agronomy for Sustainable Development, 33(4), 721–732.

    Article  Google Scholar 

  • Mazzola, M. (2002). Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie Van Leeuwenhoek, 81, 557–564, Kluwer Academic Publishers, Netherlands.

    Article  CAS  PubMed  Google Scholar 

  • Mazzola, M. (2004). Assessment and management of soil microbial community structure for disease suppression. Annual Review of Phytopathology, 42, 35–59.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, S., Wang, K. H., Sipes, B., & Tian, M. (2017). Suppression of root-knot nematode by vermicompost tea prepared from different curing ages of vermicompost. Plant Disease (ja). https://doi.org/10.1094/PDIS-07-16-1068-RE.

  • Misra, R. V., Roy, R. N., & Hiraoka, H. (2016). On-farm composting methods. Rome: UN-FAO.

    Google Scholar 

  • Montemurro, F., Maiorana, M., Convertini, G., & Ferri, D. (2007). Alternative sugar beet production using shallow tillage and municipal solid waste fertilizer. Agronomy for Sustainable Development, 27, 129–137.

    Article  CAS  Google Scholar 

  • Morra, L., Pagano, L., Iovieno, P., Baldantoni, D., & Alfani, A. (2010). Soil and vegetable crop response to addition of different levels of municipal waste compost under Mediterranean greenhouse conditions. Agronomy for Sustainable Development, 30, 701–709.

    Article  Google Scholar 

  • Muchovej, R. M., & Obreza, T. A. (2001). Biosolids: Are these residuals all the same? Fact Sheet, SS-AGR-167.

    Google Scholar 

  • Muchovej, R. M. C., & Pacovsky, R. S. (1997). Future directions of by-products and wastes in agriculture. In J. E. Rechcigl, & H. C. MacKinnon (Eds.), Agricultural uses of by-products and wastes (ACS symposium series, pp. 1–19). Washington, DC:American Chemical Society.

    Google Scholar 

  • Mukhopadhyay, A. N. (2016). Trichoderma for plant disease management: A reality or myth? The International Journal of Tea Science, 8(4), 47–54.

    Google Scholar 

  • Müller-Lindenlauf, M. (2009). Organic agriculture and carbon sequestration. Possibilities and constrains for the consideration of organic agriculture within carbon accounting systems. Natural Resources Management and Environment Department, Food and Agriculture Organization of the United Nations, Rome.

    Google Scholar 

  • N’Dayegamiye, A., & Tran, T. S. (2001). Effects of green manures on soil organic matter and wheat yields and N nutrition. Canadian Journal of Soil Science, 81(4), 371–382.

    Article  Google Scholar 

  • Nannipieri, P., Ceccanti, B., & Grego, S. (1990). Ecological significance of biological activity in soil. Soil Biochemistry, 6, 293–355, Marcel Dekker, New York, USA.

    CAS  Google Scholar 

  • Niggli, U., Fließbach, A., Hepperly, P., & Scialabba, N. (2009). Low greenhouse gas agriculture: Mitigation and adaptation potential of sustainable farming systems. Ökologie & Landbau, 141, 32–33.

    Google Scholar 

  • Noble, R. (2011). Risks and benefits of soil amendment with composts in relation to plant pathogens. Australasian Plant Pathology, 40, 157–167.

    Article  Google Scholar 

  • Noble, R., & Coventry, E. (2005). Suppression of soil-borne plant diseases with composts: A review. Biocontrol Science and Technology, 15, 3–20.

    Article  Google Scholar 

  • Obreza, T. A., & O’Connor, G. A. (2003). The basics of biosolids application to land in Florida. One of a series of the Soil and Water Science Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.

    Google Scholar 

  • Oliveira, B. R., van Laarhoven, K., Smit, M. P., Rijnaarts, H. H., & Grotenhuis, T. (2017). Impact of compost and manure on the ripening of dredged sediments. Journal of Soils and Sediments, 17(2), 567–577.

    Article  CAS  Google Scholar 

  • Ouni, Y., Lakhdar, A., Scelza, R., Scotti, R., Abdelly, C., Barhoumi, Z., & Rao, M. A. (2013). Effects of two composts and two grasses on microbial biomass and biological activity in a salt-affected soil. Ecological Engineering, 60, 363–369.

