Skip to main content

Potential Role of Plant Growth Promoting Rhizobacteria in Alleviation of Biotic Stress

  • Chapter
  • First Online:
Plant Health Under Biotic Stress

Abstract

Plant growth promoting rhizobacteria (PGPR) are well known to ameliorate the plant health. A large number of rhizobacteria possess the growth promoting activities. Some of them are very common and has been also commercialised to large/industrial scale. Plant growth regulators have been found to induce the growth and development of various crop plants. Some hormones like auxin, cytokinin, IAA, etc. are the key hormones in the plant growth promotion. However, their ratio of auxin to cytokinin may be determinant in the lateral root or root hair formation. The root surface area and root lengths are also conceived to play very important role in the accumulation of nutrient and are significantly influenced by the application of PGPR. Moreover, PGPR also have the biocontrol activities against a wide range of soil-borne plant pathogens. Some organic molecules such as siderophores, antibiotics, and bacteriocins producing PGPR arrest the pathogen populations and improve the plant health indirectly. Presence of more PGPR in rhizosphere exhibits more vigour plant health. Therefore, PGPR is considered as an alternative and effective way in the management of plant pathogens and plant growth promotion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University – Science, 26(1), 1–20.

    Article  Google Scholar 

  • Aloni, R., Aloni, E., Langhans, M., & Ullrich, C. I. (2006). Role of cytokinin and auxin in shaping root architecture: Regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Annals of Botany, 97, 883–893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso, J. M., Stepanova, A. N., Leisse, T. J., Kim, C. J., Chen, H., Shinn, P., … Gadrinab, C. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 301(5633), 653–657.

    Article  PubMed  Google Scholar 

  • Ansari, R. A., Rizvi, R., Sumbul, A., & Mahmood, I. (2017). PGPR: Current vogue in sustainable crop production. In Probiotics and plant health (pp. 455–472). Singapore: Springer.

    Chapter  Google Scholar 

  • Antoun, H., Beauchamp, C. J., Goussard, N., Chabot, R., & Lalande, R. (1998). Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.). in molecular microbial ecology of the soil (pp. 57–67). Dordrecht: Springer.

    Google Scholar 

  • Arkhipova, T. N., Prinsen, E., Veselov, S. U., Martinenko, E. V., Melentiev, A. I., & Kudoyarova, G. R. (2007). Cytokinin producing bacteria enhance plant growth in drying soil. Plant and Soil, 292(1–2), 305–315.

    Article  CAS  Google Scholar 

  • Ashrafuzzaman, M., Hossen, F. A., Ismail, M. R., Hoque, A., Islam, M. Z., Shahidullah, S. M., & Meon, S. (2009). Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. African Journal of Biotechnology, 8(7), 1247–1252.

    CAS  Google Scholar 

  • Baldani, J., Caruso, L., Baldani, V. L., Goi, S. R., & Döbereiner, J. (1997). Recent advances in BNF with non-legume plants. Soil Biology and Biochemistry, 29(5–6), 911–922.

    Article  CAS  Google Scholar 

  • Beneduzi, A., Ambrosini, A., & Passaglia, L. M. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35(4), 1044–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brink, S. C. (2016). Unlocking the secrets of the rhizosphere. Trends in Plant Science, 21(3), 169–170.

    Article  CAS  PubMed  Google Scholar 

  • Cacciari, I., Lippi, D., Pietrosanti, T., & Pietrosanti, W. (1989). Phytohormone-like substances produced by single and mixed diazotrophic cultures of Azospirillum and Arthrobacter. Plant and Soil, 115(1), 151–153.

    Article  CAS  Google Scholar 

  • Cascales, E., Buchanan, S. K., Duché, D., Kleanthous, C., Lloubes, R., Postle, K., … Cavard, D.. (2007). Colicin biology. Microbiology and Molecular Biology Reviews, 71(1), 158–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassan, F., Maiale, S., Masciarelli, O., Vidal, A., Luna, V., & Ruiz, O. (2009). Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. European Journal of Soil Biology, 45(1), 12–19.