    Article  Google Scholar 

  • Pane, C., Spaccini, R., Piccolo, A., Scala, F., & Bonanomi, G. (2011). Compost amendments enhance peat suppressiveness to Pythium ultimum, Rhizoctonia solani and Sclerotinia minor. Biological Control, 56, 115–124.

    Article  Google Scholar 

  • Pane, C., Palese, A. M., Spaccini, R., Piccolo, A., Celano, G., & Zaccardelli, M. (2016). Enhancing sustainability of a processing tomato cultivation system by using bioactive compost teas. Scientia Horticulturae, 202, 117–124.

    Article  Google Scholar 

  • Paplomatas, E. J., Tjamos, S. E., Malandrakis, A. A., Kafka, A. L., & Zouvelou, S. V. (2005). Evaluation of compost amendments for suppressiveness against Verticillium wilt of eggplant and study of mode of action using a novel Arabidopsis pathosystem. European Journal of Plant Pathology, 112, 183–189.

    Article  Google Scholar 

  • Park, J. H., Lamb, D., Paneerselvam, P., Choppala, G., Bolan, N., & Chung, J. W. (2011). Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of Hazardous Materials, 185, 549–574.

    Article  CAS  PubMed  Google Scholar 

  • Pascaud, G., Soubrand, M., Lemee, L., Laduranty, J., El-Mufleh, A., Rabiet, M., & Joussein, E. (2017). Molecular fingerprint of soil organic matter as an indicator of pedogenesis processes in Technosols. Journal of Soils and Sediments, 17(2), 340–351.

    Article  CAS  Google Scholar 

  • Patni, N. K., & Jui, P. Y. (1987). Changes in solids and carbon content of dairy-cattle slurry in farm tanks. Biological Wastes, 20, 11–34.

    Article  CAS  Google Scholar 

  • Paz-Ferreiro, J., Trasar-Cepeda, C., Leirós, M. C., Seoane, S., & Gil-Sotres, F. (2009). Biochemical properties in managed grassland soils in a temperate humid zone: Modifications of soil quality as a consequence of intensive grassland use. Biology and Fertility of Soils, 45, 711–722.

    Article  Google Scholar 

  • Peacock, A. D., Mullen, M. D., Ringelberg, D. B., Tyler, D. D., Hedrick, D. B., Gale, P. M., & White, D. C. (2001). Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biology and Biochemistry, 33, 1011–1019.

    Article  CAS  Google Scholar 

  • Penton, C. R., Gupta, V. V. S. R., Tiedje, J. M., Neate, S. M., Ophel-Keller, K., Gillings, M., Harvey, P., Pham, A., & Roget, D. K. (2014). Fungal community structure in disease suppressive soils assessed by 28S LSU gene sequencing. PLoS One, 9(4), 1–12.

    Article  CAS  Google Scholar 

  • Pérez-Piqueres, A., Edel-Hermann, V., Alabouvette, C., & Steinberg, C. (2006). Response of soil microbial communities to compost amendments. Soil Biology and Biochemistry, 38, 460–470.

    Article  CAS  Google Scholar 

  • Pharand, B., Carisse, O., & Benhamou, N. (2002). Cytological aspects of compost-mediated induced resistance against Fusarium crown and root rot in tomato. Phytopathology, 92, 424–438.

    Article  PubMed  Google Scholar 

  • Piccolo, A. (1996). Humus and soil conservation. Humic substances in terrestrial ecosystems (pp. 225–264). Amsterdam: Elsevier.

    Book  Google Scholar 

  • Raaijmakers, J. M., & Weller, D. M. (1998). Natural plant protection by 2,4-diacetylphloroglucinolproducing Pseudomonas spp. in take-all decline soils. Molecular Plant-Microbe Interactions, 11, 144–152.

    Article  CAS  Google Scholar 

  • Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C., & Moënne-Loccoz, Y. (2009). The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil, 321(1–2), 341–361.

    Article  CAS  Google Scholar 

  • Raaijmakers, J. M., Weller, D. M., & Thomashow, L. S. (1997). Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Applied and Environmental Microbiology, 63(3), 881–887.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raimbault, B. A., & Vyn, T. J. (1991). Crop rotation and tillage effects on corn growth and soil structural stability. Agronomy Journal, 83(6), 979–985.