    Article  CAS  Google Scholar 

  • Chin-A-Woeng, T. F., Bloemberg, G. V., & Lugtenberg, B. J. (2003). Phenazines and their role in biocontrol by Pseudomonas bacteria. The New Phytologist, 157(3), 503–523.

    Article  CAS  Google Scholar 

  • Cohen, A. C., Bottini, R., & Piccol, P. N. (2008). Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regulation, 54(2), 97–103.

    Article  CAS  Google Scholar 

  • Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71(9), 4951–4959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crosa, J. H., & Walsh, C. T. (2002). Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiology and Molecular Biology Reviews, 66(2), 223–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dakora, F. D., & Phillips, D. A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil, 245, 35–47.

    Article  CAS  Google Scholar 

  • de Souza, J. T., Arnould, C., Deulvot, C., Lemanceau, P., Gianinazzi-Pearson, V., & Raaijmakers, J. M. (2003). Effect of 2, 4-diacetylphloroglucinol on Pythium: Cellular responses and variation in sensitivity among propagules and species. Phytopathology, 93(8), 966–975.

    Article  PubMed  Google Scholar 

  • Dobbelaere, S., Vanderleyden, J., & Okon, Y. (2003). Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences, 22(2), 107–149.

    Article  CAS  Google Scholar 

  • Dubrovsky, J. G., Puente, M. E., & Bashan, Y. (1994). Arabidopsis thaliana as a model system for the study of the effect of inoculation by Azospirillum brasilense Sp-245 on root hair growth. Soil Biology and Biochemistry, 26(12), 1657–1664.

    Article  CAS  Google Scholar 

  • Dwivedi, D., & Johri, B. N. (2003). Antifungals from fluorescent pseudomonads: Biosynthesis and regulation. Current Science, 85, 1693–1703.

    CAS  Google Scholar 

  • Elias, J. M., Guerrero-Molina, M. F., Martínez-Zamora, M. G., Díaz-Ricci, J. C., & Pedraza, R. O. (2018). Role of ethylene and related gene expression in the interaction between strawberry plants and the plant growth-promoting bacterium Azospirillum brasilense. Plant Biology, 20(3), 490–496.

    Article  CAS  PubMed  Google Scholar 

  • Fernando, W. D., Nakkeeran, S., & Zhang, Y. (2005). Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In PGPR: Biocontrol and biofertilization (pp. 67–109). Dordrecht: Springer.

    Google Scholar 

  • Fukaki, H., & Tasaka, M. (2009). Hormone interactions during lateral root formation. Plant Molecular Biology, 69(4), 437–449.

    Article  CAS  PubMed  Google Scholar 

  • García de Salamone, I. E., Hynes, R. K., & Nelson, L. M. (2001). Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Canadian Journal of Microbiology, 47(5), 404–411.

    Article  PubMed  Google Scholar 

  • Glass, A. D. (1989). Plant mineral nutrition. An introduction to current concepts (p. 234). Jones and Bartlett Publishers, Inc.

    Google Scholar 

  • Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41(2), 109–117.

    Article  CAS  Google Scholar 

  • Glick, B. R., Jacobson, C. B., Schwarze, M. M., & Pasternak, J. J. (1994). 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Canadian Journal of Microbiology, 40(11), 911–915.

    Article  CAS  Google Scholar 

  • Glick, B. R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase-producing soil bacteria. In New perspectives and approaches in plant growth-promoting rhizobacteria research (pp. 329–339). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Goh, H. F., & Philip, K. (2015). Purification and characterization of bacteriocin produced by Weissella confusa A3 of dairy origin. PLoS One, 10(10), e0140434.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goswami, D., Thakker, J. N., & Dhandhukia, P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food & Agriculture, 2(1), 1127500.

    Google Scholar 

  • Gray, E. J., & Smith, D. L. (2005). Intracellular and extracellular PGPR: Commonalities and distinctions in the plant–bacterium signaling processes. Soil Biology and Biochemistry, 37(3), 395–412.

    Article  CAS  Google Scholar 

  • Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews. Microbiology, 3(4), 307–319.

    Article  CAS  PubMed  Google Scholar 

  • Haas, D., & Keel, C. (2003). Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annual Review of Phytopathology, 41(1), 117–153.