    Article  Google Scholar 

  • Ramaswamy, J., Prasher, S. O., Patel, R. M., Hussain, S. A., & Barrington, S. F. (2010). The effect of composting on the degradation of a veterinary pharmaceutical. Bioresource Technology, 101, 2294–2299.

    Article  CAS  PubMed  Google Scholar 

  • Razzaq, A. (2001). Assessing sugarcane filtercake as crop nutrients and soil health ameliorant. Pakistan Sugar Journal, 21(3), 15–18.

    Google Scholar 

  • Reddy, G. S. (2008). Green leaf manuring and organic farming in: Organic farming in rainfed agriculture: Opportunities and constraints (pp. 74–77). Hyderabad: Central research Institute for Dryland Agriculture.

    Google Scholar 

  • Rietz, D. N., & Haynes, R. J. (2003). Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biology and Biochemistry, 35, 845–854.

    Article  CAS  Google Scholar 

  • Rizvi, R., Ansari, R. A., Zehra, G., & Mahmood, I. (2015). A farmer friendly and economic IPM strategy to combat root-knot nematodes infesting lentil. Cogent Food & Agriculture, 1(1), 1053214.

    Google Scholar 

  • Rocha, G. J. M., Martin, C., Soares, I. B., Souto-Maior, A. M., Baudel, H. M., & Moraes, C. A. (2011). Dilute mixed-acid pretreatment of sugarcane bagasse for the ethanol production. Biomass & Bioenergy, 35, 663–670.

    Article  CAS  Google Scholar 

  • Rodríguez-Kábana, R. (1986). Organic and inorganic nitrogen amendments to soil as nematode suppressants. Journal of Nematology, 18, 129–135.

    PubMed  PubMed Central  Google Scholar 

  • Ros, M., Hernandez, M. T., & Garcìa, C. (2003). Soil microbial activity after restoration of a semiarid soil by organic amendments. Soil Biology and Biochemistry, 35, 463–469.

    Article  CAS  Google Scholar 

  • Saison, C., Degrange, V., Oliver, R., Millard, P., Commeaux, C., Montange, D., & Le Roux, X. (2006). Alteration and resilience of the soil microbial community following compost amendment: Effects of compost level and compost- borne microbial community. Environmental Microbiology, 8, 247–257. https://doi.org/10.1111/j.1462-2920.2005.00892.x.

    Article  CAS  PubMed  Google Scholar 

  • Sanmanee, N., Panishkan, K., Obsuwan, K., & Dharmvanij, S. (2011). Study of compost maturity during humification process using UV-spectroscopy. World Academy of Science, Engineering and Technology, 80, 403–405.

    Google Scholar 

  • Sardar, S., Ilyas, S. U., Malik, S. R., & Javaid, K. (2013). Compost fertilizer production from sugar press mud (SPM). International Journal of Microbiology Research, 1(2), 20–27.

    Google Scholar 

  • Sarrantonio, M., & Gallandt, E. (2003). The role of cover crops in North American cropping systems. Journal of Crop Production, 8(1–2), 53–74.

    Article  Google Scholar 

  • Sarwar, M. A., Ibrahim, M., Tahir, M., Ahmad, K., Khan, Z. I., & Valeem, E. E. (2010). Appraisal of press mud and inorganic fertilizers on soil properties, yield and sugarcane quality. Pakistan Journal of Botany, 42(2), 1361–1367.

    Google Scholar 

  • Scheuerell, S. J., Sullivan, D. M., & Mahaffee, W. F. (2005). Suppression of seedling damping-off caused by Pythium ultimum, P. irregulare, and Rhizoctonia solani in container media amended with a diverse range of Pacific Northwest compost sources. Phytopathology, 95, 306–315.

    Article  PubMed  Google Scholar 

  • Schuerell, S. J., & Mahaffee, W. F. (2002). Compost tea: Principles and prospects for disease control. Compost Science & Utilization, 10, 313–338.

    Article  Google Scholar 

  • Scotti, R., Bonanomi, G., Scelza, R., Zoina, A., & Rao, M. A. (2015). Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. Journal of Soil Science and Plant Nutrition, 15(2), 333–352.

    CAS  Google Scholar 

  • Scotti, R., Conte, P., Berns, A. E., Alonzo, G., & Rao, M. A. (2013). Effect of organic amendments on the evolution of soil organic matter in soils stressed by intensive agricultural practices. Current Organic Chemistry, 17, 2998–3005.

    Article  CAS  Google Scholar 

  • Serra-Wittling, C., Houot, S., & Alabouvette, C. (1996). Increased soil suppressiveness to Fusarium wilt of flax after addition of municipal solid waste compost. Soil Biology and Biochemistry, 28, 1207–1214.

    Article  CAS  Google Scholar 

  • Shahbaz, M., Kuzyakov, Y., Sanaullah, M., Heitkamp, F., Zelenev, V., Kumar, A., & Blagodatskaya, E. (2017). Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: Mechanisms and thresholds. Biology and Fertility of Soils, 53, 1–15.

    Article  CAS  Google Scholar 

  • Simon, A., & Sivasithamparam, K. (1989). Pathogen-suppression: A case study in biological suppression of Gaeumannomyces graminis var. tritici in soil. Soil Biology and Biochemistry, 21, 331–337.

    Article  Google Scholar 

  • Singh, M., Singh, A., Singh, S., Tripathi, R. S., Singh, A. K., & Patra, D. D. (2010). Cowpea (Vigna unguiculata L. Walp.) as a green manure to improve the productivity of a menthol mint (Mentha arvensis L.) intercropping system. Industrial Crops and Products, 31(2), 289–293.

    Article  Google Scholar 

  • Smith, M. M., Aber, J. D., & Rynk, R. (2016). Heat recovery from composting: A comprehensive review of system design, recovery rate, and utilization. Compost Science & Utilization, 1, 12.

    Google Scholar 

  • Smolinska, U. (2000). Survival of Sclerotium cepivorum Sclerotia and Fusarium oxysporum Chlamydospores in Soil Amended with Cruciferous Residues. Journal of Phytopathology, 148(6), 343–349.

    Article  Google Scholar 

  • St.Martin, C. C. G., & Brathwaite, R. A. I. (2012). Compost and compost teas: Principles and prospects as substrates and soil-borne disease management strategies in soil-less vegetable production. Biological Agriculture and Horticulture, 28, 1–33.

    Article  Google Scholar 

  • Stark, C. H., Condron, L. M., O’Callaghan, M., Stewart, A., & Di, H. J. (2008). Differences in soil enzyme activities, microbial community structure and short-term nitrogen mineralisation resulting from farm management history and organic matter amendments. Soil Biology and Biochemistry, 40, 1352–1363. https://doi.org/10.1016/j.soilbio.2007.09.025.

    Article  CAS  Google Scholar 

  • Steinberg, C., Edel-Hermann, V., Alabouvette, C., & Lemanceau, P. (2007). Soil suppressiveness to plant diseases. In J. D. van Elsas, J. C. Jansson, & J. T. Trevors (Eds.), Modern soil microbiology (2nd ed., pp. 455–478). Boca Raton: CRC Press.

    Google Scholar 

  • Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., de Macêdo, J. L. V., Blum, W. E., & Zech, W. (2007). Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 291(1–2), 275–290.

    Article  CAS  Google Scholar 

  • Sugumaran, M. P., Shanmugam, P. M., Ramasamy, S., & Siddeswaran, K. (2016). Effect of different organic manures on the performance of improved White Ponni in Tamil Nadu. Advanced Life Sciences, 5(8), 3394–3397.

    Google Scholar 

  • Sumbul, A., Rizvi, R., Mahmood, I., & Ansari, R. A. (2015). Oil-cake amendments: Useful tools for the management of phytonematodes. Asian Journal of Plant Pathology, 9(3), 91–111.

    Article  Google Scholar 

  • Szczech, M., & Smolińska, U. (2001). Comparison of suppressiveness of vermicomposts produced from animal manures and sewage sludge against Phytophthora nicotianae Breda de Haan var. nicotianae. Journal of Phytopathology, 149, 77–82.