    Article  CAS  PubMed  Google Scholar 

  • Han, H. S., & Lee, K. D. (2006). Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant, Soil and Environment, 52(3), 130–136.

    Article  CAS  Google Scholar 

  • Hill, D. S., Stein, J. I., Torkewitz, N. R., Morse, A. M., Howell, C. R., Pachlatko, J. P., … Ligon, J. M. (1994). Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Applied and Environmental Microbiology, 60(1), 78–85.

    Google Scholar 

  • Holguin, G., & Glick, B. R. (2001). Expression of the ACC deaminase gene from Enterobacter cloacae UW4 in Azospirillum brasilense. Microbial Ecology, 41(3), 281–288.

    Article  CAS  PubMed  Google Scholar 

  • Hurek, T., & Reinhold-Hurek, B. (2003). Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. Journal of Biotechnology, 106(2–3), 169–178.

    Article  CAS  PubMed  Google Scholar 

  • Hussain, A., & Hasnain, S. (2009). Cytokinin production by some bacteria: Its impact on cell division in cucumber cotyledons. African Journal of Microbiology Research, 3(11), 704–712.

    CAS  Google Scholar 

  • James, E. K., Gyaneshwar, P., Mathan, N., Barraquio, W. L., Reddy, P. M., Iannetta, P. P., … Ladha, J. K. (2002). Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Molecular Plant-Microbe Interactions, 15(9), 894–906.

    Article  CAS  PubMed  Google Scholar 

  • Katz, E., & Demain, A. L. (1977). The peptide antibiotics of Bacillus: Chemistry, biogenesis, and possible functions. Bacteriological Reviews, 41(2), 449–474.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kloepper, J. W., Leong, J., Teintze, M., & Schroth, M. N. (1980). Pseudomonas siderophores: A mechanism explaining disease-suppressive soils. Current Microbiology, 4(5), 317–320.

    Article  CAS  Google Scholar 

  • Li, Q., Saleh-Lakha, S., & Glick, B. R. (2005). The effect of native and ACC deaminase-containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings. Canadian Journal of Microbiology, 51(6), 511–514.

    Article  CAS  PubMed  Google Scholar 

  • Loper, J. E. (1988). Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology, 78(2), 166–172.

    Article  CAS  Google Scholar 

  • Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556.

    Article  CAS  PubMed  Google Scholar 

  • Maksimov, I. V., Abizgil’Dina, R. R., & Pusenkova, L. I. (2011). Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens. Applied Biochemistry and Microbiology, 47(4), 333–345.

    Article  CAS  Google Scholar 

  • Malinich, E. A., & Bauer, C. E. (2018). The plant growth promoting bacterium Azospirillum brasilense is vertically transmitted in Phaseolus vulgaris (common bean). Symbiosis, 76, 1–12.

    Article  CAS  Google Scholar 

  • Miransari, M. (2014). Plant growth promoting rhizobacteria. Journal of Plant Nutrition, 37(14), 2227–2235.

    Article  CAS  Google Scholar 

  • Neeraja, C., Anil, K., Purushotham, P., Suma, K., Sarma, P. V. S. R. N., Moerschbacher, B. M., & Podile, A. R. (2010). Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Critical Reviews in Biotechnology, 30(3), 231–241.

    Article  CAS  PubMed  Google Scholar 

  • Patten, C. L., & Glick, B. R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42, 207–220.

    Article  CAS  PubMed  Google Scholar 

  • Paulitz, T. C., & Loper, J. E. (1991). Lack of a role for fluorescent siderophore production in the biological control of Pythium damping-off of cucumber by a strain of Pseudomonas putida. Phytopathology, 81(8), 930–935.

    Article  Google Scholar 

  • Perrig, D., Boiero, M. L., Masciarelli, O. A., Penna, C., Ruiz, O. A., Cassán, F. D., & Luna, M. V. (2007). Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Applied Microbiology and Biotechnology, 75(5), 1143–1150.

    Article  CAS  PubMed  Google Scholar 

  • Quagliotto, L., Azziz, G., Bajsa, N., Vaz, P., Pérez, C., Ducamp, F., et al. (2009). Three native Pseudomonas fluorescens strains tested under growth chamber and field conditions as biocontrol agents against damping-off in alfalfa. Biological Control, 51(1), 42–50.