    Article  Google Scholar 

  • Tamm, L., Thürig, B., Bruns, C., Fuchs, J. G., Köpke, U., Laustela, M., & Weber, F. (2010). Soil type, management history, and soil amendments influence the development of soil-borne (Rhizoctonia solani, Pythium ultimum) and air-borne (Phytophthora infestans, Hyaloperonospora parasitica) diseases. European Journal of Plant Pathology, 127(4), 465–481.

    Article  Google Scholar 

  • Tejada, M., Dobao, M. M., Benitez, C., & Gonzales, J. L. (2001). Study of composting of cotton residues. Bioresource Technology, 79, 199–202.

    Article  CAS  PubMed  Google Scholar 

  • Tejada, M., Garcia, C., Gonzalez, J. L., & Hernandez, M. T. (2006). Use of organic amendment as a strategy for saline soil remediation: Influence on the physical, chemical and biological properties of soil. Soil Biology and Biochemistry, 38, 1413–1421.

    Article  CAS  Google Scholar 

  • Tenuta, M., & Lazarovits, G. (2002). Ammonia and nitrous acid from nitrogenous amendments kill the microsclerotia of Verticillium dahliae. Phytopathology, 58, 41–45.

    Google Scholar 

  • Termorshuizen, A. J., Van Rijn, E., Van Der Gaag, D. J., Alabouvette, C., Chen, Y., Lagerlöf, J., Malandrakis, A. A., Paplomatas, E. J., Rämert, B., & Ryckeboer J Steinberg, C. (2006). Suppressiveness of 18 composts against 7 pathosystems: Variability in pathogen response. Soil Biology and Biochemistry, 38(8), 2461–2477.

    Article  CAS  Google Scholar 

  • Termorshuizen, A. J., van Rijn, E., van der Gaag, D. J., Alabouvette, C., Chen, Y., Lagerlöf, J., Malandrakis, A. A., Paplomatas, E. J., Rämert, B., Ryckeboer, J., Steinberg, C., & Zmora-Nahum, S. (2007). Suppressiveness of 18 composts against 7 pathosystems: Variability in pathogen response. Soil Biology and Biochemistry, 38, 2461–2477.

    Article  CAS  Google Scholar 

  • Thacker, B. (2007). Management of byproduct solids generated in the pulp and paper industry. In Presentation to EPA OSW Staff, Washington, DC, January 23, 2007. USAEPA, Washington DC, USA. pp. 18. Available at: http://www.epa.gov/wastes/conserve/imr/irc-meet/03-paper.pdf (Cited 12th Feb. 2010; verified 1st August, 2012).

  • Thangarajan, R., Bolan, N. S., Tian, G., Naidu, R., & Kunhikrishnan, A. (2013). Role of organic amendment application on greenhouse gas emission from soil. Science of the Total Environment, 465, 72–96.

    Article  CAS  PubMed  Google Scholar 

  • Thomashow, L. S., Weller, D. M., Bonsall, R. F., & Pierson, L. S. (1990). Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Applied and Environmental Microbiology, 56, 908–912.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, G., Kang, B. T., & Brussaard, L. (1992). Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions decomposition and nutrient release. Soil Biology and Biochemistry, 24, 1051–1060.

    Article  CAS  Google Scholar 

  • Tilston, E. L., Pitt, D., & Groenhof, A. C. (2002). Composted recycled organic matter suppresses soil-borne diseases of field crops. New Phytologist, 154, 731–740.

    Article  CAS  PubMed  Google Scholar 

  • Tiquia, S. M., Lloyd, J., Herms, D. A., Hoitink, H. A. J., & Michel, F. C., Jr. (2002). Effects of mulching and fertilization on soil nutrients, microbial activity and rhizosphere bacterial community structure determined by analysis of TRFLPs of PCR-amplified 16S rRNA genes. Applied Soil Ecology, 21, 31–48.

    Article  Google Scholar 

  • Tiyagi, S. A., Rizvi, R., Mahmood, I., & Khan, Z. (2015). Evaluation of organic matter, bio-inoculants and inorganic fertilizers on growth and yield attributes of tomato with respect to the management of plant-parasitic nematodes. Emirates Journal of Food and Agriculture, 27(8), 602.

    Article  Google Scholar 

  • Trankner, A. (1992). Use of agricultural and municipal organic wastes to develop suppressiveness to plant pathogens. In E. S. Tjamos, G. C. Papavizas, & R. J. Cook (Eds.), Biological control of plant diseases (pp. 35–42). New York: Plenum Press.

    Chapter  Google Scholar 

  • Tuitert, G., Szczech, M., & Bollen, G. J. (1998). Suppression of Rhizoctonia solani in potting mixtures amended with compost made from organic household waste. Phytopathology, 88, 764–773.

    Article  CAS  PubMed  Google Scholar 

  • Twarog, S. (2008). East African Organic Product Standard and more. The World of Organic Agriculture–Statistics and Emerging Trends.

    Google Scholar 

  • Vallini, G., Bianchin, M. L., Pera, A., & De Bertoldi, M. (1983). Composting agro-industrial byproducts. Byocycle, 24, 43–47.

    Google Scholar 

  • Van Bruggen, A. H. C., & Finckh, M. R. (2016). Plant diseases and management approaches in organic farming systems. Annual Review of Phytopathology, 54, 25–54.

    Article  PubMed  CAS  Google Scholar 

  • van Diepeningen, A. D., de Vos, O. J., Korthals, G. W., & van Bruggen, A. H. (2006). Effects of organic versus conventional management on chemical and biological parameters in agricultural soils. Applied Soil Ecology, 31(1), 120–135.

    Article  Google Scholar 

  • Van Elsas, J. D., & Costa, R. (2007). Molecular assessment of soil microbial communities with potential for plant disease suppression. In Z. K. Punja, S. H. Boer, & H. Sanfaçon (Eds.), Biotechnology and plant disease management (p. 498). King’s Lynn: CAB International.

    Chapter  Google Scholar 

  • Van Elsas, J. D., & Postma, J. (2007). Suppression of soil-borne phytopathogens by compost. In L. F. Diaz, M. de Bertoldi, W. Bidlingmaier, & E. Stentiford (Eds.), Compost science and technology (pp. 201–204). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Venkatakrishnan, D., & Ravichandran, M. (2013). Integrated nutrient management on sugarcane yield and yield attributes. Plant Archives, 13(1), 239–242.

    Google Scholar 

  • Wang, R., Zhang, Y., Cerdà, A., Cao, M., Zhang, Y., Yin, J., Jiang, Y., & Chen, L. (2017). Changes in soil chemical properties as affected by pyrogenic organic matter amendment with different intensity and frequency. Geoderma, 289, 161–168.

    Article  CAS  Google Scholar 

  • Warren, K. S. (1962). Ammonia toxicity and pH. Nature, 195(4836), 47–49.

    Article  CAS  PubMed  Google Scholar 

  • Weber, J., Karczewska, A., Drozd, J., Licznar, M., Licznar, S., Jamroz, E., & Kocowicz, A. (2007). Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste composts. Soil Biology and Biochemistry, 39, 1294–1302.

    Article  CAS  Google Scholar 

  • Weller, D. M., & Cook, R. J. (1983). Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology, 73, 463–469.

    Article  Google Scholar 

  • Weller, D. M., Raaijmakers, J. M., McSpadden, B. B., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40, 309–348.

    Article  CAS  PubMed  Google Scholar 

  • Whitbread, A. M., Jiri, O., & Maasdorp, B. (2004). The effect of managing improved fallows of Mucuna pruriens on maize production and soil carbon and nitrogen dynamics in sub-humid Zimbabwe. Nutrient Cycling in Agroecosystems, 69(1), 59–71.

    Article  CAS  Google Scholar 

  • Whitman, T., Pepe-Ranney, C., Enders, A., Koechli, C., Campbell, A., Buckley, D. H., & Lehmann, J. (2016). Dynamics of microbial community composition and soil organic carbon mineralization in soil following addition of pyrogenic and fresh organic matter. ISME, 10(12), 2918–2930.

    Article  CAS  Google Scholar 

  • Willer, H., Yussefi, M., & Sorensen, N. (2010). The world of organic agriculture: Statistics and emerging trends 2008. London: Earthscan.