    Article  Google Scholar 

  • Raaijmakers, J. M., De Bruijn, I., Nybroe, O., & Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiology Reviews, 34(6), 1037–1062.

    Article  CAS  PubMed  Google Scholar 

  • Ramaekers, L., Remans, R., Rao, I. M., Blair, M. W., & Vanderleyden, J. (2010). Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Research, 117(2–3), 169–176.

    Article  Google Scholar 

  • Reddy, K. V. R., Yedery, R. D., & Aranha, C. (2004). Antimicrobial peptides: Premises and promises. International Journal of Antimicrobial Agents, 24(6), 536–547.

    Article  CAS  PubMed  Google Scholar 

  • Remans, R., Ramaekers, L., Schelkens, S., Hernandez, G., Garcia, A., Reyes, J. L., … Vanderleyden, J. (2008). Effect of Rhizobium–Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant and Soil, 312(1–2), 25–37.

    Article  CAS  Google Scholar 

  • Richardson, A. E., Hocking, P. J., Simpson, R. J., & George, T. S. (2009). Plant mechanisms to optimise access to soil phosphorus. Crop & Pasture Science, 60(2), 124–143.

    Article  CAS  Google Scholar 

  • Riefler, M., Novak, O., Strnad, M., & Schmülling, T. (2006). Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. The Plant Cell, 18(1), 40–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riggs, P. J., Chelius, M. K., Iniguez, A. L., Kaeppler, S. M., & Triplett, E. W. (2001). Enhanced maize productivity by inoculation with diazotrophic bacteria. Functional Plant Biology, 28(9), 829–836.

    Article  Google Scholar 

  • Riley, M. A., & Wertz, J. E. (2002). Bacteriocins: Evolution, ecology, and application. Annual Review of Microbiology, 56(1), 117–137.

    Article  CAS  PubMed  Google Scholar 

  • Saleem, M., Arshad, M., Hussain, S., & Bhatti, A. S. (2007). Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology & Biotechnology, 34(10), 635–648.

    Article  CAS  Google Scholar 

  • Salisbury, F. B., & Ross, C. W. (1992). Plant physiology. Belmont: Wadsworth Publishing Co..

    Google Scholar 

  • Sessitsch, A., Howieson, J. G., Perret, X., Antoun, H., & Martinez-Romero, E. (2002). Advances in Rhizobium research. Critical Reviews in Plant Sciences, 21(4), 323–378.

    Article  CAS  Google Scholar 

  • Sevilla, M., Burris, R. H., Gunapala, N., & Kennedy, C. (2001). Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and nif mutant strains. Molecular Plant-Microbe Interactions, 14(3), 358–366.

    Article  CAS  PubMed  Google Scholar 

  • Silo-Suh, L. A., Lethbridge, B. J., Raffel, S. J., He, H., Clardy, J., & Handelsman, J. (1994). Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Applied and Environmental Microbiology, 60(6), 2023–2030.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signalling. FEMS Microbiology Reviews, 31, 425–448.

    Article  CAS  PubMed  Google Scholar 

  • Timmusk, S., Nicander, B., Granhall, U., & Tillberg, E. (1999). Cytokinin production by Paenibacillus polymyxa. Soil Biology and Biochemistry, 31(13), 1847–1852.

    Article  CAS  Google Scholar 

  • Van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. In New perspectives and approaches in plant growth-promoting Rhizobacteria research (pp. 243–254). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255(2), 571–586.

    Article  CAS  Google Scholar 

  • Yanni, Y. G., Rizk, R. Y., El-Fattah, F. K. A., Squartini, A., Corich, V., Giacomini, A., … Vega-Hernandez, M. (2001). The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Functional Plant Biology, 28(9), 845–870.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahmood, I., Rizvi, R., Sumbul, A., Ansari, R.A. (2019). Potential Role of Plant Growth Promoting Rhizobacteria in Alleviation of Biotic Stress. In: Ansari, R., Mahmood, I. (eds) Plant Health Under Biotic Stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-6040-4_9

Download citation

Publish with us

Policies and ethics