    Google Scholar 

  • Williams, D. M., Blanco-Canqui, H., Francis, C. A., & Galusha, T. D. (2017). Organic farming and soil physical properties: An assessment after 40 years. Agronomy Journal, 109(2), 600–609.

    Article  Google Scholar 

  • Wortmann, C. S., Isabirye, M., & Musa, S. (2009). Crotalaria ochroleuca as a green manure crop in Uganda. Field Crops Research, 61(2), 97–107.

    Google Scholar 

  • Xie, Z., Tu, S., Shah, F., Xu, C., Chen, J., Han, D., Liu, G., Li, H., Muhammad, I., & Cao, W. (2016). Substitution of fertilizer-N by green manure improves the sustainability of yield in double-rice cropping system in South China. Field Crops Research, 188, 142–149.

    Article  Google Scholar 

  • Yang, Y. J., Dungan, R. S., Ibekwe, A. M., Valenzuela-Solano, C., Crohn, D. M., & Crowley, D. E. (2003). Effect of organic mulches on soil bacterial communities one year after application. Biology and Fertility of Soils, 38, 273–281.

    Article  CAS  Google Scholar 

  • Yogev, A., Raviv, M., Hadar, Y., Cohen, R., & Katan, J. (2006). Plant waste–based composts suppressive to diseases caused by pathogenic Fusarium oxysporum. European Journal of Plant Pathology, 116, 267–278.

    Article  Google Scholar 

  • Yogev, A., Raviv, M., Hadar, Y., Cohen, R., Wolf, S., Gil, L., & Katan, J. (2010). Induced resistance as a putative component of compost suppressiveness. Biological Control, 54, 46–51.

    Article  Google Scholar 

  • Zaccardelli, M., De Nicola, F., Villecco, D., & Scotti, R. (2013a). The development and suppressive activity of soil microbial communities under compost amendment. Journal of Soil Science and Plant Nutrition, 13, 730–742.

    Google Scholar 

  • Zaccardelli, M., Villecco, D., Celano, G., & Scotti, R. (2013b). Soil amendment with seed meals: Short term effects on soil respiration and biochemical properties. Applied Soil Ecology, 72, 225–231.

    Article  Google Scholar 

  • Zelenev, V. V., Van Bruggen, A. H. C., & Semenov, A. M. (2005). Short-term wavelike dynamics of bacterial populations in response to nutrient input from fresh plant residues. Microbial Ecology, 49(1), 83–93.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W., Dick, W. A., & Hoitink, H. A. J. (1996). Compost-induced systemic acquired resistance in cucumber to Pythium root rot and anthracnose. Phytopathology, 86, 1066–1070.

    Article  Google Scholar 

  • Zhang, H., Ding, W., Yu, H., & He, X. (2015a). Linking organic carbon accumulation to microbial community dynamics in a sandy loam soil: Result of 20 years compost and inorganic fertilizers repeated application experiment. Biology and Fertility of Soils, 51, 137–150.

    Article  CAS  Google Scholar 

  • Zhang, Z., Zhao, J., Yu, C., Dong, S., Zhang, D., Yu, R., Wang, C., & Liu, Y. (2015b). Evaluation of aerobic co-composting of penicillin fermentation fungi residue with pig manure on penicillin degradation, microbial population dynamics and composting maturity. Bioresource Technology, 198, 403–409.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, J., Chen, J., Pan, G., Wang, G., Liu, X., Zhang, X., Li, L., Bian, R., Cheng, K., & Zheng, J. (2017). A long-term hybrid poplar plantation on cropland reduces soil organic carbon mineralization and shifts microbial community abundance and composition. Applied Soil Ecology, 111, 94–104.

    Article  Google Scholar 

  • Zhao, Y., Wang, P., Li, J., Chen, Y., Ying, X., & Liu, S. (2009). The effects of two organic manures on soil properties and crop yields on a temperate calcareous soil under a wheat–maize cropping system. European Journal of Agronomy, 31(1), 36–42.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ansari, R.A., Sumbul, A., Rizvi, R., Mahmood, I. (2019). Organic Soil Amendments: Potential Tool for Soil and Plant Health Management. In: Ansari, R., Mahmood, I. (eds) Plant Health Under Biotic Stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-6043-5_1

Download citation

Publish with us

Policies and ethics